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Abstract

We present a license plate detection algorithm that em-
ploys a novel image descriptor. Instead of using conven-
tional gradient filters and intensity histograms, we compute
a covariance matrix of low-level pixel-wise features within
a given image window. Unlike the existing approaches, this
matrix effectively captures both statistical and spatial prop-
erties within the window. We normalize the covariance ma-
trix using local variance scores and restructure the unique
coefficients into a feature vector form. Then, we feed these
coefficients into a multi-layer neural network. Since no ex-
plicit similarity or distance computation is required in this
framework, we are able to keep the computational load of
the detection process low. To further accelerate the covari-
ance matrix extraction process, we adapt an integral image
based data propagation technique. Our extensive analysis
shows that the detection process is robust against noise, il-
lumination distortions, and rotation. In addition, the pre-
sented method does not require careful fine tuning of the
decision boundaries.

1 Introduction

Even though license plate detection systems started
emerging in late 80s [9], only recently it became a main-
stream computer vision application by gaining popularity in
security and traffic monitoring systems. Often the extracted
information is used for enforcement, access-control, and
flow management, e.g. to keep a time record for automatic
payment calculations or to fight against crime. Still, ro-
bust detection of different types of license plates in varying
poses, changing lighting conditions and corrupting image
noise without using an external illumination source presents
a challenge.

Existing approaches diversify from rule based determin-
istic methods [5]-[4] to more elegant training based classi-
fiers [6]-[2]. A simple approach is based on the detection of
the license plate boundaries [5]. The input image is first pro-
cessed to amplify the edge information using a customized

gradient filter. Then, Hough transformation is applied to de-
tect parallel line segments. Coupled parallel lines are con-
sidered as license plate candidates. Another approach uses
gray level morphology [4]. This approach focuses on lo-
cal appearance properties of license plate regions such as
brightness, symmetry, orientation, etc. Candidate regions
are compared with a given license plate image based on the
similarity of these properties.

Classifier based methods learns different representations
of the license plates. In a color texture based approach [6],
a license plate region is assumed to have discriminatory tex-
ture properties, and a support vector machine (SVM) clas-
sifier is used to determine whether a candidate region cor-
responds to a license plate or not. Only the template of a
region is fed directly to the SVM to decrease the dimension-
ality of the representation. Next, LP regions are identified
by applying a continuously adaptive mean-shift algorithm
to the results of the color texture analysis. A recent algo-
rithm [2] imposes the detection task as boosting problem.
Over several iterations, the AdaBoost classifier selects the
best performing weak classifier from a set of weak ones,
each acting on a single feature, and, once trained, combines
their respective votes in a weighted manner. This strong
classifier is then applied to sub-regions of an image being
scanned for likely license plate locations. An optimization
based on a cascade of classifiers, each specifically designed
using the false positive and false negative rates, helps to ac-
celerate the scanning process. In addition to single frame
detection techniques, there exists methods that take advan-
tage of video data [8] by processing multiple frames at the
same time.

One main drawback of all the above methods is that their
performance highly depend on the strong assumptions they
made on the appearance of the license plates. Most meth-
ods cannot handle in-plane and out-plane rotations, and in-
capable of compensating imaging noise and illumination
changes. Enlarging the training dataset with rotated training
samples often deteriorates performance and increases false
positive rate.

Many different image representations, from aggregated
statistics to textons to appearance models, have been used



Figure 1. Covariance matrix generated for 7 features.

for license plate detection. As a general rule, a region
descriptor should be invariant to geometric and radiomet-
ric distortions but competent enough to distinguish license
plates from the background clutter under uncontrolled con-
ditions. Histograms are popular representations of image
statistics. They are easy to compute, however, they disre-
gard the spatial arrangement of feature values and do not
scale efficiently to higher dimensions. Appearance models
provide spatial discrimination, but they are highly sensitive
to the pose, scale and shape variations. Texture representa-
tions are often computationally expensive and scale depen-
dent.

We developed a feature covariance matrix descriptor that
captures not only the appearance but also the statistical
properties of image regions. This descriptor has low dimen-
sionality in comparison to many other approaches and it is
invariant to in-plane rotations. In general, a single covari-
ance matrix extracted from a region is sufficient to match
the region in different views and poses. Covariance matrix
of any region has the same size, thus it enables comparing
any regions without being restricted to a constant window
size.

In the following sections, we explain how we construct
the covariance matrix and train the neural network classifier.
Then, we give several examples of license plate detection,
present performance graphs and comparison results with a
state-of-art weighted orientation histogram approach.

2 Covariance Descriptor

We denote one dimensional, unit normalized intensity
image as I . The method can also be generalized to other
type of images, e.g. multi-spectral. Let F be the M×N×d
dimensional feature image extracted from I as

F (x, y) = Φ(I, x, y) (1)

where the function Φ can be any pixel-wise mapping such as
color, image gradients Ix, Ixx, .., edge magnitude, edge ori-
entation, filter responses, etc. This list can be extended by
including higher order derivatives, texture scores, radial dis-
tances, angles and temporal frame differences in case video
data is available.

For a given rectangular window W ⊂ F , let {fk}k=1..n

be the d-dimensional feature vectors inside W . Each fea-
ture vector fk represents a pixel (x, y) within that window.
Since we will extract the mutual covariance of the features,

the windows can actually be any shape not necessarily rect-
angles. Basically, covariance is the measure of how much
two variables vary together. We represent each window W
with a d × d covariance matrix of the features

CW =

 cW (1, 1) · · · cW (1, d)
...

. . .
cW (d, 1) cW (d, d)

 (2)

=
1

n − 1

n∑
k=1

(fk − µ)(fk − µ)T

where µ is the mean vector of all features. The diagonal
coefficients represent the variance of the corresponding fea-
tures. For example, the ith diagonal element represents the
variance for the ith feature we measure. The off-diagonal
elements represent the covariance between two different
features. Fig. 1 shows a sample covariance matrix for a
given image.

We construct the feature vector fk using two types of
mappings; spatial features that are the functions of the pixel
coordinates, and appearance attributes, i.e., color, gradient,
etc., that are obtained from the pixel color values. As spatial
features, the coordinates may be directly associated with the
appearance features;

fk = [x y I(x, y) Ix(x, y) ... ] (3)

or using polar coordinates

fk = [r(x′, y′) θ(x′, y′) I(x, y) Ix(x, y) ... ] (4)

where
(x′, y′) = (x− x0, y − y0) (5)

are the relative coordinates with respect to window center
(x0, y0), and

r(x′, y′) = (x′2 + y′2)
1
2 (6)

is the distance from the (x0, y0) and

θ(x′, y′) = arctan
(

y′

x′

)
(7)

is the orientation of the pixel location.
Note that, using Euclidean coordinates makes the covari-

ance descriptor strictly rotation variant. Even though using
the distance r from the window center as the coordinate fea-
ture provide rotation invariance, it destroys the connectivity
along the lines passing through the origin. In other words,
polar coordinates is blind towards the pattern modifications
in case such modifications are on the same radial circle as
illustrated in Fig. 2.



Figure 2. Top: rotation, bottom distortion (only outer
rim is rotated).

To make covariance representation rotation invariant, we
use a frequency transform function g of coordinates as

fk = [g(x′, y′) r(x′, y′) I(x, y) Ix(x, y) ... ] (8)

We define the frequency transform function g as

g(x′, y′) = e
i
�
2π

r(x′,y′)
rmax

+θ(x′,y′)
�

(9)

where rmax is a normalizing constant corresponding to the
maximum radius of the window W . Since the frequency
transform feature gives complex covariances, we take the
magnitude of the covariance coefficients when we construct
the covariance matrix.

We computed the covariance distances for the rotated
and distorted images in Fig. 2 where the top row corre-
sponds to rotated images and the bottom row shows the
images that only the pixels at the same radial distance are
rotated. The top row in Fig. 2 shows the distances of the ro-
tated covariance matrices constructed using the frequency
transform and the bottom row corresponds to polar coordi-
nates. As visible, the radially symmetric feature r generates
almost identical results for the rotated and distorted images,
In other words, it fails to differentiate the distortion from
rotation even though it is rotation invariant. On the other
hand, the covariance responses of the frequency transform
feature changes according to the amount of the distortion.
In addition, it is rotation invariant.

3 Detection Algorithm

We impose the license plate detection as a classifier
based binary recognition problem. We adapt an off-line
trained neural network to determine whether a given image
region corresponds to a license plate or not.

In training phase, we compute pixel-wise image fea-
tures including spatial gradients and moments. We model
each positive (license plate) and negative (non-license
plate) training image via a covariance descriptor introduced
in [10] and feed this information into a neural network with

Figure 3. Top: rotation, bottom distortion.

+1,-1 labels respectively. We employ a feed-forward back-
propagation type of neural network with three internal lay-
ers. Neural networks are made of nodes that their state can
be described by activation values. Each node generates an
output signal based on its activation. Nodes are connected
to each other very specifically, each connection having an
individual weight. Each node sends its output value to all
other nodes to which they have an outgoing connection. The
node receiving the connections calculates its activation by
taking a weighted sum of the input signals. In other words,
each node acts as a single perceptron that has a linear de-
cision surface. The output is determined by the activation
function based on this activation. Networks learn by chang-
ing the weights of the connections. We use a three layer
network to impose nonlinear decision boundaries while pre-
venting from overfitting to the training data. The number of
inputs is same as the number of unique coefficients. Each
layer has a weight matrix, a bias vector, and an output vec-
tor. A graph of this network is shown in Fig. 4.

In detection phase, we scan the image at different scales
and test each scanning window whether it corresponds to a
license plate or not. Normally, such an exhaustive search
would be slow. Thus, we adapt an integral image based
fast covariance matrix extraction method [7] to achieve the
search in linear time. We restructure the unique coefficients
of the covariance matrix into a vector form and send this
vector to the trained neural network to compute the activa-

Figure 4. A three-layer, 28-input feed-forward back-
propagation neural network used for all features.



Figure 5. Sample detection result by scanning windows.

tion function score. For example, for a 7 × 7 covariance
vector, there are 28 unique coefficients. The sign of the
score indicates the estimated class, e.g. positive for license
plates and negative for non-license plates. The network uses
a non-linear sigmoid transfer function, which calculates its
output as

tansig(z) =
2

1 + e−2z
− 1 (10)

to make sure that the output remains within a specified
range, which is [−1, 1]. A sample detection result is given
in Fig. 5. This detection is done by scanning each image
using a fixed size window. For unknown license plate size,
the scanning can be executed in multiple image resolutions
keeping the minimum detection window constant.

We want to emphasize that the covariance matrices do
not lie in Euclidean space, thus, their distance can not be
computed by simple matrix subtraction. Instead, it is re-
quired to find the generalized eigenvalues of two matri-
ces [3]. The proposed neural network based framework
successfully eliminates this costly operation by convert-
ing problem into comparison of separate covariance values
structures into a feature vector form.

4 Experiments

We used only a sparse set of positive examples, 300 li-
cense plate samples, and 3000 non-license plate samples
to train the neural network. We assessed the performance
using non-overlapping datasets consist of 300 positive and
3000 negative images. We aimed to reflect the real-life
condition that the database is unbalanced. Sample positive
training images are shown in Fig. 6.

We tested different feature combinations for the covari-
ance descriptor as given in Table 1. To make a fair eval-
uation, we compared our results with the weighed orienta-
tion histogram descriptor that is proven to outperform other
features in human detection [1]. This descriptor computes
an orientation histogram using pixels gradient orientations.
The bin value is incremented by the gradient magnitude.
The histogram is then assigned as the feature vector. In ad-
dition, we collected the gradient responses to each image in

Figure 6. Positive samples (gray level images are used).

several bins, and filtered out the desired information in re-
spective bins to focus mainly on the vertical and horizontal
features using a set of positive samples.

In all cases, we used the same dimensionality, i.e. 28
unique coefficients in covariance descriptors and 28 bins for
orientation histograms. We computed feature vectors for
each sample and feed these features into the same neural
network to find out which method is more efficient for the
same set of samples.

The training and test data consist of manually extracted
105 × 32 license plate images captured from a camera
mounted on a street lamp pole overlooking a stop sign. We
observed that with the higher resolution data the perfor-
mance of the orientation histogram method remains same.
Whereas, its performance severely degrades as the resolu-
tion of the samples becomes smaller. Thus, histogram ap-
proach is not suitable for low-resolution data.

Figure 7 shows the performances of the covariance de-
scriptors and orientation histogram. These ROC curves ob-
tained from the test data by applying thresholds in the range
[−0.9, 0.9] to the likelihood score computed by the neural
network. As visible, the covariance features with the same
dimensionality produce much better detection results than
the orientation histogram method. Even though its dimen-
sion is almost half i.e. 15 vs. 28, the feature vector obtained
from 5 × 5 covariance descriptor gives as similar results as
the orientation histogram. Moreover, orientation histogram
method is highly sensitive to the selected likelihood thresh-
old value of the neural network; the range of the true posi-
tive and true negatives varies significantly as the threshold
changes. As shown, all of the tested covariance descrip-
tors provided comparably more consistent results indicating
they are less sensitive to the selected threshold value.

Table 1. List of Features

Features Number
g, r, I, |Ix|, |Iy|, |Ixx|, |Iyy| C1

x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy| C2

x, y, I, |Ix|, |Iy| C5×5

histogram Hφ



Figure 7. Performance graphs under controlled lighting
and noise free conditions for accurately aligned images.

Figure 8. ROC curves for added noise N(0, 0.04).

In another simulation, we contaminated the training and
test data with Gaussian noise N(0, 0.04), i.e. zero-mean,
0.04 variance, which is a severe contamination. The ROC
curves are given in Fig. 8. As seen, the true positive rates
are significantly decreased for all descriptors, however, co-
variance descriptors still provided more accurate results.

We tested the sensitivity for in-plane rotations in Fig. 9.
We randomly rotated both training and tested images within
the [−20, 20] degrees and retrained the neural network. We
observed degradation of the performance for the orienta-
tion histogram Hphi and frequency transform covariance
descriptor C2. Persistently, the covariance descriptor us-
ing Euclidean coordinates C1 gave identical results by out-
performing the other methods. One possible explanation is
that the license plates are composed of characters and the
rotation of the training data, in a way, corresponds to the
shuffling of these characters around the window centers by
keeping the covariance response of C1 almost intact.

To analyze the robustness against the illumination

Figure 9. ROC curves for random rotation in the range
of [−20, 20] degrees around the window center. In other
words, the training and test images are not aligned.

Figure 10. Intensity values of the test images are dis-
torted.

changes, we distorted the intensity values of the test sam-
ples and applied them to the original neural networks that
were trained by the original data. By doing this, we wanted
to simulate the real-life conditions where the intensity of
the acquired images may vary due to the external lighting
conditions. Even though we compensate for the illumina-
tion changes when we construct the orientation histogram,
it still failed to achieve its performance when it was tested
with the undistorted data as shown in Fig. 10. Yet, the co-
variance descriptor is proven to less sensitive towards the
illumination changes due to its intrinsic property that it doe
not use the intensity mean but the intensity variance. This
enables the covariance descriptor to automatically normal-
ize for the varying illumination conditions. To provide a
comprehensive comparison, we also show the above results
in the Fig. 11.

As a final test, we tested the performance of the covari-



Figure 11. ROC curves of various cases are shown alto-
gether.

Figure 12. Comparison of C1 and C2.

ance descriptors C1 and C2 that contains the Euclidean co-
ordinate an frequency transform features respectively. We
randomly rotated only the test images and applied these im-
ages to the original neural networks of trained for these de-
scriptors. As shown in Fig. 12, the frequency transform fea-
ture provided much better results. This indicates that the
frequency transform is a more competent representation in
cases that the amount of the rotation is not embedded in the
training data, which is what generally happens in actual ap-
plications.

The detection time of each frame depends on the number
of candidate windows scanned and tested. Our current im-
plementation runs at 100,000 windows per second, which is
suitable for most real-time detection applications. Further-
more, the integral image based covariance construction [7]
significantly accelerates the extraction process. Computa-
tion of all 7 × 7 covariance matrices takes only 20msec for
a 640× 480 image.

5 Conclusions

We presented a license plate detection method based on a
novel descriptor. The covariance descriptor effectively cap-
tures both spatial and statistical properties of target patterns.
The covariance representation is robust against in plane ro-
tations of license plates, and severe image noise. Since the
mean is filtered, it is almost invariant to severe illumina-
tion changes. Our tests show that the neural network frame-
work provides adaptability to out plane rotations as well.
Once the training is done, the detection process is very fast.
We compared our algorithm with a state-of-art detection
method based on the weighted histograms of orientation.
Our results show that the proposed method outperforms this
approaches in all cases.
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