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Abstract

In this paper we tackle the problem of source localization by example. We present a methodol-
ogy that allows a user to train a microphone array system using signals from a set of positions
and trajectories and subsequently recall the localization information when presented with new
input signals. To do so we present a new statistical model which is capable of accurately de-
scribing features from the cross spectra of the microphone signals so as to model the room
responses from all positions of interest. We further extend this model to allow modeling
of sequences of positions, thereby also enabling the learning and recognition of trajectories.
Because of its learning nature this method provides practical advantages in setting up a
microphone array, by not requiring favorable room acoustics, careful element positioning or
uniformity of sensors. It also introduces an approach to localization which can be extended
to other problems requiring models of transfer functions. We present tests on synthetic and
real-world data and present the resulting recognition rates for a variety of situations.
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Position and Trajectory Learning for Microphone
Arrays

Paris Smaragdisylember, IEEE, Petros Boufounositudent Member, |IEEE

Abstract— In this paper we tackle the problem of source set of locations instead of inferring the location from
localization by example. We present a methodology that the input. These algorithms employ a wide variety of
allows a user to train a microphone array system using computational techniques which involve subspace meth-
signals from a set of p.osit.iong and tra}jectories and subse- 5 [9], cross spectral measures or beamforming and/or
qguently recall the localization information when presentel probabilistic formulations [10]. These methods are often

with new input signals. To do so we present a new .
statistical model which is capable of accurately describig less efficient to compute than the TDOA methods, but

features from the cross spectra of the microphone signals they provide an increased robustness and can operate

so as to model the room responses from all positions of more reliably in environments with multiple sources.
interest. We further extend this model to allow modeling of There have also been some formulations using a learning

sequences of positions, thereby also enabling the learningmethodology, but they have been quite ad-hoc [11] and
and recognition of trajectories. Because of its learning have fallen out of favor.

nature t_his method provides practical_a_ldvantages in settig Regardless of the localization technique used, it is
up a microphone array, by not requiring favorable room —herative that the room acoustics are accommodating
acoustics, careful element positioning o uniformity of S0 as to not exhibit confusing reflections, the positions of

sensors. It also introduces an approach to localization i K dth . h h imil
which can be extended to other problems requiring models € Sensors are known, an € microphones have similar

of transfer functions. We present tests on synthetic and "@Sponses. Non-compliance to any of the above condi-
real-world data and present the resulting recognition rates  tions can result in detrimental accuracy in localization
for a variety of situations. estimates.

In this paper we address the source localization issue

from a different viewpoint. We will examine the case
where the positioning and response of the microphones
is unknown, as is the surrounding acoustic environment.
. INTRODUCTION We will consider the case where strong room reflections
OURCE localization using microphone arrays isxist in addition to constant background sounds. In
a subject that has received significant attention order to deal with these issues we will use a learning
the signal processing literature. Such systems are oftesthodology.
used, for example, to discover the location of active The methodology that we propose has two stages, an
speakers in a teleconference setting, track vehicles inwarknown array system is trained with sounds emanating
outdoor environment, steer surveillance cameras towafdsn a variety of locations. The response characteristics
suspicious sounds, etc. This type of functionality can lfiemm each location are used as training features, and
achieved using a variety of techniques depending on thgbsequently used for recognition. Using this approach
constraints and expectations of the system at hand. Gapairious reflections, or microphone inconsistencies do
family of approaches takes advantage of the time diffanot pose a practical issue since they are learned as part
ence of arrival (TDOA) of a source signal as measured the process.
across multiple microphones. These time differences carObviously, training for the specific acoustic environ-
be estimated using a variety of techniques [1], [2], [3ment where the system is to be used is the price to pay
[4], [5], and once obtained can be used in conjunctidar not having to deal with array calibration. Training,
with the positions of the microphones to estimate tHeowever, is acceptable in many applications involving
originating location of the source [6], [7], [8]. Suchfixed arrays and in our experience does not pose a
approaches exhibit the advantage of being fairly efficiesignificant burden.
and adequately robust for some real-world applications.The remainder of this paper is divided as follows. In
Another category of source localization algorithms meaection 1l we will introduce the features and the statistica
sure the likelihood that the input has originated from model we use for training to discriminate positions and

Index Terms— Localization, phase wrapping, micro-
phone arrays
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trajectories. Section Il will introduce the training and The information contained across alt, is usu-
classification methodology that we propose. Sections Blly sufficient to discriminate between various positions
and V present results from synthetic and real-world dag@ound the array. Although singular cases exist they are

experiments under various conditions. hard to come by in real world setups. The positioning and
directionality response of the microphones, as well as
II. LOCATION MODELING the acoustic environment response, are the main factors

_ ] _ in defining the discriminatory power of the array. If

The problem we set forth in this paper is statedysropriately chosen it is possible to localize a very wide
as follows: lee_n_ an arbitrary array cor_1f|gurat|on anpange of positions using only a few elements (section V).
a randomly positioned source, we desire to learn thethare are many possible ways to extract equivalent
source’s position from the observed data, so that Wh&gares for arrays with more than two elements. The
ever another source is placed in that position we Cafhg; straightforward method is to consider the relative
reliably confirm it. We will also consider the dynam'%agnitude and phase of all pairs of elements and use all
case where the sources are allowed to constantly chaggem simultaneously. This has the effect of increasing
positions and follow specific trajectories, which mushe gimensionality of our features (and the computational

also be learned and recognized.. complexity when processing them) by a factorgfs
In the following sections we will lay out the frame-s 4n array of N elements.

work of this work. We will first examine the features
needed to perform this task, and subsequently provide a
statistical model for modeling positions and trajectorigd Location model

using these features. Using the aforementioned features we will now con-

struct a model we can train and then use for recognition.

A. Location features A first rudimentary model would be to estimate a com-
. . lex Gaussian distribution for eadR, and use that for

In order to have invariance from the nature of thgubsequent classification. However, this approximation

incoming sources and array characteristics, the featu €S0t always appropriate. Although the real part of

. . Swhich represents a phase value. Phase is estimated in a
but rather by the cross-microphone relations. To trg

. ) rapped form and is bound betweerr and . Using
end we employ th? relative magthde and phase of t €Gaussian distribution to model this data can result
spectra of each_mlc_rophone Input. .in_significant estimation errors. To illustrate this issue
we s_tart considering a two.element array setup. Usi Bnsider the following example from a real recording of
two microphones, we receive one signal from Caheech from two microphones. Figure 1 displays on the
denoted byz(t) and_y(t). Assuming Ioca_ll stat|onar|ty,_ left the histogram of relative phase estimates at around
we perform short-time spectral analysis to determlr%%oo Hz. We can see that they can be described using

the frequency domain counterparts, which we denote &Gaussian model. However consider the relative phase

Z.(t) and Y“’(t.) for each frequency at t!me t. As distribution around 7800 Hz, as shown in in the right
features we will use the log cross-magnitude and tIE)(F

h f the two sianals at hf h ot of figure 1. Due to the phase being wrapped around
¢ross-phase of the two signas at éac _requendgo +7 the result is a bimodal distribution that is poorly fit
features can be computed simply using one compl

8§§ a Gaussian model. Even when the wrapping effect

logarithm: is not that severe, the mean of the estimated Gaussian
7 will be biased towards zero, as compared to where the
_ w(t) e
Ry (t) = logs; O (1) distribution modes truly are.
w

_ ' ' Therefore we need to consider a different model for
This computation places the log of the ratio of thehe phase angle so that we can estimate likelihoods with
magnitudes of the inputs in the real part/®f and their better accuracy. To address this we model the distribution

phase difference in the imaginary part: of the relative phase as a Gaussian wrapped around
V2ol the interval[—=, 7]. This means that the phase data is
R(R (1) = logi=mn assumed to be normally distributed had we not had wrap-

ping. By looking at the histograms in figure 1, we can see
) pi looki he hi in fi
S(RL (1) = £Z,(t) - Y, (0)* that this is a better model. The addition of the wrapping
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with the aforementioned properties, we use the following
steps to iteratively update ando:
1) Start with initial estimateg = 0 ando = 1.

2) Compute the distance of the sample set from the
unwrapped Gaussians using:

il “ H i MH H Mh Di(x) = & — p+ k2my/—1 @)

4 Jﬂ%ﬂﬂﬂﬂ”ﬂ”ﬂ (] Hd‘ﬂﬂﬂ i L HHMWTWM il . -

D D 3) Compute the posterior probabilities of the sample
Fig. 1. Histograms and corresponding Gaussian fits of velgthases set for each of the unwrapped Gaussians using:
from two different frequencies. Due to phase being bounchfror -
to w a Gaussian model is not sufficient to model the data. — 1 — el

Qk’(x) 702 € 4
S o ®)
/ \ 4 A\ / \ —_— ki
/ ) / i\ Pk(fL’) N6
0.15r ! N ! N ! \ 1 . .
! N/ v \ 4) Update the variablg as a mean weighted by the
o1l / E Lo | ] posteriors:
0.05 J ! /\/\ /\/\ \\ B
) S N . M<—M+<2Dk(ac)Pk(m)> (6)
| iz Sl S L B
31 21 b 0 m 2m 3m an

where(-) denotes sample expectation. Furthermore

Fig. 2. The wrapped Gaussian model. The dotted line repiesen ensure that the imaginary part is wrapped around
the Gaussians to be summed and the solid line their additiadhe [—71' ﬂ] by setting:
[—, 7] interval. ’

S(p) = [(S(p) + ) mod (2m)] =7 (7)

of the distribution is meant to mirror the wrapping that 5) Likewise update the variable using:
phase undergoes. The resulting distribution is defined as:
o <Z Dk<x>2pk<x>> ®)
k

1 (z—ptk2m)?
Z e 27 x € [—m, ]
— A/ 2 .
Py(r,)(x) =\ ez V21O _ 6) Repeat from step 2 until convergence.
0 otherm.zf;e)) Convergence is rapid and usually concludes to a

: , satisfactory solution by the 10th iteration. For numerical
Although k& ranges from—oo to oo, in practice a Y ) . . .
reasons it is best if step 3 is performed in the log domain

range from -2 to 2 is often an adequate approximation .
9 . q PP reduce underflow effects due to the product operation.
(and the one we have used in all our experiments). We

demonstrate how this model works in figure 2. Assuming
the data in the right plot of figure 1 we ukes [—1, 1] to Ill. L EARNING TO LOCALIZE
obtain three Gaussians which are shown with the dashegh this section we will show how we can employ

|ineS. The diStl‘ibution that they apprOXimate, Wh|Ch |ﬁ']e model we just introduced in Order to |earn and

Only deﬁned between'ﬂ' andﬂ', iS ShOWI’] W|th the SOIid Subsequently |dent|fy positions and trajectorieS.
line. We can see that it corresponds to the bimodal nature

of the data much better than a single Gaussian.
We will how develop an algorithm to estimate
complex Gaussian model in which the imaginary part The methodology for learning to localize a position
is wrapped in the interval—7, 7] and the real part is is fairly straightforward now that we have a model.
not, as is the case witlR,. We can treat the sum ofDuring the training phase the features from each location
Gaussians in the imaginary domain as a constraine extracted using estimates &, (t) by applying
Gaussian mixture and adapt the parameters as such [Eguation 1 on the short time Fourier transforms of the
To do so we will find the meam and variances? of microphone inputs. For each position we compute the
our model using an Expectation-Maximization approacimodel we just introduced at eachand obtain a series
Therefore having a complex random variahlec C, of p, ando,. To localize an unknown input we can

£ Learning positions
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extract the features and evaluate the likelihood of the transitions between state®; is the probability

learned models for each position using: that statei will be the first to appear, and, ;
1 _lew—petheny=D) is the probability that staté will be succeeded
P(z) = Hzm.ze = (©) by state j. Their estimation is performed in a
ek _ _ o straightforward manner by noting the initial states
The position model that provides the highest likeli-  and then counting the subsequent state transitions.

hood reveals the most likely position that the input has 4) yse A andP for Viterbi decoding in conjunction
originated from. This process makes the assumption that = \yith the state models to find the most likely state
each position has a unique set of relative magnitude f each time point in the training data.
and phase. Although this is not strictly true for all 5y |f most likely state assignments differ from the
configurations, diligent use of microphone directional ~ gnes we had from before, go to step 2 and repeat.
responses and environmental reverberation can help in  otherwise terminate training and retusn P and
minimizing any location ambiguities. the state models.

One issue that rises with this approach is the spectrabrlce we have obtained a set of state models and

COPS'SienCé%betwein tralnll_ngél andh testtrl]ng sounds. %{b initial and transition probabilitieP and A, we can
estimate oliz,, can be unreliable when the Source USqse \jiterp; decoding on an arbitrary input to estimate

for training has Iittlg energy "J.lt frequenoy._ I that i.S its similarity to the trained sequences, thus performing
the case ther_w cIaSS|f|cqt|on W|II_ be poor since it will bSIassification with respect to trained models.
contrasted with excessively noisy data. To remedy this
we can keep track of the frequency content of the training
data and perform classification by evaluating equation 9
on only a few of the most prominent frequenciesThis In_ thi; secti_on we will present _the results from syn-
also provides a computational advantage, significantijetic simulations. We will examine two cases where
reducing the operations required for classification. € Will learn and identify positions and trajectories. Al
obtain a good classification estimate it is also importaf@mples were generated using a source image model
that the training source spectrum and the source @@ two-dimensional square room [14]. The room size
be classified have non-negligible energy in overlappif¢S 10m x 10m, we estimated the 24 most significant
spectral areas. It is easy to satisfy this constraint K§om reflections and to model the walls we used a

choosing the training source to be either a wideba®@und absorption coefficient of 0.15. The sampling rate
signal or of similar type to the source to be classified0f the experiments wa$4100H z. Two virtual cardioid

microphones were placed in the room, the leftmost
B. Learning trajectories pointing towards the left side of the room, the rightmost

: : L : towards the right side. Their magnitude response was
Learning trajectories is somewhat more complicatet!, :
g fra) P —4dB at £180° and linearly scaled t0dB at 0°.

Identifying a trajectory involves having temporal knowl- . i
. o To generate training examples we positioned the sound
edge of the series of positions that the source has gone

through. A straightforward method to include tempor§5§0§r[]akt§rl_3§g Ohllﬁ? mn?OatLa;rlyxiiigzn;nzpfrgreucrggggn
information to our training is to employ a Hidden i = P J

Markov Model and Viterbi training [13]. we wanted to learn. To generate the testing gxamples
imwe used the sound of a male speaker counting from
ne to five, and placed it in slightly different points

IV. SYNTHETIC EXPERIMENTS

point using the features introduced in section II-A ang

model each state with the model introduced in section ft> compared with the training positions. Had identical

B. This model will be incorporated in a Viterbi trainingposmons been used the classification results would be

loop to learn and recognize sequences of positions ]é)g%; by |n|t'rc;_ducmg th.'s Sll%ht dew_anoPhW(ta Iconstruct ¢
outlined in the steps below. a more realistic scenario and examine the tolerances o

1) Define the numbes$ of states to use for describingthIS approach.

a training trajectory and assign each time point to
a random state. A. Synthetic position example

2) Train the model of each state using the features ofTo test the ability of this model to learn static positions
the time points assigned to it using the process we generated a pool of ten random positions, and then
section llI-A. randomly offset them by up t@0cm to generate the

3) Estimate vectolP of initial probabilities of each testing positions. The two microphones were positioned
state and the matrixA of the probabilities of at (4.95m,5m) and (5.05m,5m). The entire setup is
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shown in figure 3(a). In order to perform feature extrac-
tion we used an FFT size of 1024 points with no overlap:
and no zero padding and employed a Blackman window: .
Each spectral frame was used to extract a set of feature, .
which were then used to train the relative magnitude:
and phase model. In the classification stage each set 0
features from each spectral frame was classified by as{ -
signing it to the position model for which it exhibited the *
highest likelihood. Table | presents the confusion table @
for the frame level classification. Each row shows how

many frames from each test example were classifiedfd$ 3. On the left subfigure (a) are the training, testing and

. . icrophone positions used to synthetically evaluate cstatisition
belonging to each model (each column being a mOdquarning. On the right subfigure (b) is the set of trajecwnised

The same data is also displayed in histogram form {#x training to perform trajectory classification. The pimsi of the
figure 4, where each subplot corresponds to a row fircrophones in the room is shown by the two marks around

table I. The position tests are ordered in positions froRgsition (5m, 1.5m).
1 to 10, so the diagonal elements of the table shou'd ..

contain the higher numbers, and titt bar in theith
position subplot should be the tallest one. Numbers ¢
the diagonal of the table contain the misclassified fram¢’

Front - Back (meters)

sssssssss

TABLE |
SYNTHETIC POSITION ESTIMATION CONFUSION TABLE

55555555555

Estimated Position

Fig. 4. Classification results for each position. Each pkotai

68 0 0 3 0 0 0 0 0 0 histogram of the frame-level classification result of eadsiton
0O 65 6 0 0 0 0 0 0 0 tested
c| O 6 65 O 0 0 0 0 0 0 '
2l2 0 0 6 0 0 0 0 0 O
[%2]
o| O 0 0 0O 70 O 0 1 0 0 . .
Slo 0 0o 0 0 68 0 3 0 0 B. Synthetic trajectory example
5 0O 0 O 4 0O O 68 0O 0 O In this example the training data consisted of a set of
< 8 8 é 8 8 8 8 700 603 8 eight different trajectories (shown in figure 3(b)), and
o 0 0 0 0 0 0 0 0 T for testing data we generated eight more trajectories

which randomly deviated from the training set by up to
20cm at each point. The microphones were positioned at
(4.95m, 1.5m) and(5.05m, 1.5m). We performed train-
Overall recognition at the frame level was 95.394Nng using the Viterbi algorithm described in section I11-B
The position model which claimed the most frameand used six states to model the trajectories. The FFT
from each sound example was used to deduce the fgmes were 1024 points. Figure 5 presents the results
sition that the sound was coming from, in which ca<d this classification. Each plot displays the likelihood of
accuracy was 100%. Repeated simulations yielded ®@ch test trajectory as evaluated by all trained models.
same results so |Ong as two positions did not ethﬁdl trajectories are eXthItIng a maximum likelihood at
the same relative phase and magnitude features. THi8 appropriate model.
would be the case when positions would be in the
same angle of attack towards the sensors. This problem V. REAL-WORLD EXPERIMENTS
is easily resolved by using more microphones or by In this section we present results that we obtained
strategically positioning the two microphones and takingsing real-world recordings. The recordings were per-
advantage of their directional responses (see sectionfe#med in an office measuring}80m x 2.90m x 2.60m.
A). Additional simulations with up to 50 positions inThe room features many reflective surfaces most im-
the same virtual environment yielded results no worg®rtant of which being two glass windows amounting
than 90% recognition at the frame level (and 100% & about3m?, and a large whiteboard. The reverber-
the entire sound level). ation Ty of the room was estimated to be 0.45 sec.
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12345678 120345678 12345678 12345678 12345678 ' 123485678 12345678 " 123456768

Fig. 5. Likelihoods of each test trajectory from each model. Fig. 7. Results of position classification using a dummy head
microphone. Note how due to symmetry of the headithand 180°
positions are easily confused (just as in human hearingyo Abte
how the directional responses allow us to localize frémto 360°
with only two elements.

as a confusion table shown in table Il also displayed in
figure 7.

The overall classification for each case is correct.
An interesting observation is that classification for the
fifth position, which corresponds t®80°, is strongly
Fig. 6. Recording apparatus used for the real recordings. confused with the first position which correspond$to

This confusion is a well documented effect in human
_ _ L localization known as the front/back ambiguity. This
Background hoise, such as air pondltlonlng, and r00flkes due to the fact that the relative magnitude and phase
ambience amounted to-al2d B noise floor as comparedb(__,,[ween two human ears are the same acrosscthe
to the spegch levels used in t.he evaluathn recordlnggoo meridian. Since our recording apparatus is modeled
;I'he r_ecordlng_s were m”ade using a Technics RP'32?8f%er the human head, it exhibits the same ambiguity
ambience microphone”, which is a dummy head IOIr1/'\/hich we find in our results. However the proper classifi-

autr)al _recodrdti)ng deviceh(f_igure 6). Its microphones WelGtion prevails since the room response (which was also
substituted by two Behringer ECM-8000 microphoneg,, licitly learned) imposes slightly different responses

The head-like shape of the enclosure and the pinnae ‘fﬁa hese two positions. Frame level classification is

are part of the sound path leading to each microphogsout 68% (predominantly due to front/back confusion),

ensure that sounds from almost all locations have diStiQ:%ssiﬁcation over an entire testing sound is 100%
relative magnitude and phase values (this is the same '

feature that allows humans to localize sounds with little TABLE II
ambiguity in three dimensions using only two ears [15]). POSITION ESTIMATION CONFUSION TABLE
Just as before we generated training examples by

. . . . " Estimated Position
using the aforementioned shaker in various positions 0°  45° 90° 135° 180° 225° 9270° 315°

and trajectories, and then performed classification on~ 0° [ 126 5 0 1 17 3 0 5
; ; 45° | 7 126 3 23 4 3 0 1

male speech counting numbers. The sampling rate w§§ o | 4 2 135  oa e : 1 1
44100H . g 13%°| 9 15 9 93 15 15 7 4
& 180° | 49 5 2 11 113 8 2 1

S 9225° | 19 2 1 4 10 130 16 24

A. Postlon example 2 270° 8 2 1 0 6 20 148 41
315° | 6 1 1 1 6 32 19 155

To test position recognition, approximately 3 sec train-
ing examples were generated using the shaker from eight
uniform positions around the microphone @ft, 45°, )
90°, 135°, 180°, 225°, 270°, and315°. To generate the B: Trajectory example
testing data, one of the authors counted from one to sixin this example the training data consisted of seven
from approximately the same positions. Using analysistinct trajectories within the recording room. The tra-
frames of 1024 samples we estimated the likelihoogksctories featured two passes across the long dimension
of each frame and assigned it to the classifier whiai the room in each direction, two passes from each end
reported the highest likelihood. The results are reportéal the center of the room and back, two passes across
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Position 1 Position 2 Position 3 Position 4
5 Dummy head 6 s0 s0 o 30 ——
microphones s0 25
25 L7
7 e e a0 20
oo
a0 a0 s0 1s
& 2 20 10
7 20 20
] S s
g o = o =) oLl L0 0 -0
X 1s izs5a5678 Tz5a5675 izs5as5575 iz3a5675
E Moder # Moder Moder Moder
L Position 5 Position 6 Position 7 Position 8
£ s0 6o s0 s0 2
£ o1r
s0
3 so so 6o
a0
2
05 a0 s0 a0 a0
= - 20
P e ————— e 20 20 20
- [ [l
% 05 1 3 35 oL =t ol ° ([} o =l
1z5a5678 123 Y 78 T:5ase7s
]

15 2 S 25678
Left - Right (meters) Model # Model # Model # Model #

Fig. 8. The trajectories and microphone positions usedHerréal- Fig. 10. Results of position classification using a dummydhea
world trajectory test. The numbers near the end arrows atelithe microphone rotated0° after training to simulate an acoustic envi-
numerical designation of each trajectory. Trajectorieo M4twere ronment change. Comparing the results with figure 7 we see tha
along the same line on the front-back axis, but are showrtslig the margin of classification has worsened and that we have two
separated in the figure for better legibility. misclassifications.

X 10° Trajectory 1 x 10° Trajectory 2
-1.05

I
©

3 s S 5 .- Flrst_we rotated the rec_ordmg apparatusdoy anti-
Model # Modiel # clockwise, thereby changing the already learned room
g g s S T characteristics. Since the apparatus was located in the
< m £ W center of a non-square room the basic structure of the
Yt Tl acoustic environment was severely changed. In addition
1o TS 10 T to that, since one side of the office had a large whiteboard
3 - and the opposing side contained a cluttered desk and
§5: w e bookshelves, the reflection characteristics were now sig-

-
N
w
IS
3}
)
-~
4
-
N
w
IS
3}
)
-~

nificantly different from the training case. In addition to

Model # Model #

PPREty Trajectory 7 the rotation, the blinds covering one of the windows were

g . drawn to additionally change reflectance properties. The

3, results are shown in figure 10. Most positions were prop-
1 2 3 4 5 6 7 e .

Model # erly classified, although by a notably less clear margin as

compared to figure 7. The two misclassifications were off
by 90°, with the correct answer being the second most
likely model. The models for these positions apparently
the short dimension of the room in either side of th[ee“ed on the enwronments_ acoustics more than th?
) . . . cross-microphone relationship. Less drastic changes in
microphones and an arching trajectory starting from onje ) . .
: the room, such as moving furniture around, did not pose
side of the room to the other. The dummy head was . . : .
as serious a disruption proving some degree of robustness

placed in the center of the office close to one of the " . - - .
%gamst changing conditions between training and testing.

walls. Figure 8 graphically displays the trajectories an | laced th gi , ;
the microphone placement. As in the previous section theVe also placed t € recording apparatus in a corner o
room. It was positioned to face towards the center of

training examples were generated by an author produc ) _ ) _
sound with a shaker along these trajectories, and room which resulted into strong reflections coming

testing examples were generated likewise with the autr{[%(?r;: the rear (espem?lly fromOIthe rear-left, srl]pcelone side
counting from one to twenty in English. Using the sam@ 1€ c?;ner \I/vas a ? ass erln ow). Due to this p acedment
feature settings and training as in the previous sectidf OCOU | only eva uate t ree posmon@,, 45° an

we obtained the results shown in figure 9. The correst?” - Individual frame classification results are shown

trajectory was classified for all cases, yielding 10098 tg_ble lll. Note how th? f_rames from the tV_V(_) si_de
classification. positions resulted, by majority, in proper classification,

but the front position was misclassified. In the case where

o _ _ _ _ the sound was coming from the front there are two

C. Training and testing environment mismatching factors that contributed to the misclassification. First we
Using the trained models from the static positionsould expect to have strong reflections from the rear
experiment in section V-A, we also tested accuraggnd mostly the rear-left where the glass surface was),
under different conditions to evaluate the limits of thisecond there is the problem of front-rear confusion we

Fig. 9. Likelihoods of each test trajectory from each model.
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Fig. 11. Results of position classification using an unknown %
noise source. Although the margin of certainty is lower, toerect % 40
classification is made for all cases. 40
20 20
. - 0 1 2 3 4 0 1 2 3 4
came across in section V-A. These are factors that are Model # Model #

reflected in the results where we see most frames being

classified as coming the the rear or the rear-left. Fig. 12.  Results of position classification using two, thiwe
four microphones. The frame-based classification resuéisshown

side by side for each position, white bars are for two micoos,

TABLE Il .
grey bars are for three microphones, and black bars are for fo
ROOM CORNER POSITION ESTIMATION CONFUSION TABLE microphones.

Estimated Position

| 0° 45° 90° 135° 180° 225° 270° 315°
6 O |7 7 14 16 29 5 4 5 VI. CONCLUSIONS
g% 45° 1 64 25 1 5 1 1 3
<g 7|3 0 0 1 0 19 7 12 In this paper we developed a statistical model which

) ) .can model magnitude and phase responses and can be
Finally to test noise tolerance we evaluated classifigeq 1o classify transfer functions. We have employed
cation under the same positioning as the_tralned_da[tﬁliS model for the task of sound localization using
but performed the speech recordings with music gficrophone arrays. We have tested this model on both
—8dB relative to the speech levels and coming from ay ihetic and real-world situations under a variety of
untrained position. The results are shown in figure 1dayings and obtained satisfactory classification results
We see the_correct classification for all cases but at 8This is a different paradigm from the one usually
tighter margin. employed on arrays and it comes with its own set of
advantages and disadvantages. The main differences are
D. Use of additional array elements that there needs to be a training stage, that we recognize a
In this section we consider the case where we have @iscrete set of positions, and that the system is somewhat
array of more than two elements and see how that céed to the acoustical environment during training.
change the localization results. For this setting we usedThe existence of training complicates an installation
a four microphone linear array with the microphondsy requiring that initial stage. However it frees the
spacedlOcm apart. We trained localization models foarray designer from having to ensure meticulous setup
four distinct positions. The training and testing metho@nd array uniformity that traditional approaches require.
ology was the same as in the preceding sections. \®Wmce locations are learned from cross-element responses
evaluated the results using only two, three or all foand not deduced from propagation hypotheses, there is
microphones by extracting the appropriate features as de- need to have a system that is well approximated
scribed in section Il. The results are shown in figure 1By theory. The learning part also takes care of adverse
The overall frame-level classification results were 81.5%¢coustic conditions. This frees the array designer from
correct for using two microphones, 89.5% for threeeverberation considerations, since any acoustic envi-
microphones and 91.5% for all four microphones (takingnment peculiarities can be absorbed by the learning
the frame majority vote all testing sounds were properfyrocess. The only requirement is that each learned posi-
classified in all cases). We note that each time we addézh exhibits a unique transfer function relating pairs of
an extra microphone we observed an improvement nmcrophones. Although this is a difficult requirement to
classification accuracy, which was expected since thasure, it is most often the case in reasonable acoustical
additional information in training helps disambiguatsettings. An added advantage to this feature is that
cases in which two microphones would be inadequatatherwise ambiguous positions can now be discernible
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due to unique reverberation patterns even though thgir "Special issue on time-delay estimatiodEEE Transactions on
direct path features are the same (unless of course theAgglf"CS and Speech Sgnal Processing, vol. ASSP-29, June

acoustic environment mirrors the response symmetry [g]f M.S. Brandstein, J.E. Adcock, and H.F. Silverman, "A giieal
the array). time delay estimator for localizing speech sources with a mi

The downside is that we might end up learning so crophone array”, irComputer Speech and Language, vol. 9, pp.
much of the acoustic environment that an environmeni% 153-169, Apr. 1995.

h ight . | . Like all | . b Benesty, J. "Adaptive eigenvalue decomposition aldponi for
Change might require relearning. Like all léarning-bas passive acoustic source localization” Journal of the Acoustical

methods, this is a highly context dependent issue. If the Society of America, vol. 107, pp. 384-391, Jan. 2000.

room response is a dominant element in discriminatifig Omologo, M. and Svaizer, P. Acoustic event localizatiming a

; ; : ; ;- cross power spectrum phase based technigquibe proceedings
locations, Fhen thls will be an issue an_d a change in of the International Conference on Acoustics, Speech and Signal
the acoustic environment would be detrimental to per- processing (ICASSP), 1994.

formance. However, if this is the case, a more tradition@l R. Schmidt, A new approach to geometry of range differen
localization approach would have failed before we even glcs?t'on”: “lﬂ lAEEEsE ;fanﬁgt;inz é); A|~\lef Osggcfz and Electronic

. . . ems, vol. -8, pp. —835, Nov. .
Changed the enVIro_nm_ent’ glve_n that reverbgratlon_WOLfI%I J. Smith and J. Abel, "Closed-form least-squares souoce-
provide more location information than the direct signal.” tion estimation from range-difference measurements’|BEE
In section V-C we explored the tolerance of training and Transactions on Acoustics and Speech Signal Processing, vol.
deployment environment mismatch and noted that oy ASSP-35, pp. 1661-1669, Dec. 1987. .

h Id fail d . hi [é J. Smith and J. Abel, "The spherical interpolation methor
aPproaC .WOU start to fail under severe r_nlsmatc_ INY. closed-form passive source localization using range rdiffee
Minor environmental changes such as moving furniture, measurements”, ifProceedings of the International Conference
slightly displacing the array elements and adding noise, on Acoustics Speech and Signal Processing (ICASSP), 1987.
did not have a particularly adverse effect in classificatioly! T Pham and B.M. Sadler, "Wideband aray processing

. .. . algorithms for acoustic tracking of ground vehicles”.
Finally the fact that this is a system that is not rec- ys Army Research Laboratory, report. Available at:
ognizing a continuum of positions, but rather a discrete http://www.arl.army.mil/sedd/acoustics/reports.htm
set also provides a level of robustness by eliminatid¢f! S.T. Birchfield and D.K. Gilimor, "Fast bayesian acaasio-

. Lo . s calization”, in the proceedings of the International Conference
certain ambiguities we often see in localization systems. o.'sco ics, Speech and Signal Processing (ICASSP), 2002

If ambiguous positions are not simultaneously part @f1] G. Arslan, F.A. Sakarya, and B.L. Evans, "Speaker Lizagion

the training set, then there is no difficulty in recognizing for Far-field and Near-field Wideband Sources Using Neural
them Networks”, IEEE Workshop on Nonlinear Sgnal and Image

. Processing, 1999.
These differences place our approach not as a COHQ] Dempster, A.P., N.M. Laird, and D.B. Rubin, "MaximumHe

petitor to other localization approaches, but rather as lihood from Incomplete Data via the EM Algorithm”, ifournal

an alternative. Depending on the limitations and re- OLREYaI Stéllflﬁgal iOCIety B’IVO" Sh% (;10- 1|\,/|ppk- 1—38,d19|77 .
: abiner, L. R. "A tutorial on hidden Markov models an

quirements of an array deployment _One approach C%ﬁ]selected applications in speech recognition”, Proceadofghe

be better than the other. The solution we present is |ggg, 77(2):257-286.

geared towards scenarios which require the surveillari¢] Borish, J. "Electronic Simulation of Auditorium Acotiss”,

of a specific set of locations/trajectories under adverse Ph-D. thesis, Center for Computer Research in Music and $icou
tics, Department of Music, Stanford University, CA, (1984)

acoustical conditions and array morphology. [15] Begault D.R. "3-D Sound for Virtual Reality and Multird",
Although we only presented this in the context of Academic Press, 1994.

localization, this work can be extended to model transfer
functions in general and potentially be employed for
other system modeling tasks where wrapping is an issue.
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