
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Compound Conditional Source Coding,
Slepian-Wolf List Decoding, and
Applications to Media Coding

Stark Draper, Emin Martinian

TR2007-023 June 2007

Abstract

We introduce a novel source coding problem, compound conditional source coding. We describe
how a number of media coding problems can be cast into this framework. We develop the
achievable rate region for this problem and error exponent results. We show that the reliability
function of compound conditional source coding is at least as large as the list-decoding error
exponent of Slepian-Wolf coding, which we develop in addition. A message of the paper is that
a number of media coding scenarios where distributed source coding techniques are being used
are more exactly stated as compound conditional problems. This insight can lead to improved
system performance, as we demonstrate for error exponents.

IEEE International Symposium on Information Theory (ISIT)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2007
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Compound conditional source coding, Slepian-Wolf
list decoding, and applications to media coding

Stark C. Draper
Mitsubishi Electric Research Laboratories

Cambridge, MA 02139 USA
draper@merl.com

Emin Martinian
Tilda Consulting, Inc.

Arlington, MA 02476 USA
emin@alum.mit.edu

Abstract— We introduce a novel source coding problem, com-
pound conditional source coding. We describe how a number
of media coding problems can be cast into this framework.
We develop the achievable rate region for this problem and
error exponent results. We show that the reliability function of
compound conditional source coding is as least as large as the
list-decoding error exponent of Slepian-Wolf coding, which we
develop in addition. A message of the paper is that a number
of media coding scenarios where distributed source coding
techniques are being used are more exactly stated as compound
conditional problems. This insight can lead to improved system
performance, as we demonstrate for error exponents.

I. INTRODUCTION

Distributed source coding ideas of the sort first developed
by Slepian and Wolf [14] are finding application in a wide
range of applications from sensor networks to security to
multimedia coding. In this paper we describe how some of
of these emerging applications are more exactly described as
“compound conditional source coding.” They share common-
alities with both distributed source coding and conditional
source coding [9], but are distinct from both. We provide
motivating examples from the video coding literature. We
develop both first-order achievability results and second-order
reliability function results for this problem. In developing the
latter we also derive an achievable list-decoding reliability
function of Slepian-Wolf coding. Finally, we present a protocol
that builds on Slepian-Wolf list decoding to get error-exponent
results for compound conditional source coding.

Figure 1 gives a block diagram that depicts both Slepian-
Wolf and conditional source coding. In both scenarios we
want to transmit a length-n random source sequence x over
a rate-constrained noiseless channel. In addition, the decoder
observes the length-n side information y where the pair (x, y)
is distributed according to px,y(x,y). The difference between
conditional and distributed source coding is in the encoder
knowledge. In conditional source coding the encoder observes
the side information, i.e., switch (a) in Fig. 1 is closed. In
distributed source coding switch (a) is open. The encoder
knows of only the existence of y and the statistics px,y(x,y).

The problem we introduce in this paper–compound condi-
tional source coding–is depicted in Fig. 2. The novel twist is
that the encoder is told that y is one of a certain (small finite)
set of possibilities {y1,y2, . . . ,yP }, but is not told which.
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Fig. 1. In conditional source coding switch (a) is closed. In distributed source
coding switch (a) is open. In both the objective is to reconstruct x with high
probability and no distortion, i.e., x̂ = x.
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Fig. 2. In compound conditional source coding a set of P possible side
information realizations y1, y2, . . . , yP are observed at the encoder. Only
one, yk, is observed at the decoder. All P joint distribution px,yp(x,yp),
p ∈ {1, 2, . . . , P} are known, but only the decoder knows the identity k of
its observation. The objective is to reconstruct x with high probability and no
distortion.

In contrast, in conditional source coding P = 1, and in dis-
tributed source coding the encoder knows only that y belongs
to the typical set of possibilities and hence P ' 2nH(y |x).
Because in our compound problem the encoder does not know
which of the P possibilities is observed by the decoder,
conditional (a.k.a. “predictive”) coding fails. On the other
hand, distributed source coding will work. However, because
the set of possibilities has been narrowed so vastly (from an
exponential to a sub-exponential number), the encoder should
be able to operate more intelligently than a straightforward
application of Slepian-Wolf techniques.

It immediately shown in Thm. 1 (cf. Sec. IV) that Slepian-
Wolf coding is asymptotically optimal for compound condi-
tional source coding in terms of rate. Consequently, to obtain
sharp results demonstrating that Slepian-Wolf coding is sub-
optimal, we show that the error exponent can be improved.
Specifically, we show the error exponent of compound con-
ditional source coding is at least as great as the list-decoding
error exponent of Slepian-Wolf coding for the realized source
statistics.

A larger error exponent implies shorter code block-length
implying lower latency (which is valuable for real-time media



applications) and a lower demand for communication re-
sources. Still, a system designer may object that the complex-
ity of list decoding exceeds the already infeasible complexity
of decoding a random codebook and hence wonder how to
interpret our result. Our main point is that using encoder side
information (available in the form of the set of P possible
side informations) can improve performance. System designers
should search for ways to use this information.

The rest of the paper is outlined as follows. In Section II
we formally describe the problem model, specify our coding
protocol, and in Sec. III give examples of its relevance to
multimedia. In Section IV we describe our main results.
Derivations are given in Section V. We conclude in Section VI.

II. PROBLEM DESCRIPTION AND PROTOCOL

The compound conditional source coding problem is de-
scribed as follows. A length-n random source x is drawn
according to px(x) and observed by the encoder. A number
P of candidate side informations y1, y2, . . . , yP are drawn
according to py1|x(y1|x), py2|x(y2|x), . . . pyP |x(yP |x), respec-
tively, and shown to the encoder. One of these P side infor-
mation sequences yk is shown to the decoder. We place no
probability distribution on the choice of k. The encoder and
decoder are both assumed to know all the joint distributions,
px,yp

(x,yp) for all p ∈ {1, 2, . . . P}. Further, the decoder is
assumed to know the index k of the side information selected.
The validity of this last assumption will be clear when we
describe the scenarios we are modeling.

The encoder sends a rate-R message over a noiseless
channel to the decoder who attempts to recreate x losslessly
with high probability.

A. List decoding

In this paper we present results on list decoding for Slepian-
Wolf systems. In contrast to, e.g., maximum likelihood decod-
ing when the output of the decoder is the single best guess
of the source sequence, in list decoding the decoder outputs
a length-L list of possibilities. A list decoder is in error only
if the true source sequence x is not on the list L(y). List
decoding results for channel coding first appeared in [6] and
are also developed in [7, exercise 5.20].

B. Compound conditional source coding protocol

We now present the coding protocol for compound con-
ditional source coding. The protocol builds on Slepian-Wolf
list decoding. We encode using a randomized Slepian-Wolf
code at rate R ≥ maxp H(x |yp). As is shown in Thm. 1 (cf.
Sec. IV) this encoding rate guarantees successful decoding
with high probability. To improve error exponent performance,
in addition to the Slepian-Wolf bin index, the encoder also
sends zero-rate resolution information. The encoder calculates
the resolution information by list decoding with respect to each
of the P side informations it observes. It encoders the location
of the true sequence x on each list, which can be encoded with
log L bits per list. Since there are P possible side informations
the total number of resolution bits is P log L. The rate of

the resolution information is P log L/n which goes to zero as
the block length n grows and thus, asymptotically, uses zero
additional rate.

The decoder performs Slepian-Wolf list decoding with re-
spect to the side information yk it observes, and its joint
distribution px,yk

. It then uses the appropriate (kth) list index
to select its final source estimate from the resulting list. As
long as the true source sequence is on the list, decoding
is successful. Therefore the error probability performance of
compound conditional source coding is as good as that of
Slepian-Wolf list decoding under the realized statistics px,yk

.
Any finite L > 1 can improve the error exponent. This is

the main technical point of our paper. In fact, since L does
not effect the rate it can be chosen large, but finite. One can
further optimize the proposed protocol using a more detailed
analysis to choose the optimal L as a function of n and P . This
can make the resolution information non-negligible, which
would require more care in the error exponent calculation.
We postpone these calculations for future work.

This protocol is only possible in the compound conditional
source coding setting because the encoder can see the possible
side informations. This allows the encoder to simulate the
decoder, identify the lists the decoder would produce, and
deduce the correct resolution informations. In the distributed
source coding setting, the encoder has no idea what the side
information realization is and cannot produce such lists.

III. MEDIA APPLICATIONS

We now give examples from the multimedia literature that
can be abstracted into this setting. These examples all fall un-
der the general moniker of “Wyner-Ziv” video coding. Wyner-
Ziv [19] coding is the rate-distortion version of Slepian-Wolf
coding. At a high level, a Wyner-Ziv system is just a traditional
vector quantizer, followed by a Slepian-Wolf encoder and
decoder, and finished off with post-processing consisting of
a joint estimate of x based on the decoded vector quantization
of x and the side information y. The Slepian-Wolf core is thus
the only distributed aspect of a Wyner-Ziv system. Therefore,
without loss of too much generality we concentrate on the
Slepian-Wolf core of these problems in this paper.

The insight that video encoding can be treated as a dis-
tributed source coding problem was first realized in [3], [12].
In terms of Fig. 1 the switch (a) is open, x corresponds to the
next frame in the video sequence and the side information y

corresponds to the already-decoded previous frame. If switch
(a) were closed we could encode the innovation between the
two frames which is how traditional predictive video encoders
work. As the following examples illustrate there are a number
of reasons to consider distributed coding frameworks.

Finally, we note that compound conditional source coding is
somewhat similar to “source encoding with side-information
under ambiguous state of nature” (SEASON) [10]. Both are
attempts to develop a theoretical basis for the application of
distributed source coding to media. Major differences are as
follows. In SEASON the side informations are all marginally
identically distributed, the side information realizations are not
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Fig. 3. Multiview coding.

revealed to the encoder, and all realizations are revealed to the
decoder. Further, the decoder is not told which of the revealed
side informations is the one that is jointly distributed with the
source. SEASON is also posed in a rate-distortion setting but,
as noted above, that difference is less important.

A. Multiview coding

In multiview video/image coding, a scene is captured using
multiple cameras at each time instant. For example, in Fig. 3
(i, j) represents the camera number i and time instant j
of a particular frame. Traditional predictive coding does not
allow random access (i.e., decoding in any arbitrary order)
while intra-coding has poor compression efficiency. In con-
trast, Wyner-Ziv coding [1], [15] allows random access (e.g.,
decoding in the order illustrated by either the solid or the
dashed lines) while providing higher compression efficiency
than independent intra-coding of each frame. When Wyner-
Ziv techniques are used, this is an example of compound
conditional source coding. The encoder knows the possible
side information sequences in advance. For example, the
prediction references for packet (2,4) could either be (1,4) or
(2,3) depending on the desired decoding order.

B. Robust video coding

Various researchers [18], [11], [2] have proposed using
Wyner-Ziv coding of video to mitigate error propagation
when video packets are transmitted over a lossy channel.
This application is illustrated in Fig. 4. For example, by
using Wyner-Ziv coding at the appropriate bit rate, packet
5 can be decoded by using either packet 4 as a predictive
reference (if packet 4 is received without error) or by using
packet 3 as a predictive reference (if packet 4 is lost). This
is another example of a compound conditional source coding
problem since the encoder knows in advance the possible side
informations (packet 4 or packet 3 or packet 2 or packet 1)

Time
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Fig. 4. Robust video coding.
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Fig. 5. Stream switching of multiresolution video coding.

that the decoder might use in decoding packet 5. While we do
not place any probability distribution on the choice of realized
side information, packet loss statistics could be used to refine
the error model, although applications with extreme latency
requirements will be limited by the worst case, as herein.

C. Stream switching for multiresolution video coding

A key issue in video streaming is that network bandwidth
may vary over time. Some researchers have proposed using
Wyner-Ziv video coding to allow the transmitter to vary the
bitrate/resolution/quality of the video stream dynamically. En-
abling the decoder to “switch” from one resolution to another
is complicated by the fact that the decoder may not have
the prediction references for the other stream. For example,
if, as is depicted in Fig. 5, a decoder switches from high
resolution to low resolution at time 3, it may not have the
appropriate prediction references for low resolution. Methods
of addressing this issue include forcing motion vectors for each
resolution to be the same, only allowing resolution switches at
intra “I” frames, and using SP/SI frames [16], [13], [17]. An
alternative is to encode error residuals or texture information
using Wyner-Ziv coding [15], giving more graceful resolution
switching. Since the streams at all resolutions are known by
the encoder, this is compound conditional source coding.

IV. MAIN TECHNICAL RESULTS

In this section we state our main technical results. For
simplicity we state some results for the case of i.i.d. sources.

Theorem 1: (Compound conditional source coding) Let
px,yp

(x,yp) =
∏n

i=1 px,yp
(xi, yp,i) where p ∈ {1, 2, . . . P}

be the joint distributions of a length-n source sequence x with
P side informations. The encoder observes x and (yp, p) for
all p ∈ {1, 2, . . . P}. The decoder observes only (yk, k) where



k ∈ {1, 2, . . . , P}. Then for any ε > 0 there exists an n0 > 0
such that for all n > n0 there exists an encoder/decoder pair
with Pr[x̂ 6= x] < ε if

R > max
p∈{1,2,...,P}

H(x |yp) (1)
Theorem 2: (List-decoding for Slepian-Wolf systems) Let

px,y(x,y) be the joint distribution of a pair of length-n random
sequences (x, y) where x is the source observed at the encoder
and y is the decoder side information. There exists a rate-
R encoder/list-decoder pair, where the list L(y) is of size
|L(y)| = L, such that the average probability of list decoding
error is bounded for any choice of ρ, 0 ≤ ρ ≤ L as

Pr[x /∈ L(y)] ≤ 2−nρR
∑

y

(

∑

x

px,y(x,y)
1

1+ρ

)1+ρ

. (2)

In the special case of an i.i.d. source px,y(x,y) =
∏n

i=1 px,y (xi, yi). Maximizing over the free parameter ρ, 0 ≤
ρ ≤ L, we get the following error exponent.

Corollary 1: For i.i.d. sources Pr[x /∈ L(y)] ≤ 2−nE for
all E ≤ ESW,list(px,y , R, L) where ESW,list(px,y , R, L) =

max
0≤ρ≤L

ρR − log
∑

y

(

∑

x

px,y (x, y)
1

1+ρ

)1+ρ

. (3)

Corollary 2: (Error exponent of compound conditional
source coding) Consider the compound conditional source
coding problem of Thm. 1. Let k denote the realized decoder
side information where k ∈ {1, 2, . . . , P}. Then

−
logPr[x̂ 6= x]

n
≥ ESW,list(px,yk

, R, L) (4)
To understand the impact of list decoding on the achieved

error exponent, one should compare (2) and (3) to the ex-
ponential error bounds for maximum likelihood Slepian-Wolf
decoding [8]. In particular the argument of the maximization
in (3) is the same. List-decoding only effects the domain of
the free variable ρ. While in maximum likelihood decoding [8]
0 ≤ ρ ≤ 1, in length-L list decoding 0 ≤ ρ ≤ L. This
additional freedom can translate into a large increase in the
exponent at higher rates. This is the same effect as when list
decoding is used in channel coding (where the large increase
occurs at lower rates). We again emphasize the dependence
on the realized k. The error exponent is at least as large as
the Slepian-Wolf list decoding error exponent for list size L
and for the realized joint statistics px,yk

. Recall k is known
by the decoder but not the encoder. Encoding is universal. It
does not depend on the joint statistics; decoding does.

V. DERIVATIONS

A. Compound conditional source coding

The logic behind Thm. 1 is the same as that for compound
channels [4]. By the random-binning achievability of the
regular Slepian-Wolf coding theorem [14] we can decode
x correctly with high probability for source px,yp

(x,yp) if
R ≥ H(x |yp). If we pick R ≥ maxp H(x |yp) we can
decode reliably since the random binning used in a Slepian-
Wolf encoder does not depend on the source statistics (only

the binning rate does).1 Since the number of distributions is
sub-exponential, by the union bound we can find a binning
that is good for all P joint distributions. Finally, by the
standard converse we cannot decode reliably for source p if
R < H(x |yp). Therefore, R ≥ maxp H(x |yp) is required.

B. List-decoding for Slepian-Wolf systems

The Slepian-Wolf encoding technique we use in deriving our
list decoding results is the standard one. The encoder assigns
all |X |n source sequences independently and uniformly to
2nR sets or “bins”. The (random) bin containing the source
sequence x is denoted B(x). The decoder decodes to a list
L(y) of the L ≥ 1 most likely source sequences given the
side information y. The average probability of list decoding
error, occurring when x is not on the decoded list, averaged
over the choice of bin assignments can be bounded as follows.

Pr[x /∈ L(y)] =
∑

x,y

Pr[x /∈ L(y)|x,y]px,y(x,y) (5)

≤
∑

x,y

Pr[∃ L x̃ ∈ B(x) s.t. px|y(x̃|y) ≥ px|y(x|y)|x,y]

px,y(x,y). (6)

Equation (6) says that an error can occur only if there are
L elements in the bin B(x) containing the realized source
sequence, such that all L are conditionally more likely than
x. To get a handle on this event we define M(x,y) to be the
cardinality of the set of sequences that are more likely than x

when conditioned on y,

M(x,y) = |{x̃ s.t. px|y(x̃|y) ≥ px|y(x|y)}|. (7)

For any source/side-information pair (x,y), we enu-
merate the length-L lists of source sequences that can
lead to list-decoding errors as Li(x,y). The index i ∈
{

1, 2, . . .
(

M(x,y) − 1
L

)}

. For compactness we write Li, im-
plicitly understanding the dependency on (x,y). If any of
these lists is fully contained in the bin of source sequences that
contains x, i.e., Li ⊂ B(x) for some i, then a list decoding
error occurs. We define the event ALi,x to be the event that
list Li ⊂ B(x). The error probability (6) can be expressed as
∑

x,y

Pr[∪iALi,x|x,y]px,y(x,y)

≤
∑

x,y

min
{

1,
∑

i

Pr[ALi,x|x,y]
}

px,y(x,y)

=
∑

x,y

min
{

1,
∑

i

2−nLR
}

px,y(x,y) (8)

1In an implementation of these idea using, e.g., low-density parity-check
codes (LDPCs) to encode (i.e., syndrome generation) and belief propagation
(BP) to decode, certain design issues arise that are not revealed by this
analysis. For example, while for an idealized random binning encoder the
detailed source statistics are not important (only the entropy is), this is not the
case when using LDPCs. Rather, the degree distribution of the code should be
tuned to the side-information channel using density-evolution, EXIT-charts, or
some other design technique. Further, a degree distribution that is universally
good for all P source distributions will in general not exist. Therefore, in
a compound setting the code would need to be designed according to the
worst-case joint distribution, akin to how the rate is set in Thm 1.



=
∑

x,y

min
{

1,
(

M(x,y) − 1
L

)

2−nLR
}

px,y(x,y)

≤
∑

x,y

min
{

1, (M(x,y) − 1)L2−nLR
}

px,y(x,y)

≤
∑

x,y

min
{

1,
(

∑

x̃

1
[

px|y(x̃|y)≥px|y(x|y)
]

)L

2−nLR
}

px,y(x,y)

≤
∑

x,y

min







1,

(

∑

x̃

min

{

1,
px|y(x̃|y)

px|y(x|y)

}

)L

2−nLR







px,y(x,y)

≤
∑

x,y

(

∑

x̃

px|y(x̃|y)s

px|y(x|y)s

)Lρ0

2−nLρ0R px,y(x,y) (9)

≤
∑

y

py(y)
∑

x

px|y(x|y)1−Lρ0s
(

∑

x̃

px|y(x̃|y)s
)Lρ0

=
∑

y

py(y)2−nρR
(

∑

x

px|y(x|y)
1

1+ρ

)1+ρ

(10)

= 2−nρR
∑

y

(

∑

x

px,y(x,y)
1

1+ρ

)1+ρ

(11)

Sequences are independently and uniformly assigned to the
2nR bins, so in (8) the probability that all the sequences on
any particular list are all assigned to B(x) is 2−nRL. In (9) we
twice use Gallager’s refined union bound [7] where 0≤ s≤ 1
and 0≤ρ0≤1. In (10) we define ρ=Lρ0 and let s=1/(1+ρ),
therefore in (11) 0≤ρ≤L, giving (2).

For i.i.d. px,y(x,y) =
∏n

i=1 px,y (xi, yi), and (11) becomes

2−nρR
[

∑

y

(

∑

x

px,y (x, y)
1

1+ρ

)(1+ρ)]n

.

Since the bound holds for all ρ we get the tightest bound
by maximizing over ρ, giving the Slepian-Wolf length-L list-
decoding random binning error exponent for i.i.d. sources:
− logPr[x /∈L(y)]

n
≥ max

0≤ρ≤L
ρR−log

∑

y

(

∑

x

px,y (x, y)
1

1+ρ

)1+ρ

.

C. Error exponent of compound conditional source coding

Corollary 2 is proved in Sec. II-B. We now understand
the choice of encoding rate. We encode using a randomized
Slepian-Wolf code, per the achievability of Thm. 2, at rate
R ≥ maxp H(x |yp) per Thm. 1. Resolution information is
calculated, and decoding is performed, per Sec. II-B.

VI. CONCLUSIONS

Much recent work on “Wyner-Ziv” video coding poses
video compression as an application of distributed source cod-
ing. We make the point that some of these scenarios are more
exactly described as “compound conditional” problems. Dis-
tributed source coding techniques, while centrally important to
robustly address the compound nature of these problems, do
not by themselves characterize the full range of operational
possibilities. As an example, in this paper we demonstrate
that the achievable error exponents of compound conditional
problems exceed those of distributed source coding.

We expect that the distinction between distributed and
compound conditional source coding can be leveraged in
other ways to implement further improvements. For example,
in the rate-distortion coding of non-jointly-Gaussian sources
there is a rate-loss in the Wyner-Ziv problem. This begs the
question of whether, in a compound setting, the best approach
is based on a Wyner-Ziv distributed coding solution, a pair of
conditionally-coded solutions, or some hybrid scheme.

Another direction is to explore the use of universal list
decoders. This scenario arises when the joint source/side-
information distributions are not known though, as herein,
the index k of the realized side information is known by the
decoder. In this case a universal Slepian-Wolf list decoder (see,
e.g., [4], [5] for applications of universal binning decoders to
(non-list) Slepian-Wolf and Wyner-Ziv problems) would be
used in the place of the list decoder used herein.
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