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Abstract
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approach employs a joint gradient similarity function that is applied only to a set high spatial
gradient pixels. We obtain motion parameters by maximizing the similarity function by
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ABSTRACT

We present a computationally inexpensive method for multi-modal image registration. Our approach employs
a joint gradient similarity function that is applied only to a set high spatial gradient pixels. We obtain motion
parameters by maximizing the similarity function by gradient ascent method, which secures a fast convergence.
We apply our technique to the task of affine model based registration of 2D images which undergo large rigid
motion, and show promising results.
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1. INTRODUCTION

Image registration amounts to establishing a common frame of reference for a set of images of the same scene
taken at different time, from different views, or by different sensors. It plays a vital role in many computer vision
applications such as video tracking, medical imaging, remote sensing, super-resolution and data fusion. Several
comprehensive surveys1, 2 on image registration have been published to cover the progress achieved in this rich
area.

In general, the registration methods can be classified into two categories3: direct method and feature-based
method. Direct methods use pixel-to-pixel matching and minimize a measure of image similarity to find a
parametric transformation between two images. Often, hierarchical approaches are adapted to improve the
convergence properties. Feature-based methods first extract distinctive features from each image. Then, they
match features between the set of given images to establish the correspondence and warp images according
to parametric transformations estimated from those correspondences. Unlike direct methods, feature-based
registration do not require initialization and able to handle large motion and viewpoint changes between the
images. To find distinctive features in the image which are invariant to illumination, scale and rotation remains
a chanlleging task. Brown and Lowe4 propose to use SIFT features to register the images which is insensitive
to the ordering, orientation, scale and illumination of the images and remove the ’outlier’ image which doesn’t
have any overlapping area with the other images.

Due to the different characteristics of imaging sensors, the relationship between the intensities of correspond-
ing pixels in multi-modality images is usually complex and unknown. Conventional intensity based feature
extraction fail in case of multi-modality images. The features appear in one image might not be present at all
in the other image. For example, a textured painting may appear to be a homogenous in thermal IR image
in case the paints have the same radiant emittance properties. Mutual information based registration5, 6 which
is inspired from information theory is considered among the state-of-the-art registration methods for multi-
modality images7 . The assumption that the intensities between corresponding pixels are similar is no longer
hold, while the distribution of the intensities of matched pixels should be maximally dependent. Instead of
using intensities, geometric properties such as contours and corners are also extracted to estimate the relevant
transformation parameters to align the images8, 9 . To improve the convergence properties, Irani and Anandan10

applied global estimation on the common information. Keller and Averbuch11 proposed to register the images
by iteratively minimizing the orientation distance of high intensity gradient pixels using second and third order
spatial gradients. However, most existing methods assume the displacement between multi-modal images to be
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small, the features are highly correlated, and they are computationally prohibitive to integrate within a real-time
framework.

In this paper, we present a joint, spatial gradient maximization based approach that does not require a delib-
erate initialization stage. Image points with strong local gradients are assumed to denote depth discontinuities,
which indicate mutually observable differences in different type of images i.e. color and thermal IR. Instead
of depending only on the intensity values, we take advantage of the spatial gradient responses. To find the
optimum solution, we formulate the joint maximization as a gradient ascent algorithm. Our method can handle
large displacements between the images and the maximization framework secures a fast convergence.

2. REGISTRATION

2.1. Maximization Function

Traditional gradient methods estimate the motion parameters p by minimizing the intensity differences between
the input image I1(x, y) and warped image I2(x, y, p). The p estimation function is described as

p∗ = arg min
p

∑
(xi,yi)∈S

(I1(xi, yi, p) − I2(xi, yi))2 (1)

where (xi, yi, p) is the coordinate of the corresponding pixel in the first image after we warp the first image by
the motion parameters p and S is the set of coordinates of pixels that are common to both images. Gradient
descent is used to find the motion parameters by solving a least square linear equation.

Alternatively, we register images by maximizing a joint spatial gradient function. Suppose edge pixels have
magnitude of 1 while non-edge pixels have 0. The total energy in the sum of the correctly registered images will
be much higher than the total energy obtained for incorrect registrations. Using maximization of joint gradients
instead of minimization of their intensity distance provides more accurate performance since image features
do not necessarily coexist in both images. In other words, our underlying assumption is not that the feature
(intensity or gradient) values remain same after motion compensation between the images as in the minimization.
By maximizing the joint gradient function, we obtain the parametric motion transformation parameters p. We
define the motion parameters p as

p∗ = arg max
p

∑
(xi,yi)∈S

(E1(xi, yi, p) + E2(xi, yi))2 (2)

where E1 and E2 represent the edge (or energy) images of I1 and I2 which are generated by applying Canny edge
detector12 (or by computing gradient magnitudes). Edges are the locations where image has strong gradients
we consider to have depth discontinuities and high information values. Applying maximization to the a small
set of salient edge pixels makes our method faster and robust.

2.2. Gradient Ascent Motion Estimation

Let the joint gradient function be F (p) =
∑

(xi,yi)∈S(E1(xi, yi, p) + E2(xi, yi))2. F (p) is nonlinear with respect
to p and the motion parameters are computed using Newton’s method. The iterative formulation is given by

pn+1 = pn − (∇F (p))−1F (p) (3)

where pn is the motion parameters after nth iteration and ∇F (p) is the derivative of F (p) with respect to p.
After a few manipulations, the iteration function for p can be computed as

pn+1 = pn − (HT H)−1HT En (4)

where
Hj,i =

∂E1(xi, yi)
∂pj

and En,i = E1(xi, yi, pn) + E2(xi, yi).



2.3. Motion Models

When the scene is approximated by a single plane, or the distance of the viewpoints between the two cam-
eras is small relative to their distance from the scene, the motion between the two images can be modeled in
terms of a single 2D transformation parameters. Hartley and Zisserman’s book13 gives a detailed description
of the 2D parametric transformations. Let �p = (p1, p2, · · · , pm) is the unknown parameter vector. For an affine
transformation, the model is given by

x2
i = p1x

1
i + p2y

1
i + p3, y2

i = p4x
1
i + p5y

1
i + p6 (5)

where x1
i , y1

i and x2
i , y2

i are the pixel coordinates before and after transformation, respectively. In this case the
parameter vector becomes �p = (p1, p2, p3, p4, p5, p6)T . The projective model is given by

x2
i =

p1x
1
i + p2y

1
i + p3

p7x1
i + p8y1

i + 1
, y2

i =
p4x

1
i + p5y

1
i + p6

p7x1
i + p8y1

i + 1
(6)

where the parameter vector is �p = (p1, p2, p3, p4, p5, p6, p7, p8)T .

2.4. Iterative Solution

The algorithm flow using iterative solution of gradient methods is given as follows:

p0 : the initial estimation of the motion parameters, and

pn : the final estimation after n iterations.

Preprocessing: Edge (gradient) images E1 and E2 are generated from the input images I1 and I2 by applying
Canny edge detector (Sobel filter). The kth (1 ≤ k ≤ n) iteration is then as follows

1. Image E1 is wrapped on E2 using the current estimated transformation parameters pk and the transformed
image is stored in Ê1.

2. Ê1 and E2 are used as input images as described in section 2.2.

3. The parameters are updated using equation 4.

4. Iterations are performed until it reaches the maximum iterations Nmax which is set by the user, or the
difference of parameters between consecutive iterations is smaller than a predetermined threshold.

2.5. Multiscale Scheme

To improve the robustness and fast the convergence, the iterative solution is embedded in a coarse-to-fine
hierarchical formulation. A spatial Gaussian pyramid is constructed for each image. Each pyramid level is
constructed by applying a Gaussian low-pass filter to the previous level, followed by sub-sampling the image by
a factor of 2. The estimation is performed on each level and goes forward to the finer level using the estimated
parameters as the initial guess. We seek for initial non-zero values only for the translational parameters p3 and
p6, leaving all the other parameters to be zeros. This is set manually or by some initialization algorithms.

3. APPLICATIONS AND RESULTS

The proposed approach was implemented and applied with an affine transformation model to image pairs acquired
from visible and thermal infrared cameras. The experimental results show our algorithm achieve accurate results
on both visible image registration and multi-modality image registration. Fig. 1 shows registration result of
two images obtained by sensors mounted on a helicopter. There are several moving vehicles in the image which
might cause the algorithm to fail. Our algorithm proves to be robust against the outliers. Fig. 3 shows the
composite display of the registration result from visible and infrared images. The intensity values between these
two images are very different and traditional gradient method based on invariant of intensity values fails to
work. Fig. 2 and Fig. 4 show the results of translation and rotation estimation in terms of alignment error
vs. the number of iterations. The alignment error is defined as the L2 norm of the difference between ground



(a) (b) (c)

Figure 1. Registration result of two aerial images using the affine motion model. In the two images, there are several
moving vehicles in the image. The registration result shows the robustness of our proposed algorithm to outliers. (a)(b)
are the image pair to be registered. (c) is the registered image.
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Figure 2. Rotation and translation estimation results for the aerial images. The image was rotated and translated by
(a)(θ = 0◦, δx = 3, δy = 4) (b)(θ = 5◦, δx = 6, δy = 7) (c)(θ = 8◦, δx = 6, δy = 12) from the correct registration result.
In every situation, our algorithm outperforms gradient method. Our approach converges much faster than the gradient
method and more robust to the large motion.

truth transformation parameters and current estimated transformation parameters. The initial misalignment
was achieved by translating and rotating the second image by a certain amount from the correct registration
results. In Fig. 2, our algorithm converges significantly faster than the gradient method. The superiority becomes
more apparent when the misalignment becomes larger. In Fig. 2(b), gradient method drifts away when it fails to
converge to the correct transformation parameters around iteration 20. In Fig. 4, our algorithm achieves correct
registration results while the gradient method fails to do so. In Fig. 4(b), the error of our method jumps up at
the beginning and then drops down to converge the correct transformation parameters. It proves robustness of
our method which avoids being stuck in local minimum. We observed that in most cases the gradient method
drifts away from the correct registration parameters.

4. CONCLUSIONS AND FUTURE WORK

We present a fast image registration algorithm which improves the performance of the gradient based registration.
Our algorithm uses a joint gradient function. Our experiments show it has superior convergence property over
the conventional gradient based registration methods and it is more robust to outliers.
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(a) (b) (c)

Figure 3. Multi-sensor Alignment. (a) Original visual image. (b) Original IR image. (c) Composite display after
alignment. Original IR image was rotated and translated before alignment. Though the apparent visual difference and
very different intensity values between the visible and IR images, our approach achieves good results on the experiments.
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Figure 4. Rotation and translation estimation results for the multi-modality image registration. The IR image was
rotated and translated by (a)(θ = 0◦, δx = 6, δy = 7) (b)(θ = 2◦, δx = 4, δy = 8) from the correct registration result. In
both cases, our algorithm achieves correct registration results, while gradient method drifts away from the correct results.
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