
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Fast Low-Rank Modifications of the Thin Singular Value
Decomposition

Matthew Brand

TR2006-059 May 2006

Abstract
This paper develops an identity for additive modivations of a singular value decomposition
(SVD) to reflect updates, downdates, shifts, and edits of the data matrix. This sets the
stage for fast and ememory-efficient sequential algorithms for tracking singular values and
subspaces. In conjunction with a fast solution for the pseudo-inverse of a submatrix of an
orthogonal matrix, we develop a scheme for computing a thin SVD of streaming data in
a single pass with linear time complexity: A rank-r think SVD of a p x q matrix can be
computed in O(pqr) time for r less-than-or-equal sqroot(min(p,q)).

Linear Algebra and Its Applications

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2006
201 Broadway, Cambridge, Massachusetts 02139

Fast low-rank modifications of the thin singular value

decomposition

Matthew Brand

MERL, 201 Broadway, Cambridge MA 02139 USA

Abstract

This paper develops an identity for additive modifications of a singular value decompo-

sition (SVD) to reflect updates, downdates, shifts, and edits of the data matrix. This sets

the stage for fast and memory-efficient sequential algorithms for tracking singular values

and subspaces. In conjunction with a fast solution for the pseudo-inverse of a submatrix of

an orthogonal matrix, we develop a scheme for computing a thin SVD of streaming data

in a single pass with linear time complexity: A rank-r thin SVD of a p× q matrix can be

computed in O(pqr) time for r ≤
√

min(p,q).

Key words:

singular value decomposition, sequential updating, subspace tracking

1991 MSC: 49M27, 15A18, 15A23, 65F20

1 The singular value decomposition

The singular value decomposition (SVD) diagonalizes a real matrix X ∈ Rp×q via

left and right rotations by orthonormal matrices U ∈ Rp×p and V ∈ Rq×q, e.g.,

URL: http://www.merl.com/people/brand/ (Matthew Brand).

Preprint submitted to Elsevier Science 10th July 2005

U>XV = S is diagonal and nonnegative. Equivalently, it decomposes X into a

sum of rank-1 matrices generated by singular value triplets: X = Udiag(s)V> =

∑i uisiv>i for singular values si on the diagonal of S and singular vectors ui and vi

drawn from the columns of U and V.

The rank-r thin SVD restricts this sum to the r triplets having the largest-magnitude

singular values. We will write this Udiag(s)V> r← X with orthonormal subspace

matrices U ∈ Rp×r, V ∈ Rq×r and singular value vector s ∈ Rr ≥ 0. In signal pro-

cessing, this reduction of X to a product of thin matrices is interpreted as a form

of lossy compression, with the subspace matrices acting as encoding and decoding

operators. By the Schmidt (later Eckart-Young-Mirsky) theorem, the thin SVD is

the optimal rank-r approximation of X under any unitarily invariant norm, includ-

ing the Frobenius norm [1]. This licenses the additional interpretation of the thin

SVD as a form of noise suppression, where X is presumed to be a low-rank data

matrix containing measurements contaminated with additive Gaussian noise.

Computing a full SVD is fundamentally an O(pq ·min(p,q))-time problem, making

decompositions of extremely large matrices infeasible. Shortly after the introduc-

tion of a practical algorithm for computing the SVD on digital computers in the

1960s [2], research turned to problems of faster methods for computing approxi-

mations such as the thin SVD, as well as updating an SVD to incorporate new data

(e.g., [3, 4]). In recent years the practical need for such methods has become acute

and the literature has grown accordingly. Section 5 reviews the recent literature in

light of the results presented below:

(1) A general identity for additive modifications of an SVD (section 2).

(2) Specializations of this identity to give SVD updates, downdates, and rank-1

modifications with reduced computational complexity (section 3).

2

(3) An expanded thin SVD and sequential updating scheme that offers a strictly

linear-time thin SVD in a single pass through a data matrix (section 4).

The last result has practical value in online settings where data must be incorpo-

rated into the SVD as it arrives, typically because the data is too large to be stored or

even buffered. For example, many computer vision algorithms call for a “running”

thin SVD of a video stream—effectively a data matrix with ≈ 105 rows and an in-

exhaustible supply of columns. Financial transaction streams and network activity

streams are even more demanding.

2 Additive modifications

Let real matrix X∈Rp×q have rank r and economy SVD USV> = X with S∈Rr×r.

Let A ∈ Rp×c , B ∈ Rq×c be arbitrary matrices of rank c. We are interested in the

SVD of the sum

X+AB> = [U A]

S 0

0 I

 [V B]>, (1)

expressed as modifications to U,S,V. We are most interested in the case where

rank(X+AB>)≤ r + c < min(p,q), so that U,V,A,B are tall thin matrices. How-

ever, what follows is completely general.

Let P be an orthogonal basis of the column-space of (I−UU>)A—the component

of A that is orthogonal to U—and set RA
.= P>(I−UU>)A. Note that cols(P) =

rows(RA) = rank((I−UU>)A) ≤ c, and may be zero. The relationships between

3

these matrices is summarized as

[U A] = [U P]

I U>A

0 RA

 . (2)

Though similar to a QR decomposition, RA need not be upper-triangular or square.

Similarly, let QRB = (I−VV>)B. Substituting equation 2 into equation 1, we have

X+AB> = [U P]K[V Q]>, (3)

a product of two orthonormal matrices and

K .=

I U>A

0 RA

S 0

0 I

I V>B

0 RB

>

=

S 0

0 0

+

U>A

RA

V>B

RB

>

, (4)

which is usually small, highly structured, and sparse. It follows immediately that di-

agonalizing K as U′>KV′ = S′ gives rotations U′ and V′ of the extended subspaces

[U P] and [V Q] such that

X+AB> = ([U P]U′)S′ ([V Q]V′)> (5)

is the desired SVD.

The rest of this paper develops scenarios where equation 5 provides a computation-

ally attractive route to low-rank modifications of a thin SVD. For column updates

and downdates of X, the K matrix is sparse and easily diagonalized. Indeed, for low

rank matrices and those having good low rank approximations, one can compute a

thin SVD through sequential column updates in linear time.

4

3 Rank-1 modifications

Here we develop some special efficiencies offered by rank-1 modifications. For the

SVD of USV>+ab> with vectors a ∈ Rp and b ∈ Rq, equation (2) can be effected

in a partial step of the modified Gram-Schmidt algorithm:

m .= U>a; p .= a−Um; Ra = ‖p‖; P = R−1
a ·p (6)

and similarly

n .= V>b; q .= b−Vn; Rb = ‖q‖; Q = R−1
b ·q. (7)

The rediagonalization problem of equation 4 simplifies to

K =

S 0

0 0

+

m

‖p‖

n

‖q‖

>

, (8)

a diagonal+rank-1 matrix, amenable to special treatment.

Table 1 shows how updating, downdating, and revising individual columns of the

SVD are expressed as specializations of this scheme. Each offers further opportuni-

ties for reducing computation.

For example, to update X with a new column c ∈ Rp, one appends a row of zeros

to V and then computes the rank-1 modification U′S′V′> = [X 0]+ c[0, · · · ,0,1].

In this case, n = 0, so equation 4 asks us only to rediagonalize the broken-arrow

5

operation known desired a b>

update US[V> 0] = [X 0] U′S′V′> = [X c] c [0, · · · ,0,1]

downdate USV> = [X c] U′S′V′> = X −c [0, · · · ,0,1]

revise USV> = [X c] U′S′V′> = [X d] d− c [0, · · · ,0,1]

recenter USV> = X U′S′V′> = X(I− 1
q 11>) −1

q X1 1> .= [1, · · · ,1]

Table 1

Common operations on the last column or on all columns expressed as rank-1 modifications

of an SVD USV> = X to give U′S′V′> = X+ab>.

matrix

K =

S m

0 ‖p‖

 , (9)

which can be done in O(r2) time [5].

Similarly, one downdates the SVD by zeroing a column. In this case equation 4

simplifies to

K =

S 0

0 0

I−

Sn

0

n

√
1−n>n

> , (10)

P is unused, and Q = (b−Vn)/
√

1−n>n is used only if updating V. Note that

downdating the ith column only requires knowing the ith row of V.

6

4 An extended decomposition for reduced complexity

In a naïve implementation of the update, the QR-like decomposition of equation 2

takes O(p(r+c)2) time, the rediagonalization of equation 4 takes O((r+c)3) time,

and the rotations of the subspaces takes O((p + q)(c + r)2) time. In the setting of

a rank-1 update of a fixed-rank SVD, these times can be reduced to O(pr), O(r2),

and O(r3), respectively, by expanding the MGS as shown above, performing sparse

diagonalizations, and deferring the costly subspace rotations as follows.

Instead of rotating the large singular vector matrices as prescribed in equation 5,

we leave the SVD decomposed into the five matrices

Up×r · U′r×r · Sr×r · V′
>
r×r · V>q×r, (11)

with orthonormal U ·U′, V ·V′, U, and U′ (but not V′ or V). The large outer matrices

only record the span of the left and right subspaces and are built by appending

columns to U and rows to V. The transforms of these subspace bases that make S

diagonal are maintained in the much smaller U′,V′ matrices. This makes the update

much faster and eliminates the numerical error that would accumulate if the bases

specified by the tall U,V matrices were rotated on each update. The rest of this

section details the updates of the left and right subspaces.

4.1 Updating the left subspace

Let K and p be defined as above, and let orthogonal C, D ∈R(r+1)×(r+1) diagonal-

ize K as CS′D>= K. From equation 5, the left-side update must satisfy UnewU′new =

[Uold p]U′oldC. If K has rank r (i.e. the update is not rank-increasing), then C has

7

the form C =

C1:r,1:r 0

0 1

 and the left of side equation 11 is simply updated

U′← U′C1:r,1:r. (12)

Otherwise the rank-increasing update is

U′←

U′ 0

0 1

C; U← [U p]. (13)

The appends preserve orthogonality of U because U>p = 0 by construction.

Over thousands or millions of updates, the multiplications may erode the orthogo-

nality of U′ through numerical error, albeit slowly because these matrices remain

small. Loss of orthogonality can be contained and corrected by occasionally form-

ing the small product U′S′ ∈ Rr×r, refactoring via SVD, and premultiplying the

resulting right subspace into V′. It is an open question how often this is necessary

to guarantee a certain overall level of numerical precision; it does not change the

overall complexity.

4.2 Updating the right subspace

The right-side updates are somewhat more complicated because updates add rows

to V while guaranteeing that the columns of the product VV′ are orthogonal. From

8

equation 5, the right-side update must satisfy

VnewV′new =

VoldV′old 0

0 1

D. (14)

To do so, it is convenient to calculate and update a small pseudo-inverse matrix

V′+. When the update is rank-increasing, the right-hand side update is simply

V′new←

V′old 0

0 1

D; (V′+)new← D>

(V′+)old 0

0 1

 ; Vnew←

Vold 0

0 1

 (15)

because

VV′ 0

0 1

D =

V 0

0 1

V′ 0

0 1

D and D is orthogonal.

When the rank does not increase, the last column of D represents an unused sub-

space dimension and should be suppressed. This licenses another optimization:

Split D ∈ R(r+1)×r→

W ∈ Rr×r

w ∈ R1×r

 where submatrix W is a linear transform that

will be applied to V′, and row-vector w is the subspace projection of the new data

vector. The resulting right-side update

V′new← V′oldW; (V′+)new←W+(V′+)old; Vnew←

Vold

w(V′+)new

 (16)

can be verified by substitution into equation 14.

9

Conveniently, the pseudo-inverse W+ can be computed in O(r2)-time using only

matrix-vector and vector-vector products via the identity

W+ = W>+
w>

1−‖w‖2 (wW>) , (17)

which is a special case of the following result for submatrices of an orthonormal

matrix:

Proposition: Let tall matrix D =

W

Y

 have orthonormal columns, such that

D>D = W>W+Y>Y = I. Let U>YV = S be a diagonalization of Y with U>U =

V>V = I and S having positive values on its diagonal. Then

W+ = W>+VS2(I−S2)+V>W> (18)

with

W+ = W>+Y>(I−YY>)+YW> (19)

when Y is a square or wide matrix and

W+ = W>+
y>

1−‖y‖2 (yW) (20)

when y = Y is a row vector.

This is essentially the Sherman-Woodbury-Morrison formula applied to the cosine-

sine decomposition. Readers desiring more detail can find a proof in the appendix.

10

4.3 Complexity and speed

The expanded update eliminates the costliest and numerically most vulnerable steps

of the update—the rotation and re-orthogonalization of U,V. The time complexity

falls to O(pr + r3) for each update, with an overall complexity of O(pqr + qr3) =

O(pqr) for the entire thin SVD, assuming that the desired rank is small relative to

the matrix, specifically r = O(
√

p). For a high-dimensional low-rank matrices, we

effectively have a linear-time SVD algorithm. If, furthermore, the data is streamed

through the CPU, the update requires only O((p + q)r) space to store the current

SVD and data vector, i.e., it is sublinear in the number of data matrix elements.

The predicted linear scaling behavior is borne out empirically in trials with large

dense random matrices: The proposed incremental SVD exhibits linear scaling be-

havior with size and rank (see figure 1 for details) and is orders of magnitude faster

than Lanczos methods (as implemented in Matlab 5 and 6). Part of the dramatic

speed-up may be attributed to the fact that the working storage of the proposed

method can be kept entirely in the CPU’s onboard cache, while the Lanczos methods

make heavy use of the computer’s bus. The two algorithms illustrate a trade-off be-

tween speed and accuracy: The multi-pass Lanczos method achieves slightly better

numerical accuracy but the single-pass incremental method is orders of magnitude

faster.

5 Related work

Modern thin SVD and SVD updating methods are generally based on symmetric

eigenvalue perturbations or projections of the problem into subspaces. Many of

these methods can be derived as special cases of the framework given in section 2.

11

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

rank

se
co

nd
s

Thin SVD of 1000x1000 matrix

incremental SVD
batch Lanczos SVD
(truncated batch SVD takes 213 seconds)

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

rank

tim
e

(s
ec

on
ds

)

Thin SVD of 3000x3000 random matrix

Incremental SVD (online method)
Lanczos SVD (batch method)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2
x 10−10 SVD of 1000x1000 low rank matrices

rank

R
M

S
 re

co
ns

tru
ct

io
n

er
ro

r /
 d

at
a

Fr
ob

en
iu

s
no

rm

incremental SVD
Lanczos SVD

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2
x 10−5 SVD of 3000x3000 low rank matrices with full−rank noise

rank

R
M

S
 re

co
ns

tru
ct

io
n

er
ro

r /
 d

at
a

Fr
ob

en
iu

s
no

rm

incremental SVD
Lanczos SVD

Figure 1. Run-time (top) and matrix reconstruction error (bottom) of sequential SVD updat-

ing (solid line) versus batch Lanczos (dashed line), as a function of the number of singular

vector/value triplets computed from a random matrix. Each datapoint represents the average

of 100 trials. The sequential update shows clear linear scaling and speed advantages. The

experiment graphed at left employed low-rank matrices; at right, full-rank matrices having

reasonable low-rank approximations. The proposed method exhibits similar speed/scaling

advantages over other updating algorithms (e.g., [7, 8]), but produces more accurate results.

Experiments were performed in Matlab 5 and 6 on an AlphaServer with a 600MHz CPU,

10G RAM, and a fast crossbar bus.

Businger [3] proposed an update adapted from QR-decomposition updates based

on annihilations via Givens rotations. Bunch and Nielsen [4], Gu and Eisenstat [5]

developed updates based on symmetric eigenvalue updates of the data’s gram ma-

12

trix. As remarked in a Gu and Eisenstat [9] downdating paper, all such methods

can be as expensive as computing a new SVD from scratch. Noting that updating

a thin SVD offers more attractive economies, Berry et al. [10] proposed to project

the updating problem into a previously estimated low-rank subspace, but the re-

sulting updates ignore any component of new data that lies outside that subspace.

This was remediated by Zha and Simon [11]; their solution requires a full SVD

of a dense matrix on each update. Witter and Berry [12] also introduced a related

downdate. Chandrasekaran et al. [7], Levy and Lindenbaum [8] proposed sequen-

tial eigenspace (left subspace) updates based on analyses that, with some algebra,

can be rendered as special cases of equation 5 (with binary-valued B). The Levy

and Lindenbaum [8] method takes linear time for r�min(p,q) but appears to ex-

hibit quadratic scaling well before r =
√

p. All of these methods require expensive

multiplications of large subspace matrices, making them considerably slower than

our proposed method, and also making loss of orthogonality an important numeri-

cal issue. In addition, the eigenspace updates (e.g., Chandrasekaran et al. [7], Levy

and Lindenbaum [8]) presume centered (zero-mean) data; if the data stream does

not comply one would need to use the recentering operator given in table 1 of this

paper in conjunction with an estimator of the data mean.

6 Discussion: Approximation, sublinear, and tracking algorithms

The O(pqr) time complexity result of section 4 rests on the assumption that the

rank of the thin SVD holds at r ≤ O(
√

p). If the data stream has higher numerical

rank, it may eventually be desirable to suppress rank-increasing updates by some

form of truncation. One possibility is to ignore the component of an update the

lies outside the current subspace by setting ‖p‖ → 0 in equation 9 and using the

13

optimizations that follow. The optimal greedy tactic is to allow a rank-increasing

update but immediately discard the new low-order singular value triplet. Clearly if

a matrix has rank> r then either truncating tactic will eventually discard variance

that would be retained in an optimal low-rank approximation of the data matrix.

It is worth asking how suboptimal a greedy truncation scheme can be. In principle,

an adversary could order a data stream such that some significant data trends only

appear late in the stream, where they may be partly lost to truncation. One obvious

strategy for such poorly behaved data streams is to exploit the low complexity of

the update to compute a thin SVD of higher rank than ultimately desired, thereby

allocating more memory to accommodate novel directions of variance in the data

stream. The excess singular value triplets can be discarded later. On the other hand,

if the vectors are random samples from a stationary data source, then on average the

thin SVD will orient to approximate the true singular vectors and values, even if r is

set too small. This can be established and quantified using the same central-limit-

theorem arguments that justify approximate SVDs made by randomly sampling a

subset of rows and/or columns from a large matrix (see Frieze et al. [15]). Indeed,

the fast update can be combined with random sampling to give sublinear algorithms

for massive data streams.

If the data source is nonstationary (like the adversary above), the update is triv-

ially adapted to subspace tracking by causing the singular values to decay between

updates: s→ λs for 0 < λ < 1. This allows the subspace to rotate toward new di-

rections of variance in the data stream, which would otherwise by dwarfed by the

“weight of experience” already recorded by the singular values. Similarly, the rank

capacity r can be adjusted online in response to data vectors having a significant

component outside the estimated subspace.

14

7 Acknowledgments

I am grateful to Andrew Knyazev and to anonymous reviewers for constructive

comments on earlier drafts of this article.

References

[1] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart.

J. Math. Oxford, 11:50–59, 1960.

[2] Gene Golub and Arthur van Loan. Matrix Computations. Johns Hopkins U.

Press, 1996.

[3] P. Businger. Updating a singular value decomposition. BIT, 10:376–385,

1970.

[4] J. R. Bunch and C. P. Nielsen. Updating the singular value decomposition.

Numer. Math., 31:111–129, 1978.

[5] M. Gu and S. C. Eisenstat. A stable and fast algorithm for updating the sin-

gular value decomposition. Tech. Report YALEU/DCS/RR-966, Department

of Computer Science, Yale University, New Haven, CT, 1993.

[6] G. W. Stewart. An updating algorithm for subspace tracking. IEEE Trans.

Signal Processing, 40:1535–1541, 1992.

[7] S. Chandrasekaran, B. S. Manjunath, Y. F. Wang, J. Winkeler, and H. Zhang.

An eigenspace update algorithm for image analysis. Graphical models and

image processing: GMIP, 59(5):321–332, 1997.

[8] A. Levy and M. Lindenbaum. Sequential Karhunen-loeve basis extraction and

its application to images. Technical Report CIS9809, Technion, 1998.

[9] M. Gu and S. Eisenstat. Downdating the singular value decomposition. SIAM

J. Matrix Analysis and Applications, 16:793–810, 1995.

15

[10] Michael Berry, Susan Dumais, and Todd Letsche. Computational methods for

intelligent information access. In Proc. Supercomputing’95, 1995.

[11] Hongyuan Zha and Horst D. Simon. On updating problems in latent semantic

indexing. SIAM Journal on Scientific Computing, 21(2):782–791), 1999.

[12] Dian I. Witter and Michael W. Berry. Downdating the latent semantic index-

ing model for conceptual information retrieval. The Computer Journal, 41

(1998), 1998.

[13] Matthew Brand. Incremental singular value decomposition of uncertain data.

In Proceedings, European Conference on Computer Vision, Lecture Notes on

Computer Science, pages 707–720. Springer-Verlag, 2002.

[14] Matthew Brand. Fast online SVD revisions for data mining and recommend-

ing. In Proceedings, SIAM International Conference on Data Mining, 2003.

[15] Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carlo algo-

rithms for finding low-rank approximations. In IEEE Symposium on Founda-

tions of Computer Science, pages 370–378, 1998.

A Proof of partitioned pseudo-inverse update

Without loss of generality, suppress any all-zero rows in W and Y so that the sin-

gular value decompositions U1S1V>1 = W ∈Rr1×c and U2S2V>2 = Y ∈Rr2×c have

no zero-valued singular values. Restating the orthogonal sum in terms of the SVDs,

we have V1S2
1V>1 = W>W = I−Y>Y = I−V2S2

2V>2 . Pre- and postmultiplying

by V>1 ,V1 gives S2
1 = I−V>1 V2S2

2V>2 V1 and similarly S2
2 = I−V>2 V1S2

1V>1 V2.

The fact that diagonality is preserved by V>1 V2 ∈ Rr1×r2 and its transpose implies

that V>1 V2 has at most one nonzero element in each row and column. This in turn

implies that every column in V1 is orthogonal to at least r2− 1 columns in V2,

16

and vice versa, making r1r2−min(r1,r2) orthogonality relationships between V1

and V2 and r1(r1− 1)/2 + r2(r2− 1)/2 orthogonality relationships within V1 and

V2. Since r1 + r2 ≥ c, this exhausts all the c(c−1)/2 possible orthogonalities in a

c-dimensional basis, therefore any pair of columns {vi ∈ V1, v j ∈ V2} that is not

orthogonal must be identical (up to a flippable sign). I.e. v>1 v2 6= 0⇒ v1 = ±v2.

After making appropriate sign flips, the concatenation [V1,V2] ∈ Rc×(r1+r2) is an

orthogonal basis of Rc with duplicate columns, and the product V>1 V2 ∈ {0,1}r1×r2

can be viewed as a submatrix of a permutation matrix, having some all-zero rows or

columns along its shorter axis. It follows that the equality S2
1 = I−V>1 V2S2

2V>2 V1

can be separated into independent equations s2
i = 1− s2

j for singular values si ∈

diag(S1) and s j ∈ diag(S2) where (V>1 V2)i j = v>i v j = 1, while those singular val-

ues not put into correspondence by V>1 V2 are unitary, i.e. if (V>1 V2)i j = 0 for all

j, then si = 1. Pseudo-inverting both sides of each independent scalar equation we

obtain (s2
i)

+ = (1− s2
j)

+ = s2
j(1− s2

j)
+ + 1 for all s j within the spectral radius of

an orthogonal matrix, including s j = 1⇒ si = 0. and s j 6= 1. The correspondences

between the singular vectors and singular values is summarized by the following

chain of equalities for the symmetric pseudo-inverse:

V1(S+
1)2V>1 = (W>W)+ =(I−Y>Y)+ (A.1)

=(I−V2S2
2V>2)+ (A.2)

= V2S2
2(I−S2

2)
+V>2 + I (A.3)

To verify, pre- and post-multiply by V>1 ,V1 or V>2 ,V2 to recover the separate

pseudo-inverse equalities. This is then substituted into an expansion of the asym-

metric pseudo-inverse,

W+ =(W>W)+W> (A.4)

=(I+(W>W)+− I)W> (A.5)

= W>+((W>W)+− I)W> (A.6)

17

= W>+(V2S2
2(I−S2

2)
+V>2 + I− I)W>, (A.7)

to prove the proposition. For the special case of r2 ≤ c,

V2S2(I−S2
2)

+S2V>2 = V2S2U>2 U2(I−S2
2)

+U>2 U2S2V>2 (A.8)

= Y>U2(I−S2V>2 V2S2)+U>2 Y (A.9)

= Y>(I−U2S2V>2 V2S2U>2)+Y (A.10)

= Y>(I−YY>)Y (A.11)

where U2 enters the pseudo-inverse without generating extra terms because it is

square. �

18

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2006-059.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

