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Abstract

In this paper we introduce a novel approach to classifier combination, that we term Weighted
Ensemble Boosting. We apply the proposed algorithm to the problem of activity recognition in
video, and compare its performance to different classifier combination methods. These include
Approximate Bayesian Combination, Boosting, Feature Stacking, and the more traditional Sum
and Product rules. Our proposed Weighted Ensemble Boosting algorithm combines Bayesian av-
eraging strategy with the boosting framework, finding useful conjunctive feature combinations
and achieving lower error rate than the traditional boosting algorithm. The method demonstrates
a comparable level of stability with respect to the classifier selection pool. We show the perfor-
mance of our technique with a set of 6 types of classifiers in the office setting detecting 7 classes
of typical office activities.
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Abstract. In this paper we introduce a novel approach to classifier combination, that we term Weighted Ensemble Boost-

ing. We apply the proposed algorithm to the problem of activity recognition in video, and compare its performance to
different classifier combination methods. These include Approximate Bayesian Combination, Boosting, Feature Stack-
ing, and the more traditional Sum and Product rules. Our proposed Weighted Ensemble Boosting algorithm combines
Bayesian averaging strategy with the boosting framework, finding useful conjunctive feature combinations and achieving
lower error rate than the traditional boosting algorithm. The method demonstrates a comparable level of stability with
respect to the classifier selection pool. We show the performance of our technique with a set of 6 types of classifiers in
an office setting detecting 7 classes of typical office activities.
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1. Introduction and Previous Work

Recognition of human activities has played a central role in the design of intelligent surveillance
system and high-level computer vision in general [4, 8]. One of the main difficulties in these
areas remains the fact that no universal set of events exists that describes all aspects of our lives.
This implies that the designer of an intelligent vision system needs to have at his disposal a
convenient way to formulate events of interest that can be built up from smaller more general
components. Since the set of events may not be known a priori, a mechanism for combining
these general features is necessary to produce the final classifier.

One possible path towards such a mechanism is to explore techniques of classifier combina-
tion. The main purpose of combining classifiers (from hereon referred to as “weak classifiers”)
is to pool their individual outputs to produce a “strong classifier” that is more robust and accurate
than each individual weak classifier.

Techniques for classifier combination are well explored in the literature (see e.g. [1, 3, 7],
and the references therein). Due to their simplicity, sum, voting and product combination rules
have been successfully used and analyzed by Pekalska [3] and Kittler [7], among others. Bilmes
and Kirchhoff [6] note that the product rule is optimal when the classifiers in the ensemble
are correlated, while sum rule is preferred if they are not. Combination techniques have been
proposed in the past that investigate the Bayesian view of evidence integration [14].
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A different approach to classifier combination is taken by Boosting, which has been pro-
foundly successful in vision applications of face detection and recognition [10]). Recently, there
have been efforts to extend the Boosting framework to incorporate temporal features, such as
pedestrian detection by Viola and Jones [11] and temporal boosting by Smith et. al [9].

Our work continues on this trend, augmenting the greedy boosting framework with a robust
conjunctive feature selection mechanism, which exploits correlations between the individual
classifiers. In this work we introduce a novel classifier combination method - Weighted Ensem-
ble Boosting. We train 6 multi-class event classifiers to detect 7 typical office activities and study
the effect of the combination method on the final classifier performance.

2. Methods for classifier combination

This section describes several techniques for combining classifiers and introduces a novel Weighted
Ensemble Boosting combination method. Throughout this paper it is assumed that the output of
each weak classifier is represented by a posterior probability. That is, each classifier outputs
a vector of probabilities of each class, Pk(ω̃|x), where k is the classifier index, and ω̃ a class
label. Each combination method accepts a set of K vectors Pk(ω̃|x) and outputs a distribution
P (ω|x), a function of the individual classifier outputs, which is the basis for the final decision.
In the remainder of this section we briefly describe the combination methods that we will be
using, followed by the introduction of the main contribution of this paper in Section 3.

2.1. Feature Stacking
Feature Stacking uses a “super-classifier” trained on the outputs of weak classifiers stacked into
a single vector. That is, the input for the top level classifier, X̃ is formed as follows:

X̃ =
“
P1(ω|x)T , P2(ω|x)T , . . . PK(ω|x)T

”T

(1)

Then the classifier is trained on the pairs of data, (Xi, Yi), where Yi is the class label of the i-th
data point. We show results of this approach using an RBF-kernel Support Vector Machine in
the experimental section.

2.2. Approximate Bayesian Combination
Some of the previously work uses a measure of the classifier confidence to weigh predictions of
each classifier for each of the classes as the Approximate Bayesian combination rule [15] [14].
This confidence is expressed by the distribution P (ω|ω̃) (a matrix), computed on a validation
subset of the training data, where ω is the true class identity and ω̃ - a prediction of the weak
classifier. Then the Approximate Bayesian combination rule is derived as a confidence-weighted
average:

Pa(ωi|x) =

KX
k=1

wk

JX
j=1

Pk (ωi|ω̃j)Pk (ω̃j |x)| {z }
Pk(ωi|x)

(2)



where Pk(ω̃|x) is the prediction of the individual classifier, and wk is the weight of each classi-
fier. The essence of equation 2 is that prediction of each classifier is weighted in accordance to
the confidence that it has for each class.

An apparent difficulty with Equation 2 is choosing the value of wk. This weight represents
an output of an external “critic”, which has been used in some earlier work [15] [14]. In the
experiments of this paper we set it uniformly to 1/K, as we are assuming the availability of
pre-segmented data.

2.3. Boosting
Boosting is a popular ensemble method used for classification. In this paper we use the multi-
class boosting algorithm of Freund and Schapire, [13]. In this algorithm the classification de-
cision in the ensemble of weak classifiers is made on the basis of their weighted vote. During
training weak classifiers are examined in turn with replacement. At every iteration a greedy
selection is made - one classifier that gives a minimal error rate on the data, misclassified at the
previous iteration is selected and its weight is updated as a function of its error rate. The process
continues until the set number of iterations, T is reached, or no further improvement to the error
rate can be made.

The resulting ensemble is a list of weights that is applied to the classifiers at the classification
stage. With a slight change in the original notation, designating the selection pool of K classifiers
as {fk}K , the resulting list of classifiers, HB is typically a subset of the pool, where classifiers
with vanishing weights are removed1:

HB = Boost
ˆ
{fk}K

˜
(3)

Formally, the posterior probability of i-th class can be expressed as the weighted sum of the
votes. Using [[·]] to designate an indicator function taking a value of 1 if the predicate argument
holds and 0 otherwise:

Pb(ωi|x) ∝
KX

k=1

Wk [[arg max Pk (ω̃|x) = i]] (4)

where the weight Wk is the aggregate weight of the k-th classifier, from the original list of T
classifiers picked by M1:

Wk =

TX
t=1

wt [[ft = fk]] (5)

Equation 5 states that the weight of the k-th classifier is the sum of weights of all instances where
classifier fk was picked by the algorithm.

1Compared to the original notation we aggregate the weights of the individual classifiers in the list. Unlike [13], we
generate a list of unique classifiers. Note that this is only a notational change, made for the sake of coherency with the
rest of the paper.



3. Weighted Ensemble Boosting

We present the Weighted Ensemble Boosting algorithm that is based on the combination of the
ideas of forming classifier combinations by Bayesian averaging and boosting. The classifier pool
for the boosting algorithm is augmented with all possible combinations of subsets of the weak
classifiers. This is similar in spirit to identifying joint features in feature selection methods.
We try all sub-combinations and let boosting algorithm select the ones that result in the maxi-
mum increase in accuracy. The combined classifier pool is composed of the original classifiers,
{fk}K , and all sub-ensembles:

HE = Boost

»[„
{fk}K ,

n
fβ

n

o
N×B

«–
(6)

The combinations are formed as shown in equation 2 for all pairs, triples, etc. of the original
classifiers. Additionally, a nonlinear transformation is applied to these sub-ensembles:

P β
n (ωi|x) =

exp

 
β
P

j∈Sn

Pj(ωi|x)

!
CP

c=1

"
exp

 
β
P

k∈Sn

Pk(ωc|x)

!# (7)

where Pk(ωj |x) is the “skewed” weak classifier, shown in Equation 2. Sn is the n-th classifier
tuple. For an exhaustive enumeration of sub-ensembles, the total number of these tuples is given
by the following relation:

N =

KX
n=1

 
K

n

!
= 2K − 1 (8)

In our experiments we use 6 classifiers with 8 different values of β, which results in N = 63
classifiers for every value of β, bringing the total size of the classifier set to 510.

4. Experiments

To evaluate the Weighted Ensemble Boosting we built several simple classifiers and combined
their outputs as described in Section 2. Each classifier individually is perhaps not the best choice
for identifying each of the events, but, just like in boosting algorithms, our objective is to derive
a robust strong prediction from largely generic motion-based models.

4.1. Evaluation Data & Weak Classifiers

To perform the evaluation we created a data set of short video clips recorded in the office envi-
ronment. The clips contain events from seven categories. The list of these events and the sizes
of their training and testing data sets are given in table 1. In the setting of our experiments,



each classifier outputs a single decision for the entire video clip, rather than for every individual
frame.

In our experiments we extract 6 types of features from the video stream - static as well as
dynamic. For each feature we build an appropriate multi-class classifier. The list of features
and the corresponding classifiers is given in table 2. These weak classifiers classify each video
clip as containing a single example of an isolated activity, and are combined to form a strong
classifier by the methods listed in Section 2.

Training Validation Testing
Board 8 7 7
Meeting 8 14 7
Phone 7 6 6
Reading 10 7 7
Typing 8 8 6
Walk In 7 8 6
Walk Out 7 8 6

Tab. 1. Distribution of the number of sequences used in
the training, validation and the testing data sets for the
different event classes.

Feature Classifer
Dominant Flow Histogram KNN
Dominant Flow Dynamics Discrete HMM
All Anchor Distances Continuous HMM
Closest Anchor Distance Continuous HMM
Blob Trajectory Continuous HMM
Background Difference Energy Gaussian

Tab. 2. Features and Classifiers used.

4.1.1. Dominant Flow Histogram
The scene flow classifier identifies sets of dominant motions in the scene and use them as features
for discrimination of Scene activities. We compute the optical flow using Horn and Schunck
algorithm [5]. For each frame we build a histogram of directions of the flow field, which is then
used as a frame feature. We further quantize the set of flow histograms for a training data by
estimating 3 prototypes, for each class with K-means algorithm. We denote k-th prototype of
c-th class by Hc

k.
Each incoming frame is matched against these models and the closest matching class is

selected as a winner for the frame. To produce the posterior distribution for the entire video clip
the results for all frames in the test sequence are aggregated. Denoting the flow histogram of
t-th frame by Ht, the vote of the classifier for t-th frame of the video is the class of the closest
prototype:

Lt = arg min
c

„
min

k

q
(Ht −Hc

k)2
«

(9)

Then the classifier output for the entire video sequence is the average vote for each class:

P (ω̃|x) =
1

T

TX
t=1

[[Lt = i]] (10)
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Fig. 1. An illustration of the All-Anchor-Distance
feature calculation. Left: anchor objects are se-
lected by hand; right: distance to the closest point
of the moving object is calculated for every anchor.
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Fig. 2. Illustration of the aggregate blob tracking.
Individual blobs are found by the tracker. The
blobs subsequently joined into the aggregate that
we track.

4.1.2. Dominant Flow Dynamics
We model the flow dynamics of a video event with a discrete Hidden Markov Model. The
alphabet of this model is computed by Vector Quantization of the flow histograms of the entire
training video set with the K-means algorithm. For this paper we use an alphabet consisting of
20 prototypes.

A discrete 5-state HMM is trained for each event using the labeled training data where each
input frame is represented by the index of the closest prototype flow of the alphabet. At the
recognition phase, the likelihood of a sequence, p(x|ω̃) is computed for each event model by the
corresponding HMM and the posterior probability, P (ω̃|x) is calculated using Bayes rule.

4.1.3. All Anchor Distances
We define several anchor objects in the image and compute the distances from the closest point
of the reference object to the closest point of the moving blob. The dynamics of these distances
are computed with a continuous 5 state HMM (see an illustration in figure 1). The likelihood of
a sequence is computed for each HMM and the result is converted to the posterior probability
via the Bayes rule.

4.1.4. Closest Anchor Distance
It is expected that some behaviors are not tied to a particular object, but to any object. For
instance, writing on the board would happen near a board, which requires a fixed reference
object. In contrast, activity related to stealing a car can happen near any car in the parking lot.
We try to model this type of activity by classifying dynamics of a moving blob with respect to
the closest object (similar to [12]). Subsequently, the sequence likelihood is computed for each
HMM and the Bayes rule is used to obtain the posterior probability.

4.1.5. Blob Trajectory
We also model the aggregate features of the moving objects in the frame. We do not consider
motions of separate objects or object parts - instead we track the trajectory of the mean of all
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Fig. 3. a) Performance curves of the individual classifiers and their averaged combinations. b) Performance curves
for various combination techniques compared with Weighted Ensemble Boosting.

moving pixels in the video. This allows us to use a stock tracker without much regard to its
parameter settings and avoid estimation of the number of people in the scene and resolving of
the related ambiguities.

The aggregate object is the union of all blobs that are found by a MeanShift tracking algo-
rithm, [2]. We find the bounding box that covers the aggregate and extract the following features:
1. area of the aggregate bounding box;
2. the shortest distance of the aggregate bounding box to the anchor points;
3. x- and y- velocities;
4. aspect ratio of the bounding box.

We use a continuous 5-state HMM to estimate the feature dynamics. After the features are
extracted, we train and test the classifier in the same way as described above.

4.1.6. Background Difference Energy
As a meeting involves multiple individuals, this classifier makes an implicit assumption that the
more pixels are labeled as foreground, the more likely it is that a meeting is taking place. Using
a set of training background images, we divide each image into a grid of 5x5 patches and fit a
Gaussian Mixture Model to the chromatic content of the set of patches.

Using this background model we calculate the likelihood map for the training data containing
0, 1 and 2 people. Using the estimate of the number of people we classify a new frame as a
meeting if number of people is estimated to be 2, i.e.:

P (ω̃i|x) =

(
P (N = 2|x) , if ω̃i = “meeting”

(1− P (N = 2|x)) / (K − 1) , otherwise
(11)

where N is the number of people and K the number of events.



4.2. Results
Our data set, collected in an office setting, contained from 19 to 29 video clips of each of the
7 actions listed in the table 1. Figure 3 shows the performance of each classifier as well as the
two averaging combination techniques. Each curve is the plot of acceptance rate of a multi-class
classifier against its error rate. It express the acceptable uncertainty of the classifier against its
error rate, i.e., how much data could one reject in order to achieve a guaranteed error rate.

Figure 3 shows that the worst classifier in the set performs just above chance, while the
best one shows the error rate of about 77%. It can also be observed that the flow dynam-
ics provides the best performance in the average sense, while the rest of the classifiers are
approximately ordered as follows: Average-Flow, All-Distances, Min-Distance,
Flow-Dynamics, Motion-Trajectory, Pix-Count, with the latter providing almost
no information for classification of the recorded events.

However, error rates here indicate how frequently mistakes are made, regardless of which
class they relate to. For instance, the pixel count classifier is fairly accurate in identifying meet-
ings, but is not useful for any other event, which results in a very low overall accuracy. It is
however frequently used by boosting algorithm in a combination with others as it identifies one
event well.

Simple averaging of the classifier scores provides performance closely related to the best
classifier in the set. Using the Approximate Bayesian Combination further increases the accuracy
by teasing out the effects of each classifier on identification of each class individually. We
applied all combination methods described in Section 2 to the office data set. The resulting
performance curves are shown in figure 3.

The commonly used score averaging resulted in a slight improvement of performance at
the lower error rates as compared to the best overall classifier in the set (see figure 3). This
combination provides the baseline of 78% error rate for our further experiments.

The figure also shows the dismal performance of SVM as a “super-classifier” for the late
fusion on our data set. For a set of 6 classifiers and 7 activities, the input space has 42 dimen-
sions. Using cross-validation we found that RBF-kernel classifier shows the best, albeit poor
performance. The main reason for that is the small size of our data set. In fact SVM over-fits the
training data, providing practically no generalization. Reducing the dimensionality by PCA did
not give significant improvement in performance.

Approximate Bayesian method improves the performance by 6% over the baseline to 84%.
Boosting of the original set of 6 classifiers pushes the plank further to 89%. Finally, weighted
ensemble boosting achieves the accuracy of 93%, which is a 15% improvement over the baseline
(Table 4).

Figure 5 shows the “Leave-One-Out” (LOO) stability of the combination techniques used
in the experiments. The LOO measure here quantifies the stability of the combined classifier
with respect to change in the ensemble composition. The figure shows how much the chosen
combination depends on the strongest classifier being present in the set. For this experiment
classifier sets are formed by removing one classifier out of the ensemble at random. Note that



Combination Accuracy
Sum 78%
Wt.Sum 84%
SVM 56%
Boost 89%
Wt.Ens.Boost 93%

Fig. 4. Summary of performance
of combination methods.
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Fig. 6. Aggregated sub-ensemble weights. The labels along the y-axis encode the value of β in Equation7 and the
indices of the weak classifiers used in the sub-ensemble.

in the case of the weighted ensemble boosting - the “root”, classifier is taken out, which results
in the reduction of the overall ensemble in size by 1 + |B| × 2K−1. In our case of 6 classifiers
and 8 values of β, the total number reduces from 510 to 253. The figure shows the distribution
of errors as a result of 100 tests 2.

As is clear from figure 5 performance of boosting and Weighted Ensemble Boosting is the
most stable of combinations we have tested. In addition to the methods discussed in the Section 2
we show the stability of the traditional product rule as well as a weighted product rule introduced
in [14]. Such methods are sensitive to the degree of correlation between classifier and, as our
experiments show, demonstrate high variance of the error estimate on our data.

Finally, figure 6 shows the sorted aggregated weights of the weighted sub-ensembles selected

2Even for fixed data split, the error rate will vary between the runs due to the tie-breaking randomization.



by the boosting algorithm. Each label on the y-axis encodes the type of the classifier selected
by boosting. A single number stands for the original classifier (in the order shown in the legend
of figure 3), while the rest of the labels have the two-part format. The first part indicates the
value of β used in Equation 7, and the second part - a set of indices of classifiers used in the sub-
ensemble, e.g., “4” indicates the 4-th classifier from the list (“Min.Distance”), while “20 145”
stands for a combination of classifiers 1, 4 and 5 with the value of β = 20. Interestingly, the
classifier 4, that individually was rated only 3-rd best received the highest weight.

5. Conclusions and Future Work

In this work we introduced a novel method of performing classifier combination -Weighted En-
semble Boosting. We tested this method on a data set collected in an office environment and
compared its performance to various combination methods. In our future work we plan to per-
form an extensive evaluation of the weighted ensemble boosting on problems with very large
number of features and classes. We also plan on exploring the techniques that would allow us to
avoid the exhaustive evaluation of all feature combinations for forming sub-ensembles.
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