
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

DiamondHelp: A Generic Collaborative
Task Guidance System

Charles Rich and Candace L. Sidner

TR2007-003 February 2007

Abstract

DiamondHelp is a generic collaborative task guidance system motivated by the current usabil-
ity crisis in high-tech home products. It combines an application-independent conversational
interface (adapted from online chat programs) with an application-specific direct manipulation
interfaces. DiamondHelp is implemented in Java and uses Collagen for representing and using
task models.

AI Magazine, Vol. 28, No. 2, Summer 2007.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2007
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

DiamondHelp:
A Generic Collaborative Task Guidance System

Charles Rich and Candace L. Sidner

2 DiamondHelp is a generic collaborative
task guidance system motivated by the
current usability crisis in high-tech home
products. It combines an application-
independent conversational interface
(adapted from online chat programs) with
an application-specific direct manipulation
interfaces. DiamondHelp is implemented
in Java and uses Collagen for representing
and using task models.

Our diagnosis of the current usability crisis
in high-tech home products (see sidebar this
page) identifies two fundamental underlying
causes: the exhaustion of conventional in-
teraction paradigms and the lack of consis-
tency in user interface design. This paper
addresses both of these causes by introducing
a new framework for building collaborative
task guidance systems, called DiamondHelp.

The dominant current paradigm for
human-computer interaction is direct ma-
nipulation (Shneiderman & Plaisant 2005),
which can be applied with great effectiveness
and elegance to those aspects of an interface
which afford natural and intuitive analogies
to physical actions, such as pointing, drag-
ging, sliding, etc. In practice, however, most
interfaces of any complexity also include
an ad hoc and bewildering collection of
other mechanisms, such as tool bars, pop-up
windows, menus, command lines, etc.

To make matters worse, once one goes be-
yond the most basic functions (such as open,
save, etc.) there is very little design con-
sistency between interfaces to different prod-
ucts, even from the same manufacturer. The
result is that it requires too large an invest-
ment of the typical user’s time to learn all the
intricacies of each new product.

The DiamondHelp framework consists of
three components:

• an interaction paradigm based on
task-oriented human collaboration,

• a graphical user interface design which

The Usability Crisis in High-Tech Home Products

. . . technology remains far too hard for most folks to use and most
people can only utilize a tiny fraction of the power at their disposal.
(Business Week, 2004)

Half of all “malfunctioning products” returned to stores by
consumers are in full working order, but customers can’t figure out
how to operate the device. (Reuters, 2006)

Figure 1. DiamondHelp for Combination Washer-Dryer.

combines conversational and direct
manipulation interfaces,

• and a software architecture of reusable
Java Beans.

The first two of these components are ori-
ented towards the user; the third component
addresses the needs of the software developer.
Each of these components is described in de-
tail in a section below.

1

Figure 1 illustrates the DiamondHelp user
interface design. The top half of the screen
is the generic conversational interface, while
the bottom half is a direct manipulation
interface for a combination washer-dryer.
Although our immediate motivation has
been the usability crisis in DVD recorders,
programmable thermostats, combination
washer-dryers, refrigerator-ovens, etc., Dia-
mondHelp is not limited to home appliances;
it can be applied to any software interface.

DiamondHelp grew out of a longstand-
ing research thread on human-computer col-
laboration, organized around the Collagen
system (see Collagen sidebar). Our work
on Collagen, however, has been primarily
concerned with the underlying semantic and
pragmatic structures for modeling collabora-
tion, whereas DiamondHelp is focused on the
appearance (the “look and feel”) that a col-
laborative system presents to the user. Al-
though Collagen plays a key role in our im-
plementations of DiamondHelp applications
(see Software Architecture), the Diamond-
Help framework can also be used indepen-
dently of Collagen.

Finally, in relation to this special issue of
AI Magazine, we would say that mixed initia-
tive is at the heart of DiamondHelp since col-
laboration and mixed initiative are virtually
co-extensive concepts: All collaborative sys-
tems are mixed initiative; and most interest-
ing mixed-initiative systems are collaborative
(see further discussion in Mixed Initiative).

Interaction Paradigm
Although an “interaction paradigm” is some-
what abstract and difficult to define formally,
it is crucial to the overall development of in-
teractive systems. In particular, the consis-

GOALS
 (etc.)

GUI

SYSTEM
communication

observe observe

action action

USER

Application

Figure 2. The Collaborative Paradigm.

tent expression and reinforcement of the in-
teraction paradigm in the user interface de-
sign (what the user sees) leads to systems
that are easier to learn and use. The in-
teraction paradigm also provides organizing
principles for the underlying software archi-
tecture, which makes such systems easier to
build.

The collaborative paradigm for human-
computer interaction, illustrated in Figure 2,
mimics the relationships that typically hold
when two humans collaborate on a task in-
volving a shared artifact, such as two me-
chanics working on a car engine together or
two computer users working on a spreadsheet
together. This paradigm differs from the con-
ventional view of interfaces in two key re-
spects.

First, notice that the diagram in Figure 2
is symmetric between the user and the sys-
tem. Collaboration in general involves both
action and communication by both partici-
pants, and in the case of co-present collabo-
ration (which is the focus of DiamondHelp)
the actions of each participant are directly
observed by the other participant.

One consequence of this symmetry is that
the collaborative paradigm spans, in a prin-
cipled fashion, a very broad range of interac-
tion modes, depending on the relative knowl-
edge and initiative of the system versus the
user. For example, “tutoring” (aka intelligent
computer-aided instruction) is a kind of col-
laboration in which the system has most of
the knowledge and initiative. At the other
end of the range is “intelligent assistance,”
wherein the user has most of the knowledge
and initiative. Furthermore, a collabora-
tive system can easily and incrementally shift
within this range depending on the current
task context.

Second, and at a deeper level, the primary
role of communication in collaboration is not
for the user to tell the system what to do (the
traditional “commands”), but rather to es-
tablish and negotiate about goals and how to
achieve them. J.C.R. Licklider observed this
fundamental distinction over 40 years ago in
a classic article, which is well worth revisiting
(see first page sidebar and Lesh et al. 2004).

The problem with the command view of
user interfaces is that it demands too much
knowledge on the part of the user. Conven-
tional systems attempt to compensate for this
problem by adding various kinds of ad hoc
help facilities, tool tips, wizards, etc., which
are typically not integrated into any clear
paradigm. (See the Related Work for specific
discussion of the relation of DiamondHelp to

2

J.C.R. Licklider in 1960 on Human-Computer Collaboration

[Compare] instructions ordinarily addressed to intelligent human beings with instructions ordinarily used with
computers. The latter specify precisely the individual steps to take and the sequence in which to take them. The
former present or imply something about incentive or motivation, and they supply a criterion by which the human
executor of the instructions will know when he has accomplished his task. In short: instructions directed to
computers specify courses; instructions directed to human beings specify goals. (Licklider 1960)

wizards and Microsoft’s Clippy.) In contrast,
collaboration encompasses all of these capa-
bilities within the paradigm.

Finally, notice that Figure 2 does provides
a place to include direct manipulation as part
of the collaborative paradigm, i.e., one can
choose to implement the application’s graph-
ical user interface (GUI) using direct manip-
ulation. This is, in fact, exactly what we
have done in the user interface design for Di-
amondHelp, described in the next section.

User Interface Design
Our overarching goal for the DiamondHelp
user interface design was to signal, as strongly
as possible, a break from the conventional in-
teraction style to the new collaborative par-
adigm. A second major challenge was to ac-
comodate what is inescapably different about
each particular application of DiamondHelp
(the constructs needed to program a thermo-
stat are very different from those needed to
program a washing machine), while preserv-
ing as much consistency as possible in the
collaborative aspects of the interaction. If
someone knows how to use one DiamondHelp
application, they should know how to use any
DiamondHelp application.

In order to address these concerns, we di-
vided the screen into two areas, as shown in
the example DiamondHelp interfaces of Fig-
ures 1, 3 and 4. The washer-dryer has been
implemented in Java; the other two appli-
ances are Flash simulations. The top half of
each of these screens is the same distinctive
DiamondHelp conversational interface. The
bottom half of each screen is an application-
specific direct manipulation interface. Divid-
ing the screen into two areas is, of course, not
new; our contributions are the specific graph-
ical interface design and the reusable software
architecture described below.

Conversational Interface

To express and reinforce the human-
computer collaboration paradigm, which
is based on human-human communica-
tion, we adopted the scrolling speech bubble

Figure 3. DiamondHelp for DVD Recorder.

Figure 4. DiamondHelp for Programmable Thermostat.

3

metaphor often used in online chat programs,
which support human-human communica-
tion. The bubble graphics nicely reflect the
collaborative paradigm’s symmetry between
the system and the user, discussed above.
This graphical metaphor also naturally
extends to the use of speech synthesis and
recognition technology (see Conclusion).

The top half of every DiamondHelp inter-
face is thus a conversation (“chat”) between
DiamondHelp (the system), represented by
the Mitsubishi three-diamond logo on the
left, and the user, represented by the hu-
man profile on the right. All communication
between the user and system takes place in
these bubbles; there are no extra toolbars,
pop-up menus, etc.

The basic operation of the conversational
part of the DiamondHelp interface is as fol-
lows. Let’s start with the opening of the con-
versation, which is the same for all Diamond-
Help applications:

After the system says its welcome, a user
bubble appears with several options for the
user to choose from. We call this the user’s
“things to say” bubble. At the opening of
the conversation, there are only four choices:
“What next?,” “oops,” “done,” and “help.”
Notice that the last three of these options are
specially laid out with icons to the right of
the vertical line; this is because these three
options are always present (see Predefined
Things to Say below).

At this point, the user is free either to
reply to the system’s utterance by selecting
one of the four things to say or to interact
with the direct manipulation part of the in-
terface. Unlike the case with traditional “di-
alog boxes,” the application GUI is never
locked. This flexibility is a key aspect of how
we have combined conversational and direct
manipulation interfaces in DiamondHelp.

In this scenario, the user decides to re-
quest task guidance from the system by se-
lecting “What next?” in the things-to-say
bubble. As we have argued elsewhere (see
Collagen sidebar article), every interactive
system should be able to answer a “What
(can I do) next?” question.

As part of the interface animation, when-

ever the user makes a things-to-say selection
(by clicking or touching the desired word or
phrase), the not-selected items are erased and
the enclosing bubble is shrunk to fit only
the selected word or phrase. Furthermore, in
preparation for the next step of the conver-
sation, the completed system and user bub-
bles are “grayed out” and scrolled upward (if
necessary) to make room for the system re-
ply bubble and the user’s next things-to-say
bubble:

DiamondHelp applications always reply
to “What next?” by a “You can. . . ” utter-
ance with the actual options for the possible
next task goals or actions presented inside the
user’s things-to-say bubble:

In this scenario, from DiamondHelp for a
programmable thermostat (see Figure 4), the
direct manipulation interface shows the fam-
ily’s schedule for the week. The entries in this
schedule determine the thermostat’s temper-
ature settings throughout the day. The user
chooses the goal of removing a schedule en-
try:

The system replies by asking the user to
indicate, by selection in the direct manipula-
tion interface, which schedule entry is to be
removed. Notice that the user’s things-to-
say bubble below includes only three choices.
“What next?” is not included because the
system has just told the user what to do next:

Although the system is expecting the user
next to click (or touch) in the direct manip-
ulation interface (see Figure 5), the user is
still free to use the conversational interface,
e.g, to ask for help.

Scrolling History

As in chat windows, a DiamondHelp user can
at any time scroll back to view parts of the

4

conversation that have moved off the screen.
This is particularly useful for viewing ex-
planatory text, which can be quite long (e.g.,
suppose the system utterance in Figure 3 was
several lines longer).

The oval beads on each side of the upper
half of the screen in Figures 1, 3 and 4 are
standard scroll bar sliders. We also support
scrolling by simply dragging anywhere on the
lined background of the upper window.

An interesting DiamondHelp extension to
explore is allowing the user to “restart” the
conversation at an earlier point in the his-
tory and move forward again with different
choices. This could be a good way to sup-
port the backtracking paradigm for problem
solving and is also closely related to our ear-
lier work on history-based transformations in
Collagen; see (Rich & Sidner 1998) in Colla-
gen sidebar.

Things to Say

The user’s things-to-say bubble is partly an
engineering compromise to compensate for
the lack of natural language understanding
(see Conclusion). It also, however, partly
serves the function of suggesting to the user
what she can do at the current point.

In the underlying software architecture,
each choice in the things-to-say bubble is as-
sociated with the semantic representation of
an utterance. When the user selects the de-
sired word or phrase, the architecture treats
the choice as if the missing natural-language
understanding system produced the associ-
ated semantics.

From a design perspective, this means
that the wording of the text displayed for
each things-to-say choice should read natu-
rally as an utterance by the user in the con-
text of the ongoing conversation. For ex-
ample, in Figure 1, in reply to the system’s
question “How can I help you?”, one of the
things-to-say choices is “Explain wash agita-
tion,” not “wash agitation.”

At a deeper level, to be true to the spirit
of the collaborative paradigm, the content of
the conversations in DiamondHelp, i.e., both
the system and user utterances, should con-
cern not only primitive actions (“Remove a
schedule entry”), but also higher-level goals
(“Schedule a vacation”) and motivation
(“Why?”).

When Collagen is used in the implemen-
tation of a DiamondHelp application, all sys-
tem utterances and the user’s things-to-say
choices are automatically generated from the
task model given for the application (see Col-
lagen Collaboration Plug-in). Without Colla-

Figure 5. Selection in the Direct Manipulation Area.
(See small triangular cursor in first column of schedule.)

gen, the appropriate collaborative content is
provided by the application developer, guided
by the principles elucidated here.

An obvious limitation of the things-to-
say approach is that there is only room for
a relatively small number of choices inside
the user bubble—six or eight without some
kind of nested scrolling, which we would like
to avoid. Furthermore, since we would also
like to avoid the visual clutter of drop-down
choices within a single user utterance, each
thing-to-say is a fixed phrase without vari-
ables or parameters.

Given these limitations, our design strat-
egy is to use the direct manipulation inter-
face to enter variable data. For example, in
DiamondHelp for a washer-dryer, instead of
the system asking “How long is the dry cy-
cle?” and generating a things-to-say bubble
containing “The dry cycle is 10 minutes,” “. . .
15 minutes,” etc., the system says “Please set
the dry cycle time,” points to the appropri-
ate area of the direct manipulation interface,
and expects the user to enter the time via
the appropriate graphical widget. Figure 5
is a similar example of using the direct ma-
nipulation interface to provide variable data,
in this case to select the thermostat schedule
entry to be removed.

Use of a textual things-to-say list together
with Collagen and speech recognition has
been studied by Sidner and Forlines (Sidner
& Forlines 2002) for a personal video recorder
interface and by Dekoven (DeKoven 2004) for
a programmable thermostat.

5

Predefined Things to Say

Most of the things to say are specific to an ap-
plication. However, a key part of the generic
DiamondHelp design is the following set of
user utterances which should have the same
meaning in all applications: “What next?,”
“Never mind,” “Oops,” “Done,” and “Help.”
In addition, to save space and enhance ap-
pearance, we have adopted a special layout
for the last three of these utterances, which
are always present.

“What next?” has already been discussed
above. “Never mind” is a way to end a
question without answering it (see Figure 1).
“Oops,” “Done,” and “Help” each initiate a
subdialog in which the system tries to deter-
mine, respectively, how to recover from a mis-
take, what level of task goal has been com-
pleted, or what form of help the user desires.

When Collagen is used in the implemen-
tation of DiamondHelp, the semantics of the
predefined things-to-say are automatically
implemented correctly; otherwise this is the
responsibility of the collaboration plug-in
implementor (see Software Architecture).

Task Bar

An additional component of the Diamond-
Help conversational interface is the “task
bar,” which is the single line located im-
mediately above the scrollable history and
below the DiamondHelp logo in Figures 1
and 3 (the task bar in Figure 4 happens to
be blank at the moment of the screen shot).
For example, in Figure 1, the contents of the
task bar reads:
Make a new cycle > Adjust wash agitation > Help

The task bar, like the scrollable history
and the predefined “What next?” utterance,
is a mechanism aimed towards helping users
when they lose track of their context, which is
a common problem in complex applications.
When Collagen is used in the implementation
of DiamondHelp, the task bar is automati-
cally updated with the path to the currently
active node in the task model tree (see Fig-
ure 8 and Collagen sidebar). Otherwise, it is
the responsibility of the collaboration plug-
in implementor to update the task bar with
appropriate task context information.

Currently, the task bar is for display only.
However, we have considered extending the
design to allow users to click (touch) elements
of the displayed path and thereby cause the
task focus to move. This possible extension is
closely related to the scrollable history restart
extension discussed above.

Application GUI

The bottom half of each screen in Figures 1,
3 and 4 is an application-specific direct ma-
nipulation interface. The details of these
GUI’s are not important to the main point
of this paper. If fact, there is nothing in the
DiamondHelp framework that guarantees or
relies upon the application GUI being well-
designed or even that it follow the direct ma-
nipulation paradigm, though this is recom-
mended. (The only way to guarantee this
would be for DiamondHelp to automatically
generate the application GUI from a task
model. We have done some research on this
approach (Eisenstein & Rich 2002), but it is
still far from practical.)

Furthermore, to achieve our overall
goal of consistency across applications, an
industrial-grade DiamondHelp would, like
conventional UI toolkits, provide standard
color palettes, widgets, skins, etc. However,
this is beyond the scope of a research
prototype.

Two design constraints which are relied
upon by the DiamondHelp framework are:
(1) the user should be able to use the appli-
cation GUI at any time, and (2) every user
action on the application GUI is reported to
the system (see Manipulation Plug-in below).

Finally, it is worth noting that, for the
three applications presented here, it is possi-
ble to perform every function the application
supports entirely using the direct manipula-
tion interface, i.e., totally ignoring the con-
versational window. While this is a pleasant
fact, we also believe that in more complex
applications, there may be some overall ad-
vantage in relaxing this constraint. This is a
design issue we are still exploring.

Software Architecture
In contrast to most of the above discussion,
which focuses on the the user’s view of Di-
amondHelp, this section addresses the needs
of the software developer. The overarching
issue in DiamondHelp’s software architecture
is reuse, i.e., factoring the code so that the
developer of a new DiamondHelp application
only has to write what is idiosyncratic to that
application, while reusing as much generic
DiamondHelp framework code as possible.

Figure 6 shows our solution to this chal-
lenge, which we have implemented in Java
Beans and Swing. (Dotted lines indicate op-
tional, but recommended, components.) All
the application-specific code is contained in
two “plug-ins,” which are closely related to
the two halves of the user interface. The rest

6

Model

View

Manipulation
Plug−in

user action

user
utterance

observation

Collagen

Task Model

utterance
system

application GUI update

user bubble

system bubble

things
to say

task bar

user manipulation

system action

user
choice

Collaboration
Plug−in

DiamondHelp

Figure 6. DiamondHelp Software Architecture.

of the code (shaded region) is generic Dia-
mondHelp framework code.

In addition to the issues discussed in this
section, there are a number of other standard
functions of plug-and-play architectures (of
which DiamondHelp is an instance), such as
discovering new devices connected to a net-
work, loading the appropriate plug-ins, etc.,
which are beyond the scope of this paper.

Manipulation Plug-in

Notice that the manipulation plug-in “sticks
out” of the DiamondHelp framework box in
Figure 6. This is because it is directly respon-
sible for managing the application-specific
portion of the DiamondHelp interface. Di-
amondHelp simply gives this plug-in a Swing
container object corresponding to the bottom
half of the screen.

We recommend that the manipulation
plug-in provide a direct-manipulation style
of interface implemented using the model-
view architecture, as shown by the dotted
lines in Figure 6. In this architecture, all
of the “semantic” state of the interface is
stored in the model subcomponent; the view
subcomponent handles the application GUI.

Regardless of how the manipulation plug-
in is implemented internally, it must pro-
vide an API with the DiamondHelp frame-
work which includes two event types: out-
going events (user action observation) which
report state changes resulting from user GUI
actions, and incoming events (system action)
which specify desired state changes. Further-

more, in order to preserve the symmetry of
the collaborative paradigm (see Figure 2), it
is the responsibility of the plug-in to update
the GUI in response to incoming events, so
that the user may observe system actions.
As an optional but recommended feature, the
manipulation plug-in may also provide the
DiamondHelp framework with the graphical
location of each incoming state change event,
so that DiamondHelp can move a cursor or
pointer to that location, to help the user ob-
serve system actions.

Note that the content of both incoming
and outgoing state change events is specified
in semantic terms, e.g., “change dry cycle
time to 20 min,” not “button click at pixel
100,200.” Lieberman (Lieberman 1998) fur-
ther discusses this and other issues related
to interfacing between application GUI’s and
intelligent systems.

Collaboration Plug-in

Basically, the responsibility of the collabora-
tion plug-in is to generate the system’s re-
sponses (actions and utterances) to the user’s
actions and utterances. Among other things,
this plug-in is therefore responsible for im-
plementing the semantics of the predefined
utterances (see next section).

The collaboration plug-in has two in-
puts: observations of user actions (received
from the manipulation plug-in), and user
utterances (resulting from user choices
in the things-to-say bubble). It also has
four outputs: system actions (sent to the

7

manipulation plug-in), system utterances
(which go into system bubbles), things to
say (which go into user bubbles), and the
task bar contents.

Notice that the collaboration plug-in is re-
sponsible for providing only the content of the
system and user bubbles and the task bar.
All of the graphical aspects of the conversa-
tional window are managed by DiamondHelp
framework code. It is also an important fea-
ture of the DiamondHelp architecture that
the collaboration plug-in developer does not
need to be concerned with the graphical de-
tails of the application interface. The collab-
oration plug-in developer and the manipula-
tion plug-in developer need only to agree on
a semantic model of the application state.

For a very simple application, the collabo-
ration plug-in may be implemented by a state

Choose
Discourse State

Agenda

Discourse
Generation

Interpretation

user utterance

user action

system action

system utterance

observation

Task Model

Discourse

things to say

task bar

Figure 7. Collagen Architecture (See Figure 6).

select last day

add entry remove entry modify entry schedule vacation

program thermostat

select first day

Figure 8. Task Model for Programmable Thermostat.

machine or other ad hoc mechanisms. How-
ever, in general, we expect to use the Colla-
gen version described in the next section.

Collagen Collaboration Plug-in

The Collagen version of the collaboration
plug-in includes an instance of Collagen, with
a little bit of wrapping code to match the col-
laboration plug-in API. Collagen has already
been described in an earlier article (see side-
bar). We will only highlight certain aspects
here which relate to DiamondHelp.

The most important reason to use the
Collagen collaboration plug-in is that the ap-
plication developer only needs to provide one
thing: a task model. All four outputs of
the collaboration plug-in described above are
then automatically generated by Collagen as
shown in Figure 7.

System utterances and actions are
produced by Collagen’s usual response
generation mechanisms (Rich et al. 2002).
The semantics of some of the predefined Di-
amondHelp user utterances, such as “Oops,”
“Done,” and “Help,” “ are captured in a
generic task model, which is used by Collagen
in addition to the application-specific task
model provided. Each of these predefined
utterances introduces a generic subgoal with
an associated subdialog (using Collagen’s
discourse stack). Other predefined utter-
ances, such as “What next?”, and “Never
mind,” are built into Collagen.

The third collaborative plug-in output
produced by Collagen is the user’s things
to say. Basically, the things to say are the
result of filtering the output of Collagen’s
existing discourse (agenda) generation algo-
rithm. The first step of filtering is remove
everything except expected user utterances.
Then, if there are still too many choices, a
set of application-independent heuristics are
applied based on the type of communicative
act (proposal, question, etc.). Lastly, prede-
fined utterances are added as appropriate.
The further details of this algorithm need to
be the topic of a separate paper.

Mixed Initiative
In this section, we review DiamondHelp with
respect to the shared themes of this special
issue of AI Magazine on mixed-initiative as-
sistants.

To begin, let us follow up on our earlier
comment that mixed initiative and collab-
oration are virtually co-extensive concepts.
Horvitz provides as good a definition as any
of mixed initiative:

8

Collagen: Applying Collaborative Discourse Theory to Human-Computer Interaction
Charles Rich, Candace L. Sidner and Neal Lesh

AI Magazine, Vol. 22, No. 4, pp. 15–25, Fall 2001
(Special Issue on Intelligent User Interfaces)

Collagen (for collaborative agent) is
Java middleware for building collabo-
rative interface agents based on Grosz
and Sidner’s SharedPlan theory of col-
laborative discourse (Grosz & Sid-
ner 1986; 1990; Grosz & Kraus 1996;
Lochbaum 1998). Collagen has been
used to build more than a dozen pro-
totypes, including:

• air travel planning assistant (Rich
& Sidner 1998)

• email assistant (Gruen et al. 1999)
• VCR programming assistant

(Sidner & Forlines 2002)
• power system operation assistant

(Rickel et al. 2001)
• gas turbine engine operation tutor

(Davies et al. 2001)
• flight path planning assistant

(Cheikes & Gertner 2001)
• recycling resource allocation

assistant
• software design tool assistant
• programmable thermostat helper

(DeKoven et al. 2001)
• mixed-initiative multi-modal form

filling
• robot hosting system (Sidner et al.

2005)

The two key data structures in Col-
lagen’s architecture (see Figure 7) are
the task model and the discourse state.
The two key algorithms are discourse
interpretation and generation.

Task Model. A task model is an ab-
stract, hierarchical, partially ordered
representation of the actions typically
performed to achieve goals in the ap-
plication domain. Figure 8 shows a
fragment of the task model for the
programmable thermostat application
in Figure 4. Although this exam-
ple does not, task models in general
also contain alternative decomposition
choices. Collagen currently provides
a Java extension language for defin-
ing task models, but we will adopt the
new CEA standard (see Conclusion) as
soon as it is completed.

Discourse State. The discourse
state tracks the beliefs and intentions
of the participants in the current col-
laboration and provides a focus of at-
tention mechanism for tracking shifts
in the task and conversational con-
text. Collagen’s discourse state is
implemented as a goal decomposition
(plan) tree plus a stack of focus spaces
(each of which includes a focus goal).

The top goal on the focus stack is the
“current purpose” of the discourse.

Discourse Interpretation. The ba-
sic job of discourse interpretation is
to incrementally update the discourse
state by explaining how each occurring
event (action or utterance by the user
or the system) contributes to the cur-
rent purpose. An event contributes to
a purpose if it either:

• directly achieves the purpose,
• is a step in the task model for

achieving the purpose,
• selects one of alternative

decomposition choices for
achieving the purpose,

• identifies which participant should
achieve the purpose, or

• identifies a parameter of the
purpose.

If the current event contributes,
either directly or indirectly, to the
current purpose, then the plan tree
is appropriately extended to include
the event; the focus stack may also
be pushed or popped. Our dis-
course interpretation algorithm ex-
tends Lochbaum’s (1998) original for-
mulation by incorporating plan recog-
nition (Lesh, Rich, & Sidner 1999;
2001) and handling interruptions.

Discourse Generation. The dis-
course generation algorithm in Colla-
gen is essentially the inverse of dis-
course interpretation. Based on the
current discourse state, it produces
a prioritized list, called the agenda
(see Figure 7), of partially or totally
specified utterances and actions which
would contribute to the current dis-
course purpose according to the five
cases itemized above.

In general, an agent may use any ap-
plication-specific logic it wants to de-
cide on its next action or utterance. In
most cases, however, an agent can sim-
ply choose the first item on the agenda
generated by Collagen.

References

Cheikes, B., and Gertner, A. 2001.
Teaching to plan and planning to teach
in an embedded training system. In
Proc. 10th Int. Conf. on Artificial In-
telligence in Education, 398–409.

Davies, J.; Lesh, N.; Rich, C.; Sidner,
C.; Gertner, A.; and Rickel, J. 2001.
Incorporating tutorial strategies into

an intelligent assistant. In Proc. Int.
Conf. on Intelligent User Interfaces,
53–56.

DeKoven, E.; Keyson, D.; and
Freudenthal, A. 2001. Designing col-
laboration in consumer products. In
Proc. ACM Conf. on Computer Hu-
man Interaction, Extended Abstracts,
195–196.

Grosz, B. J., and Kraus, S. 1996. Col-
laborative plans for complex group ac-
tion. Artificial Intelligence 86(2):269–
357.

Grosz, B. J., and Sidner, C. L. 1986.
Attention, intentions, and the struc-
ture of discourse. Computational Lin-
guistics 12(3):175–204.

Grosz, B. J., and Sidner, C. L. 1990.
Plans for discourse. In Cohen, P. R.;
Morgan, J. L.; and Pollack, M. E.,
eds., Intentions and Communication.
Cambridge, MA: MIT Press. 417–444.

Gruen, D.; Sidner, C.; Boettner, C.;
and Rich, C. 1999. A collaborative as-
sistant for email. In Proc. ACM Conf.
on Computer Human Interaction, Ex-
tended Abstracts, 196–197.

Lesh, N.; Rich, C.; and Sidner,
C. 1999. Using plan recognition
in human-computer collaboration. In
Proc. 7th Int. Conf. on User Mod-
elling, 23–32.

Lesh, N.; Rich, C.; and Sidner, C.
2001. Collaborating with focused and
unfocused users under imperfect com-
munication. In Proc. 9th Int. Conf. on
User Modelling, 64–73.

Lochbaum, K. E. 1998. A collab-
orative planning model of intentional
structure. Computational Linguistics
24(4):525–572.

Rich, C., and Sidner, C. 1998.
Collagen: A collaboration manager
for software interface agents. User
Modeling and User-Adapted Interac-
tion 8(3/4):315–350.

Rickel, J.; Lesh, N.; Rich, C.; Sid-
ner, C.; and Gertner, A. 2001. Us-
ing a model of collaborative dialogue
to teach procedural tasks. In Working
Notes of AI-ED Workshop on Tutorial
Dialogue Systems, 1–12.

Sidner, C. L.; Lee, C.; Kidd, C.;
Lesh, N.; and Rich, C. 2005. Explo-
rations in engagement for humans and
robots. Artificial Intelligence 166(1-
2):104–164.

9

...an efficient, natural interleaving of
contributions by users and automated
services aimed at converging on solu-
tions to problems. (Horvitz 1999)

Compare this with the definition of collab-
oration upon which Collagen (and therefore
DiamondHelp) is based:

...a process in which two or more par-
ticipants coordinate their actions to-
ward achieving shared goals. (Colla-
gen sidebar article)

If the two participants in a collaboration are
the user and an automated system, then such
a collaboration is generally mixed-initiative;
only in those rare or simple circumstances
where one participant provides no contribu-
tion to any goal (including clarification, suc-
cess/failure report, etc.) is mixed-initative
lacking. Conversely, the only part of the de-
finition of collaboration that is missing from
the definition of mixed initiative is the ex-
plicit mention of “shared goals” (and it is per-
haps implicit in “converging on solutions”).
One could imagine some sort of interaction
with interleaved contributions without shared
goals, but it is hard to believe it would be
very efficient or natural.

Division of Labor and Control

In general in a collaboration, decisions about
who does what and when are matters for ne-
gotiation between the participants. In many
concrete settings, however, many of these de-
cisions are conventionalized by the context—
consider, for example, the collaboration be-
tween the customer and clerk at a retail
counter. Similarly, DiamondHelp has been
designed with a certain expected (though ad-
justable, see Personalization below) division
of labor and control.

Basically, DiamondHelp assumes that
the user knows what she wants to do at a
high level, but needs help carrying out the
necessary details. Furthermore, Diamond-
Help normally returns control to the user
as quickly as possible (by putting “What
next?” in the user bubble).

Architecture

The key to DiamondHelp’s power and flexi-
bility as a mixed-initiative system is the high
degree of symmetry between the user and the
system in all aspects of the architecture, from
the user interface, to discourse interpretation,
to the task model. Many interactive sys-
tems, even mixed-initiative ones, have builtin
asymmetries which limit their flexibility.

The symmetry of the chat-based user in-
terface has already been discussed above. In
Figure 7, notice that the discourse interpre-
tation process is applied to both user and sys-
tem utterances and actions. This is a reflec-
tion of the fact that the collaborative dis-
course state represents the mutual beliefs of
the participants (see (Sidner 1994) for more
details).

Finally, and most fundamentally, the task
model which drives a DiamondHelp interac-
tion generally specifies only what needs to
be done, not who should do it. (The only
exception is when one participant is funda-
mentally incapable of performing some ac-
tion.) For example, consider the two steps
to achieve the schedule vacation goal in Fig-
ure 8. This task model accounts for an inter-
action in which the user selects both the first
day and the last day via the direct manipu-
lation area, and also an interaction in which
the system selects both days (perhaps based
on other knowledge), or interactions in which
one day is selected by the user and one by
the system. Which interaction actually oc-
curs depends on the actions and knowledge
of the user and the system in the particular
situation.

Communication and Shared Awareness

As discussed earlier, DiamondHelp is based
on a model of co-present collaboration involv-
ing a shared artifact/application (see Fig-
ure 2). Our user interface design attempts
to give the feeling of natural communication,
without actually requiring natural language
or speech processing. For shared awareness of
the application state, DiamondHelp relies to-
tally on the graphical user interface provided
via the manipulation plug-in. DiamondHelp
itself provides two mechanisms to support
shared awareness of the task/conversation
state: the task bar and the scrollable chat
window. Collagen also provides a much more
complete representation of task/conversation
state, called the segmented interaction his-
tory (see Collagen sidebar article), which is
not currently incorporated into the design of
DiamondHelp.

Personalization

In addition to the significant personalization
and adaptation inherent in all collaborative
interactions, there are at least two specific
personalization mechanisms in DiamondHelp
worth mentioning here. Both of these mecha-
nisms take advantage of facilities in Collagen,
such as the student model, developed for in-
telligent tutoring (Rickel et al. 2002), which

10

(C) DiamondHelp(A) No Guidance (B) Printed Manual

Figure 9. Three Conditions in Planned User Study.

is not surprising, since personalization is a
key aspect of intelligent tutoring.

First, as discussed above, DiamondHelp
normally returns control to the user as
quickly as possible. However, based on
simple observations of the user’s behavior,
such as timing and errors, DiamondHelp can
switch into a mode where it takes control
and guides the user through an entire task
or subtask, without the user having to ask
“What next?” at each step.

A second personalization has to do with
whether the system asks the user to per-
form certain manipulations on the applica-
tion GUI, or simply performs them itself. For
example, in the washer-dryer application, the
system can either say “Please click here to
pop up the temperature dial,” or it can sim-
ply pop up the temperature dial window at
the appropriate time itself. The former case
has the benefit that the user learns where to
click in the future; the latter case has the ben-
efit of being faster. DiamondHelp can switch
between these modes on a per action basis,
depending on whether the user has already
performed the action once or twice herself.

Evaluation

Figure 9 shows the three conditions in a user
study we are currently planning to evalu-
ate DiamondHelp using the washer-dryer ex-
ample. The printed manual in condition B
will contain the same information (literally
the same text) which is communicated dy-
namically by DiamondHelp in condition C.
Users in each condition will be assigned a
set of tasks which will require them to use
the advanced programmability features of the
washer-dryer. We plan to obtain both objec-
tive measures, such as time and quality of
task completion, and subjective evaluations
of experience.

Related Work
The most closely related work to Diamond-
Help, in terms of both application and ap-
proach, is the Roadie system (Lieberman &
Espinosa 2006), which is also directed to-
wards consumer electronics and shares the
task-model approach. Roadie differs from Di-
amondHelp primarily in not using a conversa-
tional or collaborative model for its interface.
Roadie also incorporates natural language
understanding and commensense knowledge
components for guessing the user’s desires,

Also closely related is the Writer’s Aid
system (Babaian, Grosz, & Shieber 2002),
which applies the same collaborative theory
upon which DiamondHelp is based to a single
specific task, rather than developing a general
tool.

Of the papers in this special issue of AI
Magazine, the most closely related is (Fergu-
son & Allen 2006). The collaborative model
and implementation architecture used in
that work is very similar to those described
here. The scope of their work, however,
is broader than ours, since they also build
natural language understanding components.
Furthermore, their architecture includes a
BDI (Beliefs, Desires and Intentions) compo-
nent, which is present only in vestigial form
in DiamondHelp/Collagen.

BDI architecture is at the heart of the
mixed-initiative personal assistant of (Meyers
& others 2006). They describe the interaction
paradigm used in their work as “delegative”,
and contrast it with the collaborative para-
digm. We would view delegation as being in-
cluded within the range of collaboration; see
(Grosz & Kraus 1996) in Collagen sidebar.

Another category of related work is
generic software architectures for connecting
arbitrary applications with help facilities.
The best know example of this category
is Microsoft’s Clippy. Clippy’s interaction
paradigm might be described as “watching

11

over the user’s shoulder and jumping in
when you have some advice,” and is, in
our opinion, the main reason for Clippy’s
well-known unpopularity among users. In
contrast, the collaborative paradigm un-
derlying DiamondHelp emphasizes ongoing
communication between the system and user
to maintain shared context.

Also in this category are so-called “wiz-
ards,” such as software installation wizards,
etc., which come in many different forms from
many different manufacturers. Our feeling
about wizards is that wizards embody the
right paradigm, i.e., interactively guiding the
user, but in too rigid a form. DiamondHelp
subsumes the capabilities of wizards, but also
allows users to take more initiative when they
want to.

Conclusion

The contributions of this work are twofold.
First, we have explicated a novel user inter-
face design, which expresses and reinforces
the human-computer collaboration paradigm
by combining conversational and direct ma-
nipulation interfaces. Second, and more con-
cretely, we have produced the DiamondHelp
software, which can be used by others to eas-
ily construct such interfaces for new applica-
tions.

A number of small extensions to Dia-
mondHelp have already been discussed in the
body of this paper. Another general set of ex-
tensions have to do with adding speech and
natural language understanding technology.

Adding text-to-speech generation to the
system bubble is a very easy extension, which
we have already done (it’s an optional feature
of the software). Furthermore, we have found
that using a system with synthesized speech
is surprisingly more pleasant than without,
even when user input is still by touch or click.

Adding speech recognition can be done
in two ways. The first, more limited way,
is to use speech recognition to choose one of
the displayed things to say. We have already
done this (another optional feature) and have
found that the speech recognition is in gen-
eral quite reliable, because of the small num-
ber of very different utterances being recog-
nized. Furthermore, because of the way that
the things-to-say mechanism is implemented,
this extension requires no changes in the col-
laboration or manipulation plug-ins for an
application.

A second, and much more ambitious ap-
proach, is to dispense with the things-to-say
bubble and try to recognize anything the user

says, which, of course, requires broad un-
derlying speech and natural language under-
standing capabilities. If one has broad nat-
ural language understanding, another varia-
tion is to support unrestricted typed input
from the user instead of speech.

Alternatively, it would be trivial (at least
from the user interface point of view) to re-
vert the conversational interface to its origi-
nal function as a chat between two humans,
the user and a remote person. This could be
useful, for example, for remote instruction or
troubleshooting. The system could even au-
tomatically shift between normal and “live
chat” mode.

Finally, returning to the original motiva-
tion of this work, namely the usability crisis
in high-tech home products, the Consumer
Electronics Association (http://www.ce.org)
has recently created a new working group
on Task-Based User Interface, which will de-
velop a standard (CEA-2018) for representing
task models. This standard has the potential
of helping systems like DiamondHelp to have
a significant impact on the usability problem.

Acknowledgements

The work described here took place at Mit-
subishi Electric Research Laboratories be-
tween approximately January 2004 and June
2006. The basic DiamondHelp concept was
developed in collaboration with Neal Lesh
and Andrew Garland. Shane Booth provided
graphic design input. Markus Chimani im-
plemented key parts of the graphical interface
in Java.

References
Babaian, T.; Grosz, B.; and Shieber, M. 2002. A
writer’s collaborative aid. In Proc. Int. Conf. on
Intelligent User Interfaces, 7–14.

DeKoven, E. 2004. Help Me Help You: Designing
Support for Person-Product Collaboration. Ph.D.
Dissertation, Delft Inst. of Technology.

Eisenstein, J., and Rich, C. 2002. Agents and
GUIs from task models. In Proc. Int. Conf. on
Intelligent User Interfaces, 47–54.

Ferguson, G., and Allen, J. 2006. Mixed-
initiative systems for collaborative problem solv-
ing. AI Magazine. To appear.

Horvitz, E. 1999. Uncertainty, action and inter-
action: In pursuit of mixed-initiative computing.
IEEE Inteligent Systems 14(5):17–20.

Lesh, N.; Marks, J.; Rich, C.; and Sidner,
C. 2004. “Man-computer symbiosis” revisited:
Achieving natural communication and collabo-
ration with computers. IEICE Transactions Inf.
& Syst. E87-D(6):1290–1298.

12

Licklider, J. C. R. 1960. Man-computer symbio-
sis. IRE Trans. Human Factors in Electronics
HFE-1:4–11.

Lieberman, H., and Espinosa, J. 2006. A goal-
oriented interface to consumer electronics using
planning and commonsense reasoning. In Proc.
Int. Conf. on Intelligent User Interfaces, 226–
233.

Lieberman, H. 1998. Integrating user interface
agents with conventional applications. In Proc.
Int. Conf. on Intelligent User Interfaces, 39–46.

Meyers, K., et al. 2006. An intelligent per-
sonal assistant for task and time management.
AI Magazine. To appear.

Rich, C.; Lesh, N.; Rickel, J.; and Garland, A.
2002. A plug-in architecture for generating col-
laborative agent responses. In Proc. 1st Int.
J. Conf. on Autonomous Agents and Multiagent
Systems.

Rickel, J.; Lesh, N.; Rich, C.; Sidner, C.; and
Gertner, A. 2002. Collaborative discourse theory
as a foundation for tutorial dialogue. In 6th Int.
Conf. on Intelligent Tutoring Systems, 542–551.

Shneiderman, B., and Plaisant, C. 2005. De-
signing the User Interface: Strategies for Ef-
fective Human-Computer Interaction. Reading,
MA: Addison-Wesley.

Sidner, C. L., and Forlines, C. 2002. Subset
languages for conversing with collaborative in-
terface agents. In Int. Conf. on Spoken Language
Processing.

Sidner, C. L. 1994. An artificial discourse lan-
guage for collaborative negotiation. In Proc. 12th
National Conf. on Artificial Intelligence, 814–
819.

Charles Rich is a Distinguished Research Sci-
entist and Associate Director of the Research Lab
at Mitsubishi Electric Research Laboratories. He
earned his Ph.D. at the MIT Artificial Intelli-
gence Lab, where he was a founder and director
of the Programmer’s Apprentice project. He is
a Fellow and past Councilor of AAAI, as well as
having served as Chair of the 1992 Int. Conf.
on Principles of Knowledge Representation and
Reasoning, Cochair of the 1998 National Conf.
on Artificial Intelligence, and Program Cochair
the 2004 Int. Conf. on Intelligent User Inter-
faces. His email address is rich@merl.com.

Candace L. Sidner is a Senior Research Scien-
tist at Mitsubishi Electric Research Laboratories.
She earned her Ph.D. at the MIT Artificial Intel-
ligence Laboratory, following which she has been
a researcher at BBN Laboratories, DEC Cam-
bridge Research Laboratory, and Lotus Develop-
ment Corporation (IBM). She is a Fellow and
past Councilor of AAAI, currently General Chair
of the 2007 Human Language Technology con-
ference of the NAACL, as well as having served
as President of the Association for Computa-
tional Linguistics, Chair of the 2001 and Pro-
gram Cochair of the 2006 Int. Conf. on Intel-
ligent User Interfaces, and Cochair of the 2004
SIGdial Workshop on Discourse and Dialogue.
Her email address is sidner@merl.com.

13

	Title Page
	Title Page
	page 2

	DiamondHelp: A Generic Collaborative Task Guidance System
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13

