
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

ML Decoding Via Mixed-Integer Adaptive
Linear Programming

Stark Draper, Jonathan Yedidia, Yige Wang

TR2007-022 June 2007

Abstract

Linear programming (LP) decoding was introduced by Feldman et al. (IEEE Trans. Inform.
Theory Mar. 2005) as a novel way to decode binary low-density parity-check codes. Taghavi
and Siegel (Proc. ISIT 2006) describe a computationally simplified decoding approach they term
”adaptive” LP decoding. Adaptive LP decoding starts with a sub-set of the LP constraints, and
iteratively adds violated constraints until an optimum of the original LP is found. Usually only
a tiny fraction of the original constraints need to be reinstated, leading to huge efficiency gains
compared to ordinary LP decoding. Here we describe a modification of the adaptive LP decoder
that results in a maximum likelihood (ML) decoder. Whenever the adaptive LP decoder returns
a pseudo-codeword rather than a codeword, we add an integer constraint on the least certain
symbol of the pseudo-codeword. For certain codes, and especially in the high-SNR (error floor)
regime, only a few integer constraints are required to force the resultant mixed -integer LP to the
ML solution. We demonstrate that our approach can efficiently achieve the optimal ML decoding
performance on a (155.64) LDPC code introduced by Tanner et al.

IEEE International Symposium on Information Theory (ISIT)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2007
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



ML decoding via mixed-integer adaptive
linear programming

Stark C. Draper
Mitsubishi Electric Research Labs

Cambridge, MA 02139 USA
draper@merl.com

Jonathan S. Yedidia
Mitsubishi Electric Research Labs

Cambridge, MA 02139 USA
yedidia@merl.com

Yige Wang
Dept. of EE, Univ. of Hawaii at Manoa

Honolulu, HI 96822 USA
yige@spectra.eng.hawaii.edu

Abstract— Linear programming (LP) decoding was introduced
by Feldman et al. (IEEE Trans. Inform. Theory Mar. 2005) as
a novel way to decode binary low-density parity-check codes.
Taghavi and Siegel (Proc. ISIT 2006) describe a computationally
simplified decoding approach they term “adaptive” LP decoding.
Adaptive LP decoding starts with a sub-set of the LP constraints,
and iteratively adds violated constraints until an optimum of the
original LP is found. Usually only a tiny fraction of the orig inal
constraints need to be reinstated, leading to huge efficiency gains
compared to ordinary LP decoding.

Here we describe a modification of the adaptive LP decoder
that results in a maximum likelihood (ML) decoder. Whenever
the adaptive LP decoder returns a pseudo-codeword rather
than a codeword, we add an integer constraint on the least
certain symbol of the pseudo-codeword. For certain codes, and
especially in the high-SNR (error floor) regime, only a few integer
constraints are required to force the resultant mixed-integer LP
to the ML solution. We demonstrate that our approach can
efficiently achieve the optimal ML decoding performance on a
(155,64) LDPC code introduced by Tanner et al.

I. I NTRODUCTION

Standard decoders for low-density parity-check (LDPC)
codes are based on iterative belief-propagation (BP) decod-
ing. In [4] Feldman et al. introduce an alternate decoding
algorithm based on linear programing (LP). LP decoding
has some attractive features. An LP decoder deterministically
converges and when it converges to an integer solution, one
knows that the maximum likelihood (ML) codeword has been
found. When it converges to a non-integer solution, a well-
defined “pseudo-codeword” has been found. Unfortunately,
LP decoding is more complex than BP decoding. In the
formulations originally introduced by Feldman et al., the
number of constraints in the LP decoding problem is linear
in block-length, but exponential in the maximum check node
degree. The resulting computational load can be prohibitive.

The computationally burden of LP decoding motivates the
introduction of “adaptive” linear programming (ALP) decod-
ing by Taghavi and Siegel in [5]. Instead of starting with the
full gamut of LP constraints, Taghavi and Siegel instead first
solve for the LP optimum of a problem where the values of the
binary codeword symbols are only constrained to be greater
than zero or less than one. At the resulting optimum, for each
check node, they (efficiently) determine the local constraints
that are violated. Adding the violated constraints back into
the problem they then solve the resulting LP. They iterate

this process until no local constraints are violated. The result
is guaranteed to match the solution to the original LP, even
though only a small fraction of the original constraints are
used. Empirically they observe that the number of constraints
used for linear codes is only a small multiple (1.1-1.5) of the
numberm of parity-check constraints, even for codes with
high check degree, and that LP decoding becomes significantly
(sometimes several orders of magnitude) more efficient.

When the solution to the original LP is non-integer, the
ML codeword has not been found, and one is motivated to
find a tightening of the original LP relaxation. This is the
focus of the current paper. In contrast to earlier proposalsthat
focused on, e.g., adding redundant parity-checks (RPCs) [4],
[5], or “lift and project” [3], we instead add a small number of
integer constraints to the decoding problem. Our methodology
for choosing each binary constraint is simple, we put integer
constraints on the “least reliable” symbol of the optimum
pseudo-codeword after each ALP decoding. We observe that
in very many cases only a few integer constraints are needed
to force the decoder to the ML solution. Keeping the integer
constraints in the LP is also considered in [4], but there all
n integer constraints are enforced, rather than being added in
incrementally, in the style of ALP decoding.

Another recent work that enforces integer constraints on the
least certain bits of an initial LP solution is [8]. While ourbasic
philosophy is very similar to [8], by efficiently integrating the
addition of integer constraints into an ALP decoder, we are
able to extend the useful range of ML decoding to much longer
block lengths.

Our approach is also reminiscent of the “augmented BP”
approach introduced by Varnica et al. [7]. However, instead
of starting with BP, and progressively fixing the least certain
bits as in [7], we start with adaptive LP as our base algorithm.
As a consequence, our algorithm, in contrast with augmented
BP, results in a decoder which provably gives ML (optimal)
performance.

The rest of the paper is organized as follows. In Section II
we describe LP decoding and the adaptive LP decoding
algorithm. In Section III we describe our modification to the
ALP decoding algorithm. We give numerical results for a
(155,64) code introduced by Tanner et al. [6] in Section IV,
and conclude in Section V.



II. LP AND ADAPTIVE LP DECODING

Consider a binary length-n linear codeC. A codewordx ∈
C is transmitted over a binary-input memoryless symmetric
channel and the destination observesy. The probability that
any particular̂x ∈ C was sent giveny is received isPr[x̂|y].
Assuming that codewords are equally likely the ML decoding
problem is

argmax
x̂∈C

Pr[y|x̂] = argmax
x̂∈C

n
∑

i=1

log Pr[yi|x̂i] (1)

= argmax
x̂∈C

n
∑

i=1

log
Pr[yi|x = 1]

Pr[yi|x = 0]
x̂i + log Pr[yi|x = 0], (2)

wherex̂i is theith symbol of the candidate codewordx̂, andyi

is theith symbol of the received sequencey. Since the second
term in (2) is common to all̂x the ML decoding problem is
equivalent to the following linear program

minimize γT
x̂ (3)

subject to x̂ ∈ C (4)

where γ is the known vector of negative log-likelihoods
defined whoseith entry is defined as

γi = log

(

Pr[yi|x = 0]

Pr[yi|x = 1]

)

. (5)

When the channel is binary-symmetric (BSC),γi = log[p/(1−
p)] if the received bityi = 1, andγi = log[(1 − p)/p] if the
received bityi = 0.

The constraints in (4) are integer. In [4] a relaxed version of
the problem is proposed. Each parity check describes a number
of local linear constraints that the codewords must satisfy.
The intersection of these constraints defines the polytope over
which the LP solver operates. The integer vertices of the
polytope correspond to codeword inC. When the LP optimum
is at such a vertex, (4) is satisfied and the ML solution is found.
Non-integer solutions are termed pseudo-codewords.

The explicit description of the LP polytope used in [5]
consists of first enforcing

0 ≤ x̂i ≤ 1 for all i ∈ {1, 2, . . . n}. (6)

Then, for every checkj ∈ {1, 2, . . . , m} every configuration
of the set of neighboring variablesN (j) ⊂ {1, 2, . . . n}
must satisfy the following parity-check constraint: for all
j ∈ {1, 2, . . . , m}, for all subsetsV ⊆ N (j) such that|V|
is odd,

∑

i∈V

x̂i −
∑

i∈N (j)/ V

x̂i ≤ |V| − 1. (7)

Working with this relaxation Taghavi and Siegel [5] define
a cut as a violated constraint and an active constraint as a
constraint satisfied with equality. For example a constraint
such as (7) that generates a cut would mean that

∑

i∈V

x̂i −
∑

i∈N (j)/ V

x̂i > |V| − 1. (8)

In deriving the ALP decoding algorithm two important prop-
erties of cuts are shown in [5]. First, at any given point
x̂ ∈ [0, 1]n for any checkj at most one constraint (7) can
be a cut. Second, (8) implies that0 <

∑

i∈N (j)/ V x̂i < x̂j

for all j ∈ V . This means that the variable nodes in the cut are
those with the largest values inN (j). This in turn makes it
easy to search for the cut of each check node (or to determine
if one does not exist).

The iterative ALP decoding algorithm starts from the solu-
tion of a vertex of an easily-defined initial problem, and iter-
atively adds cut constraints and re-solves until no constraints
are violated. Initial constraints are placed on each of then
variables as

0 ≤ x̂i if γi > 0,
x̂i ≤ 1 if γi < 0.

(9)

The LP optimum solution of this initial problem is immedi-
ately found by hard-decision decoding. The general algorithm
(Algorithm 2 in [5]) is as follows:

1) Setup the initial problem according to (9).
2) Run the LP solver.
3) Search for all cuts of the current solution (see [5] to see

how to do this efficiently using the Taghavi and Siegel’s
Algorithm 1).

4) If one or more cuts are found, add them to the problem
constraints and go to step 2.

III. ML VIA MIXED INTEGER ADAPTIVE LP DECODING

LP decoding fails to “pseudo-codewords” that are particu-
larly easily defined–they are the non-integer optimum vertices
of the feasible polytope. Since the LP decoder has converged
at this point, and the decoder can immediately detect such a
decoding error, we can constrain the LP further to try to get
to the ML solution.

If the LP decoder fails, we add an integer constraint. We
identify the symbol̂xi whose value is closest to0.5; i.e., the
least certain symbol. We term this symboli∗, defined as:

i∗ = arg min
i

|x̂i − 0.5|. (10)

We then add the constraint̂xi∗ ∈ {0, 1} to the problem
and re-run the ALP decoder. Since many LP solvers can
accommodate integer constraints (we use GLPK [1] managed
by a Python script) these constraints are easy to add. This
choice of least-reliable bits is the same as is used in [8].

Overall we have the following algorithm:

1) Setup the initial problem according to (9)
2) Run the LP solver.
3) Search for all cuts of the current solution.
4) If one or more cuts are found, add them to the problem

constraints and go to step 2.
5) If the ALP solution is non-integer, identifyi∗ according

to (10), add in the constraint̂xi∗ ∈ {0, 1}, and go to
step 2.

The complexity of a mixed-integer linear program will grow
exponentially with the number of enforced integer constraints.



Therefore, our algorithm will succeed in decoding in a rea-
sonable time if and only if the required number of added
integer constraints is not too large. Fortunately for some codes
(notably LDPC codes) in some regimes (in the low-noise
regime) a relatively small number of integer constraints are
required. Thus, we sometimes obtain a practical ML (optimal)
decoder, even though the general ML decoding problem is NP-
hard.

IV. N UMERICAL RESULTS

In this section we present the results of using our mixed-
integer ALP approach on a(N = 155, k = 64, d = 20) LDPC
code presented in [6]. This code has an excellent minimum
distance for its dimension and block-length, but is plaguedby
pseudo-codewords that greatly impair the performance of a BP
or LP decoder (see [7] and [2] for more details).

Here we compare the word-error rate (WER) of “basic”
ALP decoding, i.e., the original ALP relaxation of (6)–(7)
without any additional integer constraints, to ML decoding
obtained via our mixed-integer ALP decoder. We also provide
statistics on the computation time requirements of our ML
decoder and the number of integer constraints required.

To simplify our analysis, we work on the binary symmetric
channel and study the performance for a fixed number of bit
flips. Note that our decoder also works on other channels like
the additive-white Gaussian noise (AWGN) channel. Because
the minimum distance of this code is20, an ML decoder is
guaranteed to succeed if9 or fewer bits are flipped. When10 or
more bits are flipped, an ML decoder may fail because another
codeword is more likely than the transmitted codeword. We
find that the number of required integer constraints and ALP
decoding iterations grows with the number of bit flips, but is
manageable for all bit flips up to23. We employ a cap of
200 ALP decoding iterations (defined as the overall number
of linear programs solved – pure linear programs or mixed-
integer LPs) before giving up on a particular received word as
taking too long to decode.

Since the rate of the(155, 64) code is0.4129, even if we
could operate near capacity, for this relatively short codewe
could only expect to correct about22 bit flips. Therefore we
simulate up to23 bit flips and simply assume decoding will
fail with probability 1 for the very high noise regime of more
than 23 bit flips. (This is slightly pessimistic given that the
ML WER is about “only” .73 for 23 bit flips but is also
realistic given that for24 or more bit flips, the decoder runs
like molasses.) We ran decoding experiments at each number
of bit flips from 23 down to12 until we accumulated200 ML
decoding errors at each bit flip level.

For10 and11 bit flips, the ML decoder performed very well,
but it was difficult to obtain enough failures from simulations.
At 11 bit flips we only accrued79 ML decoding errors.
Therefore, we estimate the performance as follows. We startby
noting that, e.g., in a12-bit flip failure, at least10 of the flips
must overlap another codeword, or else the ML decoder would
decode to the codeword that was transmitted. Empirically
nearly all failures are produced when exactly10 bits overlap;

6 8 10 12 14 16 18 20 22 24
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number bit flips

w
or

d−
er

ro
r 

ra
te

 

 

basic LP decoding
ML decoding

Fig. 1. Basic ALP and ML decoding word-error rates (WERs) as afunction
of the number of bit flips. Each ML data point corresponds to 200 decoding
failures, except for the point corresponding to 11 bit flips where we found 79
failures.

11 bit and 12 bit overlaps are much less likely. Say that in
such a case we start with a12 bit failure pattern and reduce
by one the number of bit flips. Then, the probability that we
take away one of the two (non-overlapping) bits so that we
would still have a failure is(2/12). The resulting estimated
error probability of8.3e-7 = (2/12)5.0e-6 for 11 bit flips is in
rough agreement with our experimental observation of1.1e-6
based on only79 decoding failures. We use the same idea to
estimate the WER at10 bit flips to be(1/11)th of the WER
at 11 bit flips.

Basic ALP decoding continues to fail when there are9
or fewer bit flips. Therefore we continue the simulation for
LP decoding errors down to7 bit flips. We again emphasize
that an ALP decoder gives the same performance as other LP
decoders–the only difference is that it is more efficient.

The results of these experiments are tabulated in Table I,
and plotted in Fig. 1. The estimates of the ML WER at10 bit
flips is also tabulated and plotted, but is plotted without the
squares that indicate measured data points. From the figure
one can mark the huge performance improvement given by
using the mixed-integer ALP decoder compared to the basic
ALP decoder.

To estimate the ML WER for a given crossover probability,
we note again that the WER is zero for nine or fewer bit
flips and assume that the WER equals one for24 or more
bit flips. We then calculate the probability of realizing each
number of bit flips for a particular crossover probability and
averaged the WERs of Table I weighted by the appropriate
Binomial coefficient. The combination of knowing that no
ML errors occur for nine or fewer bit flips, and the error
statistics for larger number of bit flips, allows us to estimate
ML performance down to much lower WERs than would be
possible if we generated the number of bit flips stochastically.
The resultant WERs as a function of crossover probability are
plotted in Fig. 2.



# bit number # LP LP # ML ML
flips trials errors WER errors WER

7 11e6 66 6.1e-6 0 0
8 6.0e6 200 3.3e-5 0 0
9 1.3e6 200 1.5e-4 0 0
10 0.3e6 200 6.5e-4 1.0e-7∗

11 69e6 1.5e5 2.2e-3 79 1.1e-6
12 40e6 3.1e5 7.8e-3 200 5.0e-6
13 7.7e6 1.9e5 2.5e-2 200 2.6e-5
14 1.9e6 1.4e5 7.0e-2 200 1.0e-4
15 5.8e5 1.0e5 0.17 200 3.4e-4
16 1.7e5 6.0e4 0.35 200 1.2e-3
17 4.5e4 2.7e4 0.59 200 4.4e-3
18 1.3e4 1.0e4 0.80 200 0.015
19 3.9e3 3.7e3 0.94 200 0.051
20 1.9e3 1.8e3 0.98 200 0.11
21 711 711 1.0 200 0.28
22 369 369 1.0 200 0.54
23 275 275 1.0 200 0.73

TABLE I

DECODING RESULTS, USED TO PLOTFIG. 1. THE NUMBER NOTED WITH∗

IS AN ESTIMATE, AS DISCUSSED IN THE TEXT

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

crossover probability

w
or

d−
er

ro
r 

ra
te

 

 

BP decoding
basic LP decoding
ML decoding

Fig. 2. BP, LP, and ML decoding word-error rates (WERs) as a function of
channel crossover probability.

In contrast to the ML plot, since we don’t have estimates
of LP WERs at6 or fewer bit flips, and yet errors still occur,
we cannot get good estimates of the WER for low crossover
probabilities. Therefore, for the LP results we simulated the
channel stochastically, generating 200 LP decoding errorsat
crossover probabilities down to a crossover probability of
0.02. For comparison we also plot the performance of BP
decoding (sum-product). As has been observed by others, the
performance of BP and LP decoding are quite similar.

Another quantity of obvious interest is the computation
requirement of mixed-integer ALP decoding. To give a feel
of the computation time needed to produce our results, in
Table II we provide statistics on decoding time. We tabulatethe
average, median, and maximum decoding times, in seconds,
for 12, 14, 16, 18 and20 bit flips. We give overall statistics,
as well as the breakdown as categorized by whether or not a
decoding error occurs. We note that we did not spend time

# bit flips 12 14 16 18 20

average time (all sims) 0.14 0.22 0.87 8.32 114
average time (correct dec) 0.14 0.22 0.85 7.17 75
average time (erroneous dec) 1.40 2.66 11.75 84.25 461

median time (all sims) 0.12 0.15 0.23 1.33 20.6
median time (correct dec) 0.12 0.15 0.23 1.29 16.4
median time (erroneous dec) 0.85 1.18 3.93 28.09 162

maximum time (correct dec) 822 824 499 881 3091
maximum time (erroneous dec) 7.1 72 290 2142 3878

TABLE II

ML DECODING TIME STATISTICS, IN SECONDS, FOR12, 14, 16, 18, AND 20

BIT FLIPS, CATEGORIZED BY WHETHER A DECODING ERROR OCCURRED.

optimizing our code and, as has already been mentioned, used
an off-the-shelf LP solver. All simulations were run on 3GHz
Intel Xeon processors.

When a ML decoding error occurs, the received sequence is
often quite far from a codeword – it must have moved at least
halfway towards another codeword. Typically, more integer
constraints are required to find the ML codeword in such cases.
Since integer constraints are far more computationally costly
than linear constraints, the decoding times when there are
decoding errors are generally much larger than when decoding
succeeds. However, this isn’t true for the worst-case decoding
times at 12, 14, and 16 bit flips. The explanation for this
seems to be the following. When we gather the statistics for
no errors at these bit flip levels, the worst case is calculated
over hundreds of thousands of decoding trials. On the other
hand, the statistics for when there are errors are calculated
over only hundreds of trials. There are therefore many more
chances to happen upon a noise sequence that is correctable,
but that requires many integer constraints to correct. This
reasoning is borne out by the empirical observation that
across all erroneous decodings at12, 14 and 16 bit flips
fewer integer constraints were required than for the worst-case
correct decoding (i.e., most number of integer constraints) at
the same bit flip level.

We also collect statistics on the number of integer con-
straints required to decode. Although in our method it is easy
to find such constraints, as discussed above, integer constraints
slow the LP solver considerably as compared to regular linear
constraints. In Fig. 3 we plot the number of integer constraints
as a function of the number of bit flips. The top line is the
worst case number of iterations, the next line depicts the95th
percentile–95% of the simulations at each bit flip level took
at most the indicated number of integer constraints to find the
ML codeword. We also indicate the90th percentile and the
50th (the median). Note that the worst case is much worse
than even the95th percentile. These numbers combine all
decodings (successes and failures). Recall that we imposed
a cap of200 ALP decoding iterations on our decoder. This
cap kicks in only very rarely, and only at the highest bit flip
levels. In our simulations it kicked in at least once only at20,
22, and23 bit flips. For all other numbers of bit flips it never
kicked in.



12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

num bit flips

# 
in

te
ge

r 
co

ns
tr

ai
nt

s

 

 

worst case
95th percentile
90th
50th

Fig. 3. Number of integer constraints required for ML decoding, plotted as
a function of the number of bit flips.

By comparing Fig. 3 and Table II one can again see that
the number of integer constraints has a large impact on the
decoding time. Fig. 3 shows that the median case for12, 14
and16 bit flips is zero integer constraints. Compare this with
the results in Table II. In the table we see that the median
decoding times for all simulations and for correct decoding
are identical, and are of the same order for12, 14 and 16
bit flips, 0.12 , 0.15 and 0.23 seconds, respectively. These
are representative decoding times for LP decoding via ALP
without any integer constraints. On the other hand, when there
are18 or 20 bit flips, the median case uses a positive number
of integer constraints, and the median decoding time increases
sharply, to1.33 and then20.6 seconds for18 and20 bit flips,
respectively.

V. CONCLUSIONS

In this paper we have introduced a simple way to add integer
constraints to the ALP decoder to find the ML codeword. We
exploit the computational efficiency of adaptive LP decoding
to speed up our computations. We demonstrate the decoder on
a (155,64) LDPC code, which is a surprisingly large code for
which to obtain ML decoding performance.

We would like to note that even when the resulting ML
decoder is too slow for a particular practical application,it may
still be useful as a benchmark that gives the optimal decoding
performance for a code.

There are a number of directions that build out of these
initial ideas. We are most interested in exploring alternate ways
of choosing the integer constraints. The criteria for choosing
the “least reliable bits” made herein is more relevant for BP
decoding since the value of each bit is an estimate of its log-
likelihood ratio. The relationship to a tightening of the LP
is not clear, though experimentally we observe that choosing
only a small number of integer constraints in this manner
leads to the ML solution. Perhaps with some small search we
can do a better job of selecting the constraint most sensitive
to the integer constraint, or determining if we can introduce

multiple constraints at once. In addition we want to compare
this approach to alternate ways of constraining the original LP,
such as the redundant parity-check approach proposed in [4]
and explored in [5], and “lift and project” [3].

Beyond the algorithmic specifics we are interested in build-
ing a hybrid BP/LP approach. At longer block-lengths (on
the order of a few thousand) we observe that adaptive LP
decoding slows considerably. One candidate system, similar
to the “augmented BP” approach [7] uses BP to do its initial
decoding. Only if BP gets stuck does the algorithm switch
to LP. Hopefully when BP has gotten stuck it yields a good
starting point for LP. Such an approach may allow us to get
particularly good performance in the error floor region.

Finally, a caveat is in order. Although ALP decoders also
work on high density parity check codes, we found that our
mixed-integer LP decoder becomes intolerably slow on such
codes so that, for example, it appears to be useless for BCH
codes. Apparently the decoder will require a small number
of integer constraints only when the pseudo-codewords that
cause decoding to fail are relatively close to the transmitted
codeword. Fortunately, that is often the case for the pseudo-
codewords that cause LDPC error floors.

REFERENCES

[1] GNU Linear Programming Kit. At http://www.gnu.org/software/glpk.
[2] M. Chertkov and M. Stepanov. An efficient pseudo-codeword search

algorithm for linear programming decoding of LDPC codes.Submitted
to IEEE Trans. on Inform. Theory, January 2006.

[3] J. Feldman.Decoding Error-Correcting Codes via Linear Programming.
PhD thesis, Massachusetts Institute of Technology, 2003.

[4] J. Feldman, M. J. Wainwright, and D. Karger. Using linearprogramming
to decoding binary linear codes.IEEE Trans. Inform. Theory, 51:954–
972, March 2005.

[5] M. H. Taghavi N. and P. H. Siegel. Adaptive linear programming
decoding. InProc. Int. Symp. Inform. Theory, pages 1374–1378, Seattle,
USA, July 2006.

[6] R. M. Tanner, D. Sridhara, and T. Fuja. A class of group-structured LDPC
codes. InProc. ICSTA, Ambleside, UK, 2001.

[7] N. Varnica, M. Fossorier, and A. Kavcic. Augmented belief-propagation
decoding of low-density parity check codes.Forthcoming, IEEE
Trans. Commun.

[8] K. Yang, J. Feldman, and X. Wang. Nonlinear programming approaches
to decoding low-density parity-check codes.IEEE J. Select. Areas
Commun., 24:1603–1613, August 2006.


	Title Page
	Title Page
	page 2


	ML Decoding Via Mixed-Integer Adaptive Linear Programming
	page 2
	page 3
	page 4
	page 5


