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Abstract

We present a discrete spectral framework for
the sparse or cardinality-constrained solution
of a generalized Rayleigh quotient. This NP-
hard combinatorial optimization problem is
central to supervised learning tasks such as
sparse LDA, feature selection and relevance
ranking for classification. We derive a new
generalized form of the Inclusion Principle

for variational eigenvalue bounds, leading to
exact and optimal sparse linear discriminants
using branch-and-bound search. An efficient
greedy (approximate) technique is also pre-
sented. The generalization performance of
our sparse LDA algorithms is demonstrated
with real-world UCI ML benchmarks and
compared to a leading SVM-based gene
selection algorithm for cancer classification.

1. Introduction

Feature selection for classification is quickly becoming
an integral part of machine learning applications in
both scientific and commercial domains. Examples
range from text/information-retrieval to bioinformat-
ics and sensor networks. Much of the recent attention
has focused on the identification, categorization and
evaluation of various selection algorithms (Blum &
Langley, 1997; Guyon & Elisseeff, 2003). There are
generally three types of feature selection methods:
filters, wrappers and embedded techniques (Kohavi &
John, 2003), depending on whether the core selection
mechanism is independent and causally precedent to
the classification stage (filter), is iteratively refined
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based on classifier outputs (wrapper) or is an essential
component of the classifier training itself (embedded).

Sparseness naturally constitutes one type of selection
mechanism which is typically incorporated by means
of continuous optimization with l1-norm penalty terms
and/or “relevance priors.” Representative examples
include sparse regression (Tibshirani, 1995) and sparse
PCA (Zou et al., 2004), from both the supervised
and unsupervised domains, respectively. A related
class of cardinality-constrained optimization problems
relying on Integer Programming (IP) are nowadays
routine in operations research, leading to discrete and
combinatorial search algorithms.

In this paper, we present a computational framework
for a novel feature selection filter, using only the
2nd-order statistics (covariances), as needed for
(Fisher) Linear Discriminant Analysis (LDA). We
propose a discrete spectral formulation based on
variational modes of the Courant-Fischer “Min-Max”
theorem for eigenvalue maximization, as specifically
adapted to cardinality-constrained subspaces (variable
subsets). This methodology is the direct (supervised)
extension of our previous framework for sparse PCA
using variational eigenvalue bounds (Moghaddam
et al., 2006) and thereby constitutes a more general
formulation — i.e., it subsumes sparse PCA as a
special case of sparse LDA. As shown previously, a
discrete formulation reveals a simple post-processing
(renormalization) step for improving any approximate
solution while providing bounds on its (sub)optimality.
More importantly, the discrete approach leads to
exact and provably optimal solutions using branch-
and-bound search. We demonstrate the power of
both greedy and exact sparse LDA algorithms with
experiments on real-world datasets and also present
summary findings from an extensive comparative
study using Monte Carlo (MC) evaluation.
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1.1. Background

In the supervised domain, the prototypical machine
learning task is that of binary classification where
given a finite number of input-output training pairs
(x, y) from an unknown probability distribution, we
try to learn (estimate) a function f(x) : Rn → {±1}
from a preset function class F such that future (un-
labeled) test data drawn from the same distribution
are correctly classified. The simplest function class is
a linear perceptron: f(x) = sign(wT x + b), for which
sparsity corresponds to a weight vector w with many
zero elements, thereby indicating that only few of the
variables xi actually participate in the decision rule
f(x). In the resulting lower-dimensional subspace,
the variable subset selected forms a linear hyperplane
which then discriminates between the two classes.

A representative optimization algorithm for (kernel)
Fisher linear discriminant was given by (Mika et al.,
2001) which is instructive to review as it is also a good
example of an embedded variable selection technique.
In very general terms, it is formulated as the following
mathematical programming problem,

min ‖w‖pp + C ‖ζ‖qq (1)

subject to yi(w
T xi + b) = 1− ζi

where p = q = 2 is its regularized form and by setting
p = 1 we obtain the sparse Fisher discriminant (SFD).
Note the similarity to the formulation of SVMs where
the inequality constraints are replaced by equalities
and positivity is relaxed on the slack variables ζi.
SVM training minimizes the L2-norm of w (p = 2)
for a wide margin. Meanwhile, KKT complementarity
leads to a sparse vector ζ which is typically penalized
with an l1-norm (q = 1). One key difference from a
classification standpoint is that SVMs maximize the
minimum margin whereas LDA-based discriminants
tend to maximize the average margin.

In unsupervised learning, PCA (factor analysis) is an
essential tool for modeling and representation of data.
Despite its power and popularity, a key drawback is
the lack of sparseness (i.e., factor loadings are linear
combinations of all the input variables). Yet sparse
representations are generally desirable since they aid
in human understanding (e.g., with gene expression
data), reduce computational costs and can even
promote better generalization. In machine learning,
input sparseness is closely related to variable selection
and automatic relevance determination, problems of
enduring interest to the learning community.

Recently, (Zou et al., 2004) proposed a sparse PCA
algorithm (SPCA) using their “Elastic Net” frame-
work for l1-penalized regression on regular PCs.

Subsequently, (d’Aspremont et al., 2004) relaxed the
“hard” cardinality constraint with a simpler convex ap-
proximation using semi-definite programming (SDP)
for a more “direct” formulation (called DSPCA). In
contrast, an alternative discrete spectral framework
was recently proposed by (Moghaddam et al., 2006),
using variational eigenvalue bounds on the covariance
“sub-spectrum” as defined by the inclusion principle,
which yielded substantial performance gains using a
simple greedy technique (GSPCA). In addition, an
exact optimal algorithm (ESPCA) based on branch-
and-bound search was given. We will now extend this
framework to the supervised case of sparse LDA, cast
as a generalized eigenvalue problem Ax = λBx, but
in a sparse form. We will also draw some unifying
connections between sparse PCA/LDA algorithms.

2. Sparse LDA as Generalized EVD

Classical Fisher or Linear Discriminant Analysis
(LDA) can be formulated as a generalized eigen-
value decomposition (EVD), where given a pair of
symmetric positive-semidefinite matrices A, B ∈ Sn

+,
corresponding to the between-class and within-class

covariance matrices respectively, we seek to maximize
a class-separability criterion defined by the generalized

Rayleigh quotient: R(x; A, B) = (xT Ax)/(xT Bx)
where B is now assumed positive definite. Since this
quotient is invariant to the magnitude of x, we can
reformulate the problem in terms of a quadratically-
constrained quadratic program (QCQP):

max xT A x (2)

subject to xT B x = 1

Fortunately, this problem has a closed-form solution
obtained by differentiating the corresponding La-
grangian, yielding Ax = λBx with the determinantal

characteristic equation det(A− λB) = 0 . Hence, the
optimal x is the eigenvector corresponding to the
largest root of the resulting characteristic polynomial
in λ — or equivalently, the largest eigenvalue of B−1A.
Hereafter, we will denote eigenvalue rank in increasing

order of magnitude, thus λmin = λ1 and λmax = λn.

We can now define the sparse LDA optimization in
terms of the following cardinality-constrained QCQP:

Sparse LDA : max xT A x (3)

subject to xT B x = 1

card(x) = k

The feasible set is all sparse x ∈ Rn with k non-zero
elements and card(x) as their l0-norm. Unfortunately,
this optimization problem is non-convex, NP-hard and
therefore generally intractable.
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Note that the special case of B = I defaults to
a sparse maximal-variance QP which is equivalent
to sparse PCA. Therefore, any strategy for the
sparse LDA in Eq. (3) can also solve sparse PCA.
To make this equivalence explicit, it is sufficient
(and instructive) to view this generalized EVD as
a standard eigenvalue problem in the non-singularly
transformed space induced by the bijection y = B1/2x

max yT C y (4)

subject to yT y = 1

card(B−1/2y) = k

where C = B−1/2AB−1/2. Except for the cardinality
constraint, this is a standard Rayleigh quotient in
terms of C which has the same eigenvalues as B−1A
(but not the same eigenvectors). Without the cardinal-
ity constraint, this standard Rayleigh quotient obeys
the analytic bounds λmin(C) ≤ yT Cy/yT y ≤ λmax(C),
where unlike B−1A, the new matrix C is symmetric by
construction.

Despite the odd cardinality constraint on B−1/2y,
the above reformulation may provide a potentially
useful method for adapting existing sparse PCA
algorithms — e.g., SPCA (Zou et al., 2004) or
DSPCA (d’Aspremont et al., 2004) — to find sparse
discriminant factors (to the best of our knowledge
this reformulation has not been attempted). Another
(perhaps simpler) alternative is to use the equivalence
of Fisher linear discriminant to a least-squares
regression (on suitably scaled output labels) and
add an l1-norm penalty term as in Lasso for subset
selection (Tibshirani, 1995).

In contrast, we approached sparse LDA using
the same discrete variational framework developed
in (Moghaddam et al., 2006), motivated by the
goal of finding exact and optimal discriminants —
with optimality defined by the generalized Rayleigh
quotient. We will next show how the spectrum of C
(equivalently that of B−1A) plays a key role in the
design of exact and optimal sparse LDA algorithms.

2.1. Optimality Conditions

First let us consider what conditions must be true if the
oracle revealed the optimal solution: a sparse vector
x ∈ Rn with cardinality k yielding the maximum

objective value R∗. This would necessarily imply that

R(x; A, B) =
xT A x

xT B x
=

zT Ak z

zT Bk z
(5)

where z ∈ Rk contains the k non-zero elements in
x and (Ak , Bk) are the k × k principal submatrices

of (A, B) obtained by deleting the rows and columns
corresponding to the zero indices of x — equivalently,
by extracting the rows and columns of non-zero
indices. The k-dimensional quadratic form in z is
equivalent to a standard unconstrained generalized
Rayleigh quotient. Since this subproblem’s maximum
objective value is λmax(Ak, Bk), this therefore must be
the optimal objective value R∗. We now summarize
this key observation in the following proposition.

Proposition 1. The optimal value R∗ of the
sparse LDA optimization problem in Eq.(3) is equal

to λmax(C
∗
k ), where Ck

def
= B

−1/2

k AkB
−1/2

k is k × k and
C∗

k in particular is the one submatrix pair with largest

maximal generalized eigenvalue. Moreover, the non-
zero sub-vector z∗ of the optimal x∗ is equal to the
inverse bijection of the principal eigenvector vk of C∗

k

z∗ = B
−1/2

k vk , vT
k C∗

k vk = λmax(C
∗
k ) (6)

This therefore reveals the true combinatorial nature
of sparse LDA (and equivalent cardinality-constrained
optimization problems), wherein solving for the
optimal solution is inherently a discrete search for
the k indices which maximize λmax of the subproblem

(Ak, Bk). While such an exact definition of optimality
is illuminating, it does not suggest an efficient method
for actually finding the optimal subproblem, short
of an exhaustive search which is impractical for
n > 30 due to the exponential growth of candidate
submatrices. Nevertheless, exhaustive search is a
viable method for small n that guarantees optimality
for “toy problems” and small real-world datasets,
thus calibrating the quality of approximations (via
the optimality gap). Moreover, it suggests a simple
but effective “fix” for improving approximate factors
obtained by other algorithms — e.g., by SVMs.

Proposition 2. Let x̃ be a candidate solution with
(approximate) cardinality k found by any method. Let
z̃ be the non-zero subvector of x̃ and vk be the principal
generalized eigenvector of (Ak, Bk), as indexed by the
non-zero indices of x̃. If z̃ 6= vk(Ak , Bk), then x̃ is not

optimal. However, replacing x̃’s nonzero elements with
vk in Eq.(6) will guarantee an increase in R(x̃; A, B).

This variational renormalization suggests that contin-
uous relaxations are only useful in providing a sparsity
pattern with which to solve a smaller unconstrained

subproblem (Ak, Bk). In effect, their factor loadings
are more sub-optimal than need be and should be
renormalized. Indeed, the common ad-hoc technique
of “simple thresholding” (ST) for sparse PCA (i.e.,
setting the smallest absolute value loadings of the
principal eigenvector to zero and renormalizing it to
unit-norm) can be enhanced by applying this “fix.”
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2.2. Variational Eigenvalue Bounds

We saw that the generalized eigenvalues of Ax = λBx
play a fundamental role in defining sparse LDA
factors of a given cardinality k — as the generalized
eigenvalues associated with the principal submatrices
(Ak, Bk). Not surprisingly, the two eigenvalue spectra
can be related by the following result.

Theorem 1 Generalized Inclusion Principle. Let
the pair (A, B) be n× n symmetric matrices with
generalized spectrum λi(A, B), with B positive
definite. Let (Ak, Bk) be a corresponding pair of k × k
principal submatrices with 1 ≤ k ≤ n, with generalized
eigenvalues λi(Ak , Bk). Then, for all i, 1 ≤ i ≤ k

λi(A, B) ≤ λi(Ak , Bk) ≤ λi+n−k(A, B) (7)

Proof: Our proof (see Appendix) is an extension
of a classic proof of the original (non-generalized)
eigenvalue inclusion principle, derived by imposing
a sparsity pattern of cardinality k as an additional
subspace orthogonality constraint on the variational
form of the Courant-Fischer “Min-Max” theorem.

In other words, the generalized eigenvalues of (A, B)
form upper and lower bounds for the generalized
eigenvalues of all their principal submatrices (Ak, Bk).
Therefore, the spectra of (Am, Bm) and (Am+1, Bm+1)
interleave or interlace each other, with the eigenvalues
of the larger matrix pair “bracketing” those of the
smaller one.1 For positive-definite symmetric matrices
(covariances), augmenting Am to Am+1 (adding a
new variable) will always expand the spectral range:
reducing λmin and increasing λmax. This monotonicity

property has important theoretical as well as practical
consequences for greedy and exact combinatorial
algorithms, as we will see in the next section.

Since the solution of sparse LDA seeks to maximize the
generalized Rayleigh quotient, the relevant inequality
in Eq.(7) has i = k, thus yielding the inclusion bounds

λk(A, B) ≤ λmax(Ak , Bk) ≤ λn(A, B) (8)

which shows that the k-th smallest generalized
eigenvalue of (A, B) is a lower bound for the class-

separability criterion of sparse LDA with cardinality
k. The eigenvalue bound λk(A, B) is also useful for
speeding up branch-and-bound search with various
predictive pruning techniques (Somol et al., 2004).
We note that the right-hand inequality in Eq.(8) is
a fixed (often loose) upper bound λmax(A, B) for
all k. However, branch-and-bound algorithms mostly
work with intermediate subproblems (Am, Bm) with

1The well-known eigenvalue “interlacing” property
comes from the basic inclusion principle with k = n − 1.

k ≤ m ≤ n, and will invariably encounter smaller

submatrices with tighter bounds λmax(Am, Bm) which
eventually fathom most branches of the search tree.

2.3. Combinatorial Optimization

In view of our discrete formulation and the generalized
inclusion principle, binary Integer Programming (IP)
techniques like branch-and-bound (Nemhauser &
Wolsey, 1988) seem ideally suited for sparse LDA.
Greedy techniques like backward elimination can also
exploit the monotonic nature of successively nested

submatrices and their “bracketing” eigenvalues: start
with the full index set I = {1, 2, . . . , n} and sequen-
tially delete the variable j which yields the maximum
λmax(A\j , B\j) until only k elements remain. For
small cardinalities k << n, the computational cost
of backward search can grow to near maximum
complexity ≈ O(n4). Hence its counterpart forward

selection is often preferred: start with the null index
set I = {} and sequentially add the variable j
which yields the maximum λmax(A+j , B+j) until k
elements are selected. Forward search has worst-case

complexity < O(n3). A powerful greedy strategy is a
bi-directional search: run a forward pass (from 1 to n)
plus a second (independent) backward pass (from n to
1) and pick the better solution at each k. We call this
dual-pass algorithm greedy sparse LDA or GSLDA.

Despite the expediency of near-optimal greedy search,
it is nevertheless worthwhile to invest in optimal
solution strategies, especially if the sparse LDA
problem is in a critical application domain like
bioinformatics, where even a small optimality gap
could lead to costly diagnostic failures. As with
(Ko et al., 1995), our branch-and-bound relies on
computationally efficient bounds, in our case the upper
bound in Eq.(8) computable by the power method, for
all active subproblems in a (FIFO) queue for depth-

first search. The lower bound in Eq.(8) can be used
to sort the queue for a more efficient best-first search.
Our exact sparse LDA algorithm (called ESLDA) is
guaranteed to terminate with the optimal discriminant.
Naturally, the total search time depends on the quality

of the starting candidate in the branch-and-bound
initialization. The solutions found by our dual-pass
greedy search (GSLDA) were ideal for initializing
ESLDA, as their generalized Rayleigh quotient was
typically near-optimal. However, we should note
that even with good initialization, branch-and-bound
search can still take a long time — e.g. ≈ 2 hours for
n = 40, k = 20. In actual practice, preset thresholds
based on generalized eigenvalue bounds can be used
for early (premature) termination at the desired goal.
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After extensive evaluation, we found that the most
cost-effective strategy was to first run GSLDA (or at
least the forward pass) and then either settle for its
(near-optimal) discriminant or else use this to initialize
ESLDA for a branch-and-bound search for the optimal

discriminant. A full GSLDA run has the added benefit
of giving near-optimal solutions for all cardinalities at
once, with running times that are typically far less
demanding than finding a single-k approximation with
most continuous methods — e.g., with SVMs.

3. Experiments

We evaluated GSLDA (and validated ESLDA)
with various synthetic covariance matrices of size
10 ≤ n ≤ 40, as well as real-world datasets from the
UCI ML Repository with very encouraging results. We
present a few representative examples in order to illus-
trate the advantages of using the discrete methodology
advocated. In particular, we compare our performance
with continuous approximation techniques like “simple
thresholding” (ST) — i.e. thresholding the largest
eigenvector of C = B−1/2AB−1/2 — but with the
variational renormalization “fix” in post-processing.

We also compared both our discrete sparse LDA
algorithms to more traditional feature selection
(ranking) techniques such as the Pearson’s correlation
coefficient between the individual variables xi and
their class labels yi ∈ {±1}, as typically used with
DNA micro-arrays for gene selection and pruning.

We first present experimental results for the synthetic
datasets in our Monte Carlo evaluation, followed by
two real-world datasets from the UCI ML Repository
and then conclude this section with gene expression
profiles from a DNA micro-array dataset for doing gene
selection for diagnostic cancer classification.

3.1. Monte Carlo Evaluation

We give a representative summary of an extensive
Monte Carlo (MC) evaluation of GSLDA against
a simple continuous algorithm (ST). In order to
show the typical or average-case performance, we
present results with random covariance matrices from
synthetic stochastic Brownian processes of various
degrees of smoothness, ranging from sub-Gaussian to
super-Gaussian. Every MC run consisted of 50,000
covariance matrices and the (normalized) generalized
Rayleigh quotient R(k) for each cardinality. For each
sampled pair, ESLDA was used to find the optimal

solution as “ground truth” for subsequent calibration
and evaluation. Figure 1(a) shows the ensemble mean
generalized Rayleigh quotient (for n = 16), which
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Figure 1. Monte Carlo evaluation: (a) mean generalized
Rayleigh score vs. k and (b) mean optimality ratio
(captured-to-optimal Rayleigh quotients). Based on 50,000
random matrix pairs (A, B). The algorithms shown are ST
(blue �), GSLDA (red �) and optimal ESLDA (black ◦).

demonstrates how close our greedy algorithm comes to
achieving optimality. In part (b) we plot the ratio of
captured-to-optimal Rayleigh quotient, where GSLDA
is seen to capture at least 90% of the maximum
LDA score across all cardinalities — its poorest
performance (10% suboptimality) occurs at “half-
sparsity” (k = n/2) corresponding (not surprisingly)
to maximal combinatorial perplexity of candidates.

3.2. UCI ML Benchmarks

We next applied our discrete algorithms (GSLDA and
ESLDA) to well-known and well-studied benchmark
datasets from the UCI ML Repository; specifically, the
medium-sized datasets Sonar (n=60) and Ionosphere
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Figure 2. Sonar variable selection: cross-validation test
error vs. cardinality (k). The 3 algorithms shown are ST
(blue �), P-correlation (green ?) and GSLDA (red �).

(n=36), which represent typical application domains
in geospatial sensing where sparsity is required due
to limited budgets and the high cost of (permanent)
installation and maintenance of equipment. A remote
sensing or environmental monitoring application will
typically consist of multiple sites making homogeneous
measurements of a possibly redundant nature — e.g.,

data of the same modality at different locations or
spatial/frequency channels.

Figure 2 is a summary of our experiments on GSLDA
for greedy variable selection on the Sonar dataset,
showing the generalization error (and error-bars) from
100 randomized trials of 5-fold cross-validation for
each k. In each CV run, 80% of the samples were
used for covariance estimation and subsequent variable
selection — by directly solving for the sparse LDA
factor in Eq.(6) — and 20% for subsequent testing.
Throughout our experiments with real datasets
(especially DNA micro-arrays in the next section)
all rank-deficient within-class covariance matrices B
were automatically regularized: B ← B + αI with
α set smaller than λmin(B) by O(103). This not
only constitutes sound numerical computing practice
but also provides the necessary shrinkage needed to
avoid over-fitting small samples. Figure 2 shows that
GSLDA yields the best generalization performance,
especially in the truly sparse regime of k < n/2. In
fact, unlike correlation-based ranking (P-corr) and
simple thresholding (ST) whose test error begins to
increase as soon as we discard more than just a few
variables, GSLDA maintains essentially the same level
of performance with only half the number of features
(k = 30). This was especially fortuitous as the
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Figure 3. Ionosphere variable selection: cross-validation
error vs. cardinality (k). Algorithms are ST (blue �),
P-correlation (green ?) and the optimal ESLDA (black ◦).

majority of the 30 variables eliminated corresponded
to the high-frequency band of the sensor. The “half-
sparsity” test error of GSLDA (9% at k = 30) is as
good as any reported on this dataset without sparsity
(i.e., with all the variables).

Figure 3 is the summary of feature selection exper-
iments on the Ionosphere dataset, which consists
of “interesting” scattering phenomena measured by
bouncing radio waves off of electrons in the ionosphere
with 16 high-frequency antennae as part of a
phased array radar system with a fixed power
budget. This is a good example of the type of
remote sensing application where sparsity translates to
power (money) saved, if not increased discrimination
accuracy. Indeed, this does appear to be the case here
since even though the majority of variables can be
eliminated, there is no discernible gain in classification
performance. This example is also instructive in that
it shows that optimality in the generalized Rayleigh
quotient sense (here obtained with ESLDA) does
not necessarily translate to improved generalization
performance, as the “fixed” sub-optimal ST method
appears to yield essentially the same accuracy. The
error rate at “half-sparsity” (≈11% at k = 16) is
competitive with past benchmarks established with
neural networks and SVMs using all variables. Note
that the correlation-based filter is once again found to
be inferior to our spectral algorithm.

3.3. Gene Classification

We applied the forward pass of our GSLDA algorithm
to the colon cancer dataset of (Alon et al., 1999),
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with a total of 62 tissue samples (22 normal and 40
cancerous) with the expression profiles of n = 2000
genes (this dataset was an obvious candidate for
regularization of B). Following the methodology
used in (Guyon et al., 2002), we first ran our
variable selection — (A, B) covariance estimation and
subsequent GSLDA — on the entire dataset of 62
samples and then computed the leave-one-out error
rates for various values of k (number of genes selected)
and compared them to other techniques: simple
thresholding (ST), correlation ranking and the SVM-
embedded recursive feature elimination (SVM-RFE)
of (Guyon et al., 2002). The resulting error curves
are shown in Figure 4 where the RFE-SVM results
are taken from (Guyon et al., 2002) (see their Fig.4).
Note that GSLDA is very competitive with RFE-SVM,
especially at high levels of sparsity (k ≤ 10). The
difference was most pronounced (15%) at the extreme
case of a single discriminant gene (k = 1).

We should note a certain caveat here in regards to
the optimistic bias introduced by training the feature
selection algorithm on the entire dataset before doing
cross-validation. Clearly, this is not the purist’s view
of what cross-validation was meant to achieve. In fact,
the authors of the RFE-SVM study (Guyon et al.,
2002) have since published a retraction regarding this
“flawed” methodology (with discussion). However,
the true skeptic would discount the zero error rates
of RFE-SVM and GSLDA in Figure 4 anyway, fully
expecting to see poor(er) accuracy on the next batch
of (truly held-out) tissue samples. Nevertheless, this
protocol is still valid for judgments of relative merit
when comparing different algorithms, which is indeed
our sole intention with Figure 4.

4. Discussion

We presented an exact variational framework for
sparse LDA, complete with requisite eigenvalue
bounds and two discrete algorithms: fast and effective
greedy search (GSLDA) and a less efficient but
optimal method (ESLDA). In addition, we gave
a simple renormalization “fix” for any continuous
approximation (relaxation). Indeed, the “straw-man”
of simple thresholding (ST) was seen to be adequate
(when fixed, naturally) but not always reliable.

Note that since binary classification results in a rank-1
A matrix, it is mostly the eigen-structure of the
within-class B matrix that governs the performance
of continuous approximations (discrete methods are
not affected as much as long as a small regularization
term is added for numerical stability). Of course,
sparse LDA is not restricted to binary classification.
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Figure 4. Colon Cancer DNA Micro-array gene expression
profiles for cancer diagnosis: leave-one-out cross-validation
test error vs. cardinality (k). Algorithms are ST (blue �),
P-correlation (green ?), GSLDA (red �) and RFE-SVM
(black O). RFE-SVM results are from (Guyon et al., 2002).

The multi-factor form of the generalized Rayleigh
quotient (with a matrix of factors X) can lead, for
example, to a trace criterion which as an eigenvalue
sum can also be bounded using the generalized
inclusion principle. In fact, any objective that can
be formulated with eigenvalues alone (e.g. a log-
determinant for entropy-based criteria) can be solved
in discrete form using essentially the same algorithms.

The remarkable effectiveness of GSLDA is supported
by empirical observations in combinatorial optimiza-
tion, wherein greedy search with (sub)modular and
monotonic cost functions very often produces excellent
results (Nemhauser & Wolsey, 1988). In our experi-
ments, GSLDA consistently out-performed continuous
algorithms like simple thresholding (ST) and variable
ranking by correlation. Although our computational
burden is greater than such simple techniques, our
method compares favorably to more powerful contin-
uous algorithms like SVMs. Nevertheless, processing
very high-dimensional datasets, with n = O(104), is
generally beyond the reach of matrix-based algorithms
without specialized numerical computing techniques.

We close by reflecting on the modularity of our
discrete algorithms and the ease of transition from the
supervised domain (sparse LDA) to the unsupervised
domain (sparse PCA) — the default case of B = I .
Indeed, there is (almost) no modification required
in the derivations or implementation. Consequently,
our discrete algorithms for sparse LDA automatically
subsume the unsupervised case of sparse PCA.
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In the future, we plan to investigate applications of
generalized inclusion bounds to the related problems of
clustering and regression. In particular, the ubiquitous
“kernel trick” for the dual problem of basis selection —
as in reduced-set methods for SVMs, sparse Gaussian
processes or sparse kernel machines in general.

APPENDIX

The basic proof of the Inclusion Principle is derived
by adding subspace (cardinality) constraints to the
variational form of the Courant-Fischer “Min-Max”
theorem (Horn & Johnson, 1985). We now extend this
to the generalized Rayleigh quotient (xT Ax/xT Bx).

Given a pair of symmetric matrices A, B ∈ Sn
+,

let λj(A, B) for j = 1, . . . , n be their generalized
eigenvalues ranked in increasing order. The main
result establishes the following inequalities:

λj(A, B) ≤ λj(Ak , Bk) ≤ λj+n−k(A, B) (9)

where λj(Ak , Bk) are the generalized eigenvalues of
corresponding k × k principal submatrices of (A, B).

By the variational form of the “Min-Max” theorem,
the generalized eigenvalues of (A, B) satisfy

λj(A, B) = min
Sj

n

max
x∈Sj

n

xT A x

xT B x
(10)

where Sj
n denotes an arbitrary j-dimensional subspace

of Rn. The same variational form holds independently
for the generalized eigenvalues of (Ak , Bk)

λj(Ak, Bk) = min
Sj

k

max
z∈Sj

k

zT Ak z

zT Bk z
(11)

where Sj
k is an arbitrary j-dimensional subspace ofRk.

Next we define a “sparse” j-dimensional subspace Sj
0

formed by the direct sum Rk ⊕ 0, which by definition
consists of all vectors x ∈ Rn given by

x =

[

z
0

]

, where z ∈ Rk (12)

We now derive the l.h.s. inequality in Eq.(9) — the
lower bound for the eigenvalues of (Ak, Bk) — starting
from the variational equality in Eq.(10)

λj(A, B) = minSj
n

maxx∈Sj
n

xT A x
xT B x

≤ minSj
0

maxx∈Sj
0

xT A x
xT B x

= minSj
0

maxx∈Sj
0

zT Ak z
zT Bk z

= λj(Ak, Bk)
(13)

where in the 2nd line the subspace x ∈ Sj
n is restricted

to x ∈ Sj
n ∩ S

j
0 and since adding constraints can not

further decrease the minimized expression we obtain
the inequality. The 3rd line follows by definition of
z as the leading k-dimensional subvector of Sj

0 and
the last line follows from Eq.(11). The upper bound
on λj(Ak , Bk) — r.h.s. of Eq.(9) — is found by
using the same derivation on the negation of the
Rayleigh quotient. The proof is completed by noting
that eigenvalues are invariant to permutation of the
indices, hence the derived bounds hold true for any

principal submatrix of (A, B) not just the leading one.
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