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Abstract

We investigate the accuracy of two predictive modeling methods for the purpose of Fault Detec-
tion and Diagnosis (FDD) for HVAC equipment. The comparison is performed within an FDD
framework consisting of two steps. In the first step, a predictive regression model is build to
represent the dependence of the internal state variables of the HVAC device on the external driv-
ing influences, under normal operating conditions. This regression model obtained from training
data is used to predict expected readings for state variables, and compute deviations from these
readings under various abnormal conditions. The object of the second step in the FDD frame-
work is to learn to detect abnormalities based on regularities in computed deviations (residuals)
from normal conditions. The accuracy of the first step (regression) is essential to the success of
this method, since it disambiguates whether variations in observed state variables are due to faults
or external driving conditions. In this paper, we present a comparison between locally weighted
regression (a local non-linear model) and polynomial regression (a global non-linear model) in
the context of fault detection and diagnosis ofövercharged̈andündercharged̈refrigerant condi-
tions in an HVAC device show that locally weighted regression clearly outperforms polynomial
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Abstract— We investigate the accuracy of two predictive
modeling methods for the purpose of Fault Detection and
Diagnosis (FDD) for HVAC equipment. The comparison
is performed within an FDD framework consisting of two
steps. In the first step, a predictive regression model is
built to represent the dependence of the internal state vari-
ables of the HVAC device on the external driving influences,
under normal operating conditions. This regression model
obtained from training data is used to predict expected read-
ings for state variables, and compute deviations from these
readings under various abnormal conditions. The objective
of the second step in the FDD framework is to learn to
detect abnormalities based on regularities in computed de-
viations (residuals) from normal conditions. The accuracy
of the first step (regression) is essential to the success of
this method, since it disambiguates whether variations in
observed state variables are due to faults or external driv-
ing conditions. In this paper, we present a comparison be-
tween locally weighted regression (a local non-linear model)
and polynomial regression (a global non-linear model) in
the context of fault detection and diagnosis of HVAC equip-
ment. Our experimental results for detection and diagnosis
of “overcharged” and “undercharged” refrigerant conditions
in an HVAC device show that locally weighted regression
clearly outperforms polynomial regression for this task.

I. Introduction

Our approach to fault detection and diagnosis (FDD) of
HVAC equipment is based on statistical machine learning
(SML) techniques, and follows the methodology suggested
by several extensive studies in this field, such as that by
Braun and Li [1] and Zogg [6]. In this approach, fault
detection and fault diagnosis are addressed as two sepa-
rate problems that are solved in sequence by means of two
different classes of SML methods. For the purpose of fault
detection, a statistical model of sensor readings during nor-
mal operation of HVAC equipment is learned from data
collected from healthy equipment. Once such a model is
available, it is used to detect signal readings that deviate
from the expected values for normal operation — that is,
fault detection is reduced to a problem of anomaly detec-
tion. Once a faulty state has been detected, the objective
of fault diagnosis is to establish exactly what kind of fault
this is. This problem is also solved by means of SML meth-
ods, although in this case the problem is reduced to learn-
ing a classification model from data collected from faulty
equipment in abnormal conditions. The two types of SML

methods — those used for fault detection (anomaly detec-
tion) and those used for fault classification — are quite
different, and will be described in more detail below.

A. Fault Detection

Let the vector Y = [y1,y2, . . . ,yn] describe all n sensor
readings yi, i = 1, n and the vector x = [x1,x2, . . . ,xm]
describe all the external driving condition variables. Exam-
ples of internal state variables Y for HVAC devices are su-
perheat, evaporator temperature, etc, while typical exter-
nal variables x are outside air temperature, humidity, etc.
For such devices, fault detection can be solved by means of
a model f that relates the external driving conditions x to
normal (expected) operating states Y: Y = f(x). If such
a model is available, fault detection reduces to comparing
actual readings Y with their expected values Y = f(x)
for the current external conditions x, and signaling a fault
when their difference exceeds a threshold.

However, obtaining such a model for practical HVAC
equipment either analytically or via simulation is usually
extremely difficult, due to the complex thermodynamical
relationship between external driving conditions and the
construction details of HVAC devices. Existing physical
models, such as ACMODEL developed by Rossi and Braun
[4] have had limited success: their accuracy is low, they re-
quire detailed mechanical descriptions of the equipment,
and they are not probabilistic. So, even if they could pro-
duce an accurate estimate of the expected operating state
Y as a function of the driving conditions x, such estimates
are deterministic, and do not show what kind of deviations
from expected state are acceptable and what are not.

For this reason, research in FDD has turned towards
SML models, also known as “black-box models”. Such
models ignore completely the physical nature of the re-
lationship between driving conditions, device construction,
and normal operating states, and instead learn that re-
lationship from data. SML is the area that is concerned
with the development of computational learning algorithms
that can do that. So far, a fairly large number of learning
algorithms have been applied to the problem of normal
state determination — successful examples include linear
regression, polynomial regression, neural networks, radial



basis function networks, memory-based learning, locally
weighted regression, etc. [1]. Thus, the problem of de-
termining the expected normal operating conditions given
measurements of external driving conditions is a regres-

sion task. In addition, since the problem of fault detection
reduces to learning a conditional probability density

model relating driving conditions to the probability that
a sensor reading is normal, we are interested in regression
methods that also produce estimates of the error on their
predictions. Furthermore, both simulation models and ex-
ploratory data analysis of HVAC data suggest that the re-
lationship f between external conditions x and expected
readings Y is non-linear, so research has focused on non-
linear SML methods.

B. Fault Classification

Once a fault has been detected, its type must be de-
termined as precisely as possible. The common approach
is to base this classification on the deviations (residuals)
∆Y = Y − Y from expected normal operating conditions
Y, rather than directly on sensor readings Y. This corre-
sponds to the assumption that the manifestation of a fault
(residuals ∆Y) is largely independent of actual driving con-
ditions x. The practical consequences from this assumption
is that training data can be collected from faulty equipment
under a large number of driving conditions x, as long as
the predictive model identifies correctly Y from x.

From the point of view of SML, this step reduces to
building a classifier from training data. One fairly sim-
ple approach is to build such a classifier manually, in the
form of explicit rules involving only the sign of the resid-
uals. An example of such a rule is “If the superheat is
higher than normal, and the temperature of the evapora-
tor is lower than normal, and the sub-cooling temperature
is lower than normal, then the fault is due to refrigerant
leakage”. Clearly, such a rule is pretty crude, because it
ignores the exact magnitude of the deviations, as well as
their mutual dependency.

A much better approach is to use sensor readings from
faulty equipment with correctly diagnosed faults (by a hu-
man expert), in order to learn a classifier from data. For
this approach, the classifier learns a function that maps the
vector of residuals ∆Y to a set of discrete class labels, one
for each possible fault. In essence, such a classifier would
learn how to discriminate between the residuals typical of
different faults. Just like the case for prediction under nor-
mal operating conditions, many available SML methods
exist. In practice, most of the SML models described in
the previous subsection can be used for classification just
as well, with certain modifications. For example, linear re-
gression is replaced by logistic regression; the output units
of neural nets are sigmoidal rather than linear, etc.

Clearly, the accuracy of the regression step influence di-
rectly the success of the classification step. Any modeling
errors in the regression step would lead to significant resid-
uals in the classification step, and would result in incorrect
classifiers. In order to answer the question what kind of
regression techniques are good for modeling HVAC equip-

ment, in this paper we present a comparison between one
local and one global model for the regression step in the
context of fault detection and diagnosis of HVACs. We use
locally weighted regression for the local model and polyno-
mial regression for the global model. The rest of the paper
is organized as follows. In section 2, we give a brief intro-
duction to the FDD framework followed by us. In section
3, we present the experimental procedure and results with
locally weighted regression and polynomial regression. In
section 4, we present our conclusions.

II. Fault Detection and Diagnosis Framework

Figure 1 illustrates the regression procedure. As men-
tioned in the previous section, we learn regression models
from normal data relating the external driving conditions
(such as outdoor temperature, humidity, and indoor tem-
perature) to the state variables of the HVAC device. Here
x represents the input driving conditions and y represents
the observed state variables under normal operating condi-
tions of the HVAC equipment. Given these data, the task
of the regression step is to find a function f(x) such that
an objective function (e.g mean squared error) to measure
the goodness of fit is optimized. This allows us to pre-
dict the value of state variables (y) under normal opera-
tion of the HVAC equipment, given the input conditions
x. Such a model can either be a global or a local model.
In the global model such as polynomial regression, each
training point has the same influence on the model. In the
local model such as locally weighted regression, the train-
ing points closer to the query have more influence on the
model than the farther ones.

Figure 2 illustrates the classification procedure. In this
step, we generate prediction residuals based on the regres-
sion models and observed values of the state variables. Here
x and y represent the input conditions and state variables
while the equipment is under normal operation. x1 and y1

represent the input conditions and state variables while the
equipment is operating under a particular fault type (e.g.,
for the task of detecting incorrect refrigerant level, it can be
type 1: Overcharged). The variables x2 and y2 represent
the input conditions and state variables while the equip-
ment is operating under another fault type (e.g. type 2:
Undercharged). If the HVAC is operating normally, the dif-
ference between the predicted and observed state variables
(residuals) would be small and centered around 0. This
residual is shown as (Y − y). Under faulty conditions, the
residuals would be large and in a certain direction (positive
or negative) depending on the type of fault. The residu-
als under faulty conditions are indicated as (Y1 − y1) and
(Y2 − y2). Then, we use these prediction residuals as fea-
tures and train classifiers to distinguish between three con-
ditions of operation of the equipment (normal, overcharged
and undercharged). These three classes (conditions) are in-
dicated as CN , Ct1, Ct2.

Once we have completed these two steps, we can monitor
the condition of any HVAC equipment in the field using the
algorithm shown in figure 3. Using the driving conditions
in the field (xf ) as input to the regression model (f(x))



Fig. 1. Regression step to model normal operation of HVAC equipment

Fig. 2. Training fault classifier based on residuals

we first predict the value of state variables. The predicted
values are represented as Yf . We also have sensor readings
for these state variables (yf ) from the HVAC equipment in
the field. Then, we can generate the residuals (Yf − yf )
and classify them using the trained classifiers to decide on
the condition of the equipment.

In the following section, we present the experimental re-
sults for both polynomial regression and locally weighted
regression in the context of this FDD framework.

III. Experimental Procedure and Results

The experimental data was collected from several de-
vices of the same class, installed in different locations. The
dataset included sensor readings for the following two driv-
ing condition variables: the outside air temperature x1,
and the mixed-air temperature x2. Accordingly, the driv-
ing condition vector (x) consisted of these two variables.

We use the following variables as state variables as sug-
gested by [1]: Evaporating temperature (iTh3), Discharge
line temperature (Th1), Condensing temperature (Th5),
Sub-cooling temperature (Th7), Condenser air temperature
difference (Th5 − Th7), Evaporator air temperature differ-
ence (iTh3 − iTh2) . Then, the state variable vector (Y)
is simply a vector consisting of all these sensor readings.
Now that we know the driving conditions (x) and the state
variable vector (Y), the first task is to learn the relation-
ship between the two under normal operating conditions.
We use the sensor readings in two different installations for

data under normal operating conditions. Note that since
these installations were in different locations and readings
were collected on different days, the two devices operated
under fairly different conditions. However, these readings
were not collected under laboratory conditions to ensure
thorough coverage of conditions space, as in [1]. One prac-
tical consequence from this is that when the regression
model is used for prediction, it is much more likely to have
to extrapolate external conditions, rather than interpolate
among readings experienced during training.

In the following subsections, we present the results of
modelling the relationship between Y and x using two
promising methods. The first method uses polynomial re-
gression, and the second method uses locally weighted re-
gression.

A. Results with polynomial regression

Polynomial regression is a fairly direct extension of ordi-
nary linear regression, with some modifications that allow
it to represent non-linear relationships. Rather than com-
puting a linear relationship between input variables x and
output variables Y, a polynomial function of the driving
conditions (gi(x))) is chosen first. After that, the optimal
linear mapping between gi(x)) and each individual output
variable yi is computed, using the computational machin-
ery of ordinary linear regression. We conducted our experi-
ments in the statistical environment R, so coefficients were
computed using the S-language function lm [5].



Fig. 3. Fault Detection and Diagnosis Algorithm for HVACs

state variable (yi) polynomial function (gi(x))
iTh3 1st order
Th1 3rd order with cross terms
Th5 1st order
Th7 2nd order with cross terms

Th5 − Th7 1storder

iTh3 − iTh2 2nd order with cross terms

TABLE I

Polynomial function orders for each state variable

Note that the suitable polynomial function gi(x) might
be different for each output variable yi. We use the polyno-
mial functions suggested in [1] for each state variable. The
order of the polynomial is shown in Table I.

B. Results with Locally Weighted Regression

In the previous section, we described how polynomial re-
gression can be used for modeling of steady-state behavior.
What is specific to polynomial regression is that the form
of the polynomial function (gi(x)) assumed is global, i.e.
used throughout the input space. This is a fairly strong
assumption, and most likely not true for most real devices.

One alternative method for non-linear regression that
also has close ties with ordinary linear regression is locally-
weighted regression (LWR) [3]. LWR operates by comput-
ing a custom model for each specific query point in input
space, only after this query point is known. While in poly-
nomial regression each training point has the same influ-
ence in determining the coefficients of the global model, in
LWR the training points nearer to the query point have
much more influence on the coefficients of the polynomial
than the training points that are farther away. Note that
the local model of LWR can also be of order higher than
one, just like in PR. However, in our experiments, we used
locally linear regression (order one), again using the the R
environment and the package LOCFIT [3].

Figure 4 compares the prediction performance of poly-
nomial regression and locally weighted regression on the

training set (data from a normally operating HVAC equip-
ment). Note that the prediction errors for the state vari-
able (Condensing Temperature (Th5)) in case of locally
weighted regression are much smaller than the prediction
errors in the case of polynomial regression.

C. Comparison of cross-validation performances using
residuals from locally weighted regression and polyno-
mial regression

Figure 5 shows the density of prediction residuals using
locally weighted regression for one of the state variables
(the condensing temperature (Th5) under three operating
conditions of the HVAC equipment. The densities of resid-
uals are plotted for the following three scenarios: normally
charged refrigerant, varying amounts of overcharged refrig-
erant and varying levels of undercharged-ness. Note the
prediction residuals are centered around zero for normally
charged HVAC equipment while they are shifted in oppo-
site directions for overcharged and undercharged scenarios
of the HVAC equipment. Since the model is fitted on train-
ing data from a “healthy” machine, we expect little discrep-
ancy between the predicted and observed state variable if
the machine is operating under normal conditions. If there
is a fault (overcharged or undercharged refrigerant), we ex-
pect to see a discrepancy between the observed value and
the predicted value. The direction and the value of the
discrepancy may be indicative of the type of fault. Thus,
we are motivated to use such prediction residuals as fea-
tures for discriminating various types of faults from normal
operating conditions. It is easy to see that there is a clear
separation between the prediction residuals under three op-
erating conditions if we use this feature alone with a thresh-
old. We would like to learn a classifier that combines the
strength of several such simple and weak classifiers (accu-
racy > 0.5) to identify different fault types. Boosting is a
natural choice for a such a classifier [2].

We train three boosting classifiers using the prediction
errors as features. The first classifier is for discriminat-
ing normal operation from overcharged and undercharged
operations. The second classifier is for discriminating over-
charged operation from normal and undercharged oper-



(Polynomial Regression) (Locally Weighted Regression)

Fig. 4. Density of prediction residuals with normal data, for the state variable condensing temperature.

Fig. 5. Density of prediction residuals under faulty operation of HVAC equipment for the state variable condensing temperature.

ations. The third classifier is for discriminating under-
charged operation from overcharged and normal opera-
tions. In the following subsections, we present the cross
validation performances of these three classifiers on vari-
ous splits of the data for training and testing.

Table II summarizes the cross validation performance
of the boosting classifier trained to discriminate between
the normal operation and the faulty operation. It shows
that the boosting classifier trained with residuals from Lo-
cally Weighted Regression (LWR) outperforms the Boost-
ing classifier trained with residuals from Polynomial Re-
gression (PR). We can draw similar conclusions for the
other two classifiers (Overcharged Vs Rest and Under-
charged Vs Rest) from the tables III and IV. The over-
all classification accuracy for residuals from LWR is 95%
whereas the classification accuracy for residuals from PR
is only 78%.

The results so far indicate that we can build discrimi-

Run LWR PR
1 0.06 0.45
2 0.07 0.45
3 0.04 0.21
4 0.38 0.44
5 0.08 0.21
6 0.08 0.22
7 0.05 0.22
8 0.05 0.22

Avg. Error 0.1012 0.3042

TABLE II

Comparison of cross-validation performances using residuals

from Locally Weighted Regression (LWR) and Polynomial

Regression(PR) for Normal Vs Rest



Run LWR PR
1 0.07 0.01
2 0.06 0.02
3 0.013 0.02
4 0.10 0.21
5 0.05 0.14
6 0.02 0.09
7 0.05 0.08
8 0.05 0.25

Avg. Error 0.0516 0.1025

TABLE III

Comparison of cross-validation performances using residuals

from Locally Weighted Regression (LWR) and Polynomial

Regression(PR) for Overcharged Vs Rest

Run LWR PR
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.29
5 0.0 0.47
6 0.0 0.48
7 0.0 0.44
8 0.012 0.41

Avg. Error 0.0015 0.2612

TABLE IV

Comparison of cross-validation performances using residuals

from Locally Weighted Regression (LWR) and Polynomial

Regression(PR) for Undercharged Vs Rest

native classifiers to distinguish between normal and both
of the faulty operations (overcharged and undercharged).
We have got similar promising results with locally weighted
regression on simulator data.

IV. Conclusion

In this paper, we presented a comparison between the
performance of global regression method (Polynomial Re-
gression) and a local regression method (Locally Weighted
Regression) for modelling the state variables of a HVAC
equipment as a function of two driving condition variables.
The prediction residuals obtained by using these two re-
gression methods were treated as features to train three
classifiers. The first classifier learns to distinguish nor-
mally charged HVAC from the overcharged and the under-
charged, the second classifier to distinguish the overcharged
HVAC from the normally charged and the undercharged
and the third classifier to distinguish the undercharged
HVAC from the normally charged and overcharged. The
overall classification accuracy when using prediction resid-
uals from locally weighted regression was found to be 95%.
The same measure dropped to 78% when using prediction
residuals from polynomial regression. Locally Weighted

Regression is clearly superior to Polynomial Regression for
the task of modelling the state variables as a function of
external driving conditions, and is hence is more useful for
FDD in HVAC equipment. This can be explained by the
greater flexibility of LWR that is helpful in accommodating
various local dependencies, and its superior extrapolation
abilities.
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