
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Computing During Supply Voltage
Switching in DVS Enabled Real-time

Processors

Chunjie Duan, Sunil Khatri

TR2006-033 May 2006

Abstract

In recent times, much attention has been devoted to power optimization for real-time systems,
while guaranteeing that such systems meet their hard (or soft) scheduling deadlines. To reduce
power, different tasks in such systems may be run at different power supply voltages, in order to
maximally utilize slack in the schedule. However, prior approaches have ignored the practical
aspects of switching the power supply. In a typical IC, the VDD net is highly capacitive, and as
a result, its vltage cannot be changed instantaneously. In traditional approaches, the assumption
is that this net switches instaneously, which in effect makes it essential to include the VDD
switching time in the worst-case execution time (WCET) or a process (adding pessimism to
the WCET value). In our approach, we precisely model the switching of the VDD net, and
allow the system to continue computations while VDD is being switched. the effect on the
delay of tasks during this transition is precisely modeled. This allows a designer to obtain more
realistic estimates of the WCET of a process, reducing the psssimism inherent in real-time system
scheduling. Our approach can be implemented as a simple look-up table in a real-time scheduler.
Our experimental results show that our model is highly accurate, with an error of less-than 0.2%
compared to SPICE simulations.

IEEE International Symposium on Circuits and Systems

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2006
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Computing During Supply Voltage Switching in DVS Enabled
Real-time Processors

Chunjie Duan† Sunil P Khatri∗
† Mitsubishi Electric Research Laboratories, Cambridge, MA 02139

∗ Department of EE, Texas A&M University, College Station TX 77843.

Abstract
In recent times, much attention has been devoted to power optimization for
real-time systems, while guaranteeing that such systems meet their hard (or
soft) scheduling deadlines. To reduce power, different tasks in such systems
may be run at different power supply voltages, in order to maximally utilize
slack in the schedule. However, prior approaches have ignored the practical
aspects of switching the power supply. In a typical IC, the VDD net is highly
capacitive, and as a result, its voltage cannot be changed instantaneously.
In traditional approaches, the assumption is that this net switches instan-
taneously, which in effect makes it essential to include the VDD switch-
ing time in the worst-case execution time (WCET) of a process (adding
pessimism to the WCET value). In our approach, we precisely model the
switching of the VDD net, and allow the system to continue computations
while VDD is being switched. The effect on the delay of tasks during this
transition is precisely modeled. This allows a designer to obtain more realis-
tic estimates of the WCET of a process, reducing the pessimism inherent in
real-time system scheduling. Our approach can be implemented as a simple
look-up table in a real-time scheduler. Our experimental results show that
our model is highly accurate, with an error of < 0.2% compared to SPICE
simulations.

1. Introduction
The area of embedded system scheduling arguably started with the semi-

nal work of Liu and Layland [1] in 1973. In this paper, the authors assumed a
single-processor system with n independent periodic tasks, and given worst
case execution times (WCETs). Liu and Layland showed that if tasks were
scheduled statically using a priority which was inversely proportional to
their periodicity, the resulting schedule was optimum among all fixed pri-
ority schedules.

In recent times, the work of Liu and Layland has been extended in several
ways. There have been several approaches to devise static power-conscious
scheduling algorithms [2, 3, 4, 5]. Other dynamic schedulers were also re-
ported [6, 7, 8, 9, 10] which utilized dynamic voltage scheduling (DVS). In
a DVS processor, voltage may be modified dynamically, allowing the sched-
uler to trade off power for delay (by varying the VDD value of the processor).
The independent task assumption of [1] was removed in [11]. Techniques to
generate variable supply voltages were reported in [12, 13].

In the above scheduling algorithms, it is assumed that the delay overhead
of VDD switching was negligible. However, this is not the case for realistic
processors that are used to implement real time embedded systems. These
processors have significantly capacitive VDD nets. For example, the capac-
itance on the VDD net in [14] was reported to be 160nF. In fact, designers
make special efforts to increase this capacitance for signal integrity reasons.
This clearly makes the zero VDD switching delay assumption weaker. As
a result, the assumption that VDD switching has negligible delay overhead
is unjustified in modern designs. If we were to use the zero VDD switching
delay assumption, the worst-case VDD switching delay must be included in
the WCETs of each task, resulting in more conservative WCETs. If the com-
putation of a task is pre-empted n times by other tasks (operating at different
voltages), we need to increment the WCET of the task by n times the worst
case VDD switching delay.

For these reasons, it would be desirable to have a methodology which re-
duces the conservatism of WCETs by modeling the VDD switching delay
and accounting for it in the schedule. In this work, we present such a tech-

nique. Suppose a task ϕi with scheduled voltage V DDi was completed and
the next task ϕ j with scheduled voltage VDD j is started. Let V DDi <V DD j.
Assume that task ϕ j had already been queued while ϕi was being processed.
In this case, we begin the VDD switching from VDDi to VDD j during the
time ϕi is being executed, which results in a condition where ϕi completes
its work (defined henceforth as the number of cycles required in the compu-
tation of a task) earlier. Task ϕ j now begins earlier than planned. We find
the time T ∗

1 at which, if VDD switching from V DDi to VDD j is initiated,
then the speed-up of ϕi is equal to the increased delay of ϕ j. In other words,
the work of both ϕi and ϕ j completes before their respective deadlines. We
formulate this problem and find an expression for the time T ∗

1 . We report
the results of experiments to validate this expression, showing a close match
between the mathematical model and the experimental delays.

Note that in the case that VDDi > V DD j, then the switching must be
performed at the originally scheduled time (so that the work of ϕi can be
guaranteed to complete). Since the average value of VDD is higher during
the computation of ϕ j , it completes earlier than scheduled. Once again,
we ensure that the required work for ϕi and ϕ j is completed before their
respective deadlines.

The rest of this paper is organized as follows. In Section 2, we discuss
some prior work in real-time scheduling. Section 3 describes our approach,
while Section 4 reports the results of experiments we conducted to validate
our approach. Section 5 summarizes our work.

2. Previous Work
In the seminal paper by Liu and Layland [1], the authors motivated the

area of real-time systems, and provided a fixed priority scheduler which had
an asymptotic upper bound for processor utilization of 69%. The focus of
this work was schedulability, rather than power.

In recent times, with the growing interest in low-power real-time embed-
ded systems, there have been several efforts to augment the work of [1] for
low power applications. Most of these efforts attempt to reduce power by
scaling the frequency of operation, the value of VDD1, or by powering down
the system during periods of inactivity. An excellent review of low power
scheduling is found in [15].

In [2], the authors augment a fixed priority schedule in a power conscious
manner. If there is dead-time in the schedule, such periods are filled in by
reducing the clock frequency, VDD value or by system power-down. In [3],
the authors devised an algorithm to find the optimal voltage for each task.
They ignore the delay and power overhead of switching VDD. However,
this is a problem in general since the VDD net on an IC can be significantly
capacitive, especially for Systems-on-a-Chip (SOCs). For an large IC, this
capacitance can be in the range of a a few 100 nF [14]. Later, in [4] an energy
efficient fixed priority scheduling algorithm was reported, which could be
used to find optimal voltages for each task or for entire task sets. Finally,
in [5], a genetic DVS algorithm was presented.

Fixed priority dynamic voltage schedulers (DVS) have also been extended
to dynamic schedulers. In [6], a DVS algorithm was reported for dynamic
schedules, using slack analysis. In [7], the authors reported a static and
dynamic algorithm for voltage and clock scaling of real-time embedded sys-
tems. In [8, 9], static as well as dynamic variable voltage schedulers were
1These techniques are classified as Dynamic Voltage Scaling (DVS) ap-
proaches. In these techniques, the VDD of the processor is reduced when
there is slack in the schedule, thereby reducing the power. The VDD of a
processor can be increased as well, resulting in a higher execution speed and
power consumption.5115 ISCAS 20060-7803-9390-2/06/$20.00 ©2006 IEEE



reported for heterogeneous real-time distributed embedded systems.
The independent task assumption was removed in [11], where the authors

reported a scheduling algorithm for periodic task graphs, with the additional
ability to handle aperiodic tasks. These algorithms were generalized to the
DVS scenario as well.

In [16], a battery aware static scheduler was presented, including an algo-
rithm for voltage scalable processing elements (PEs). It was assumed that
the PEs can perform voltage scaling. Such a capability is available in the
Intel XScale processor [17] (in which voltage is continuously scalable) and
the Transmeta Crusoe [18] (in which voltage is scalable in discrete steps).

In all the above efforts, the thrust was on scheduling algorithms. The
time required to switch VDD was ignored, and implicitly included in the
task WCET. This adds pessimism to the schedule, since the worst-case time
taken by the VDD net to switch must be factored into the WCET of each
process. In our work, we allow task execution during VDD switching, al-
lowing the WCET value to be more realistic for real applications. This is a
circuit oriented approach to DVS based scheduling, in which we are able to
eliminate the overheads of VDD switching. Since our approach is indepen-
dent of the scheduling algorithms used, it can be used along with any of the
above scheduling algorithms. The contribution of this paper is to describe
a technique where the traditional pessimism in WCET is reduced. The re-
sults from this paper can be applied to any of the scheduling algorithms in
practice today.

Techniques to generate variable supply voltages were described in [12,
13]. These works describe solid state DC-DC regulators which could be used
in VDD-scaled real-time systems. Our approach would work with either
kind of regulator. Of course, the voltage regulator that is used can be off-
chip as well.

3. Our Approach

V DD

t

V DD j

V DDi

dead − time (∆)

Figure 1: DVS timing diagrams

Figure 1 illustrates the problem being addressed by our approach. When
a DVS enabled processor switches from VDDi to VDD j during operation,
its switching waveform is a rising (or falling) exponential, since the VDD
net on a modern IC is significantly capacitive, and the voltage regulation
circuit has a finite series resistance. In this section, we discuss both the
cases, in which V DDi < VDD j and VDDi > V DD j. Traditional scheduling
approaches consider the VDD transition to be an ideal step function, which
means that the worst case dead-time (∆) during VDD switching increases
the WCET of each process. With typical values (VDD net capacitance ∼
100nF, supply resistance ∼ 1Ω), we find that this dead-time can be in the
100ns range. This adds to the pessimism in the WCET value. Since the
capacitance of the VDD net is quite high, the pessimism introduced can
be quite high, especially when a process is repeatedly interrupted by other
processes (which compute at different VDD values). If in fact the process
is interrupted n times by other processes running at different VDDs, then its
WCET must be increased by n times the worst case VDD switching delay.

Consider the VDD switching waveforms in Figure 2. This figure shows
two tasks ϕi and ϕ j that are scheduled contiguously. ϕi starts at t = 0 and
both tasks must be completed before t = T2. The WCETs of ϕi and ϕ j
are Ci and C j respectively and their supply voltages are V DDi and VDD j
respectively. Assume that VDDi < VDD j . The deadline for ϕi is T1, and
that of ϕ2 is T2. Assume that ϕ j is queued already.

Subfigure a) illustrates the ideal case (i.e. the VDD switching waveform
is an ideal step function). In other words, this assumes that the dead-time
(∆) is zero.

Subfigure b) illustrates the actual VDD switching waveform, which our
method incorporates into the schedule. Our method must obviously meet

a) Traditional DVS timing diagram

b) DVS timing diagram using our technique

VDD

for time Ci

Task τ j executes
for time C j

VDD

Task τ j executes

V DD j

V DDi

V DD j

V DDi

Task τi executes

for time C∗
j

Task τi executes
for time C∗

i

T ∗
1

D

T1

t

T2

T1

t

T2

Figure 2: DVS timing diagrams

the deadlines T1 and T2. As we can see in the figure, because the rising time
is significant, ϕ j will not complete in time if the switching from V DDi to
V DD j starts at the same time as was used in the ideal case of Figure 2a). In
our approach, we start the VDD transition from VDDi to V DD j at time T ∗

1 ,
(during the execution of task ϕi). As a consequence, the average VDD value
for task ϕi increases above VDDi, so that it completes in time C∗

i , earlier
than scheduled. Note that in this case, all the scheduled work for task ϕi
is completed before the deadline T1. Similarly, the average VDD value for
task ϕ j decreases below V DD j, resulting in a situation where ϕ j completes
in time C∗

j (longer than its its original WCET). However, we must guarantee
that all the work for task ϕ j is completed before its deadline T2. In other
words, we need to find the time T ∗

1 to start the VDD transition, such that the
speed-up of task ϕi is equal to the slow-down of task ϕ j. Therefore, we need
to find T ∗

1 such that:

Ci −C∗
i = C∗

j −C j = D (1)

In this manner, we can perform computation while VDD is being switched,
allowing us to reduce the pessimism in the WCETs of the tasks. The V DD
switching is therefore performed on-the-fly, even while tasks ϕi and ϕ j are
being computed.

If V DDi > VDD j , then by starting the transition at the same time T1 as in
the ideal case of Figure 2a), we can ensure that the work of ϕi is completed
before its deadline T1. For ϕ2, the average V DD value is above VDD j , and
hence it completes earlier than scheduled, again guaranteeing that its work
was completed before its deadline T2.

The computation of T ∗
1 is performed as follows.

The total delay of computing tasks ϕi and ϕ j using our on-the-fly VDD
switching methodology is given by Equation 2.

Nours =
Z T ∗

1

0
F[VDDi]dt+

Z T2

T ∗
1

F[V DD j +(V DDi −V DD j)e
−(t−T∗1 )

τ ]dt
(2)

Here F(x) is the frequency of operation of the embedded processor when
the supply value is VDD = x volts. Nours is the total number of computational
cycles that are performed in the interval [0, T2] by our method. Also, τ is the
RC time constant of the on-chip VDD network.

Similarly, the total number of computational cycles Nideal (for the method
of Figure 2a) which assumes that the V DD change is a step function) is given
by Equation 3.

Nideal =
Z T1

0
F[VDDi]dt +

Z T2

T1

F[VDD j]dt (3)

To compute F[·], we use the Alpha power law [19] MOSFET model. Ac-5116



cording to this model, the delay of a MOS circuit as a function of VDD is
given by Equation 4. Note that we assume that if the supply voltage is VDD,
then the frequency is inversely proportional to D(VDD). In other words, fre-
quency is not an independent variable, and is coupled to the value of VDD
utilized.

D(VDD) = K ·
VDD

(VDD −VT )α (4)

The first task we performed was to find the value of α. We determined
through experimentation that α = 2. We used a simple 9-stage ring oscil-
lator, along with two other circuits (apex7 and alu4) from the MCNC91
benchmark suite. We mapped these circuits using SIS [20] to a library of
21 gates using a predictive 0.1µm process technology [21]. The results are
shown in Figure 3, which plots the value of VDD

(VDD−VT )2 against delay. This
shows an accurate fit for α = 2.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

ALU4

OSCILLATOR

APEX7

delay vs. vdd

Figure 3: Finding the value of α in Equation 4

Therefore, the processor delay (and consequently its frequency) is:

D(VDD) = K ·
VDD

(VDD −VT )2 (5)

F(VDD) = K′ ·
(VDD −VT )2

VDD
(6)

By simply plugging Equation 6 into Equations 3 and 2, we have the fol-
lowing two equations that compute the number of instruction executed in a
time period, (in this case, [0, T2]) with and without taking into account of
the VDD switching delay. We assume in the sequel that the VDD change is
from a value Va to Vb (where Va < Vb).

If VDD switching is a step function (the ideal case of Figure 2a)), we have:

Nideal =
Z T1

0
F(Va)dt +

Z T2

T1

F(Vb)dt

= K′ · {
Z T1

0

(Va −VT )2

Va
dt +

Z T2

T1

(Vb −VT )2

Vb
dt}

= K′ · {
(Va −VT )2

Va
·T1 +

(Vb −VT )2

Vb
· (T2 −T1)}

= K′ · {
(Vb −VT )2

Vb
·T2 +[

(Va −VT )2

Va
−

(Vb −VT )2

Vb
] ·T1}

(7)

Now let us account for the VDD switching delay (the case of Figure 2b)).
From T ∗

1 to T2, VDD is an exponential function of time:

VDD(t) = Vb +(Va −Vb) · e
− t

τ

= A+B · e−
t
τ

(8)

where A = Vb and B = Va −Vb . Substituting Equation 8 in Equation 2,
and assuming that T2 � τ, we get:

Nours =

Z T2

0
F(V (t))dt

=K′ · (
Z T ∗

1

0

(Va −VT )2

Va
dt+

Z T2

T ∗
1

(A+B · e−
t
τ −VT )2

A+B · e−
t
τ

dt)

Without loss of generality, we let T ∗
1 = 0. In that case, T1 becomes the

look-ahead time, which we need to determine:
Let t ′ = t/τ and T ′

2 = T2/τ, and using the assumption that T2 � τ, we get:

Nours =τK′
Z T ′

2

0
(A+Be−t ′ −2VT +

V 2
T

A+Be−t ′ )dt ′

=τK′{AT ′
2 −2VT T ′

2 +B(1− e−T ′
2 )

+
V 2

T
A

[T ′
2 + ln(A)− ln(A+B)]}

=τK′{
(A−VT )2

A
T ′

2

+[B+
V 2

T
A

(ln(A)− ln(A+B))]}

=K′ (A−VT )2

A
T2

+ τK′[B+
V 2

T
A

· (ln(A)− ln(A+B))]

=K′ (Vb −VT )2

Vb
T2

+ τK′[Va −Vb +
V 2

T · ln(Vb)− ln(Va)

Vb
]

(9)

To find the time T1 (look-ahead time) that makes Nours = Nideal , we com-
bine Equation 9 and Equation 7 to get:

K′ · {
(Vb −VT )2

Vb
·T2 +[

(Va −VT )2

Va
−

(Vb −VT )2

Vb
] ·T1}

= K′ (Vb −VT )2

Vb
·T2 + τK′(Va −Vb +

V 2
T (ln(Vb)− ln(Va))

Vb
)

(10)

The first terms on both sides cancel each other, making the resulting equa-
tion independent of T2, yielding:

T1 =
Va −Vb +

V 2
T

Vb
(ln(Vb)− ln(Va))

(Va−VT )2

Va
−

(Vb−VT )2

Vb

· τ (11)

As we can see, T1 is independent of T2, which is intuitively reasonable.
The above expression for T1 is true when we assume T2 � τ. Note that if the
T2 � τ assumption does not hold, then a closed form expression for T1 can
still be computed. In this case, T1 has a dependence on T2 as well.

T1 is dependent on VT and the VDD of both tasks ϕi and ϕ j . Also in
reality, Va and Vb are greater than VT for circuits that operate above threshold
voltage. Today’s processors all utilize super-threshold conduction to perform
their computations.

From Equation 11, the lower bound of T1 = τ is achieved when VT = 0.
This bound is not very meaningful in practice, since VT = 0 would result in
extremely high leakage currents in the design.

When both Va and Vb are much greater than VT , T1 is very close to τ.
Table 1 reports the calculated look-ahead delay T1 (in multiples of τ) for

several values of Va and Vb. For this table, we used VT = 0.3V .
Assuming the circuit is operating at or above threshold voltage VT , we

can determine from Equation 11 that the upper bound of T1 is 1.494 · τ. This
upper bound is achieved when Va = VT . If Va is no lower than 0.4V and
VT = 0.3V (reasonable values for modern embedded processors) the upper
bound drops to 1.12 · τ. In practice, we would compute the look ahead time
T1 on-the-fly, or simply obtain it by performing a table look-up. This is5117



Va\Vb 0.35 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.35 - 1.175 1.184 1.169 1.150 1.134 1.121 1.110
0.4 0.877 - 1.113 1.120 1.113 1.104 1.096 1.088
0.6 0.780 0.870 - 1.032 1.041 1.044 1.044 1.043
0.8 0.778 0.849 0.965 - 1.014 1.020 1.022 1.023
1.0 0.787 0.847 0.951 0.985 - 1.007 1.011 1.013
1.2 0.798 0.851 0.945 0.978 0.992 - 1.004 1.007
1.4 0.809 0.856 0.942 0.973 0.988 0.996 - 1.003
1.6 0.819 0.861 0.941 0.971 0.985 0.993 0.997 -

Table 1: Look-ahead time T1 as a function of Va and Vb (multiples of τ)

feasible if VDD has a limited number of discrete values. In practice, however,
it may be more attractive to use a fixed upper bound value for simplicity of
implementation.

It should be noted that our technique may only be applied under two con-
ditions. First, adjacent tasks ϕi and ϕ j should be such that the task ϕ j is
queued before time T ∗

1 . Secondly, the quantity C∗
j should be such as to allow

the V DDi to switch completely to VDD j . Of course since the switching char-
acteristic is an exponential waveform, it is sufficient in practice for the tran-
sition to be greater than 99% complete (which requires that C∗

j > 4.6× τ).
This is easy to check statically once a schedule is available.

If Va > Vb, then the situation is simpler: If ϕi has a WCET less than
the original switching time, then Table 1 is used to determine the look-ahead
time (assuming the deadline of both tasks is T2.) If the task ϕi has a WCET
which is equal to T1, then the switching of VDD must be performed at the
originally scheduled time (so that the work of ϕi can be guaranteed to com-
plete). Since the average value of VDD is higher during the computation
of ϕ j, it completes earlier than scheduled. Once again, we ensure that the
required work for τi and τ j is completed before their respective deadlines.
We can use our method (analogous equations can be derived for the Va > Vb
case) to determine how much earlier ϕ j will complete. The remaining time
before the deadline T2 can be used to put the processor into a sleep state, fur-
ther reducing power. Alternately, the supply voltage Vb can be recomputed,
allowing for further power reduction.

Utilizing our method: Our approach can be utilized for static as well
as dynamic schedules. All that is required to be known to find the look-
ahead time is the value of Va, Vb, τ and T2. The discussions above indicate
the constraints that must be satisfied when applying our methodology. The
computation of look-ahead time is performed at least 1.494·τ before a dead-
line. A simple table lookup (which is inexpensive in terms of computation
time and power) yields the value of look-ahead time. In case T2 � τ, then
the look-ahead time is independent of T2.

4. Experimental Results
To verify the correctness of our analysis, we ran some SPICE [22] sim-

ulations using the computed value of the look ahead time T1 (using Equa-
tion 11). We switched the VDD signal at this time instant, and computed
the total number of cycles (Nours) processed by the embedded processor in
the interval [0,T2]. We compared this with the number of cycles Nideal pro-
cessed in the same interval when VDD switches in an ideal manner. We ran
the simulation for 3µs, which is about 6 ·τ. We again used the 9-inverter ring
oscillator circuit as a reference design.

Table 2 lists the simulation results for some typical VDD values. As indi-
cated in this table, the absolute maximum error is less than 15 clock cycles.
This translates to a worst-case error of less than 0.2% when our method is
employed. In practice, a small guardband on the value of the look-ahead
time would avoid this small error.

Va (V) Vb (V) τ (ns) T1 (ns) Nideal Nours Err(%)
0.4 0.8 500 525.5 4324 4317 0.2
0.4 1.0 500 556.5 6480 6495 0.1
0.4 1.2 500 548 6994 7010 0.2
0.6 0.8 500 516 4497 4490 0.2
0.6 1.0 500 520.5 7010 6994 0.2
0.6 1.2 500 522 8755 8747 0.1
1.0 1.4 500 505.5 11324 11310 0.1

Table 2: Validation of our Approach with SPICE Simulations

The close match between the simulation results and our computed value
indicates that our analysis is accurate.

5. Conclusions
In recent times, the ubiquity of low-power real-time embedded systems

has opened up several interesting research problems in scheduling algo-

rithms for such systems in a power-aware context. To achieve this, several
research papers utilize dynamic voltage scaling (DVS) of the power supply.
However, the delay incurred during the switching of the VDD signal has not
been addressed in these works. As a result, the worst case VDD switch-
ing delay is implicitly included in the WCET of each task, leading to an
increased pessimism in the WCETs of tasks.

In this paper, we have described a technique to perform on-the-fly DVS. In
our approach, computation continues while the VDD is being switched. This
allows us to have more realistic WCET estimates for tasks, and maximally
utilize the available computation time. In our approach, when there are two
tasks ϕi and ϕ j scheduled consecutively with supply values VDDi and VDD j ,
in a manner that ϕ j is already queued, then we switch VDD on-the-fly during
the execution of ϕi. We have derived the expression for the time instant that
the VDD switching must begin during the execution of ϕi. Our model was
validated with SPICE simulations, and has a maximum error of 0.2% over a
variety of switching conditions.

In the future, we plan to extend the application of our ideas to the deter-
mination of when to invoke sleep and idle modes for embedded processors.

References
[1] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time

environment,” Journal of the Association of Computing Machinery, vol. 20, pp. 46–61, Jan
1973.

[2] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for hard real-time systems,”
in Proceedings, Design Automation Conference, pp. 134–139, 1999.

[3] I. H. D. Kirovski, Q. Gang, M. Potkonjak, and M. Srivastava, “Power optimization of
variable-voltage core-based systems,” in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, pp. 1702–1714, 1999.

[4] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for real-time systems on
variable voltage processors,” in Proceedings, Design Automation Conference, pp. 828–833,
June 2001.

[5] M. Schmitz, B. Al-Hashimi, and P. Eles, “Energy-efficient mapping and scheduling for dvs
enabled distributed embedded systems,” in Proceedings, Design, Automation and Test in
Europe Conference and Exhibition, pp. 514–521, March 2002.

[6] W. Kim, J. Kim, and S. Min, “Dynamic voltage scaling algorithm for dynamic-priority hard
real-time systems using slack time analysis,” in Proceedings, Design, Automation and Test
in Europe Conference and Exhibition, pp. 788–794, March 2002.

[7] Y.-H. Lee and C. Krishna, “Voltage-clock-scaling adaptive scheduling techniques for low
power in hard real-time systems,” in Proceedings. Sixth IEEE Real-Time Technology and
Applications Symposium, pp. 156–165, 2000.

[8] J. Luo and N. Jha, “Static and dynamic variable voltage scheduling algorithms for real-
time heterogeneous distributed embedded systems,” in Proceedings, Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 719–726, Jan 2002.

[9] J. Luo and N. Jha, “Power-profile driven variable voltage scaling for heterogeneous dis-
tributed real-time embedded systems,” in Proceedings, International Conference on VLSI
Design, pp. 369–375, Jan 2003.

[10] V. Culver and S. Khatri, “Dynamic voltage scaling algorithm for energy reduction in hard
real-time systems,” in Proceedings, Asia South Pacific Design Automation Conference (ASP-
DAC), (Shanghai, China), January 2005.

[11] J. Luo and N. Jha, “Power-conscious joint scheduling of periodic task graphs and aperiodic
tasks in distributed real-time embedded systems,” in Proceedings, IEEE/ACM International
Conference on Computer Aided Design, pp. 357–364, Nov 2000.

[12] V. Gutnik and A. Chandrakasan, “An efficient controller for variable supply-voltage low
power processing,” in Proceedings, Symposium on VLSI Circuits, pp. 158–159, 1996.

[13] W. Namgoong, M. Yu, and T. Meng, “A high-efficiency variable-voltage CMOS dy-
namic DC-DC switching regulator,” in IEEE International Solid State Circuits Conference,
pp. 380–381, 1997.

[14] W. Bowhill, R. Allmon, S. Bell, E. Cooper, D. Donchin, J. Edmondson, T. Fischer,
P. Gronowski, A. Jain, P. Kroesen, B. Loughlin, R. Preston, P. Rubinfeld, M. Smith, S. Thier-
auf, and G. Wolrich, “A 300 mhz 64 b quad-issue cmos risc microprocessor,” in Digest of
Technical Papers, IEEE International Solid-State Circuits Conference, pp. 182–183, Feb
1995.

[15] N. Jha, “Low power system scheduling and synthesis,” in Proceedings, IEEE/ACM Interna-
tional Conference on Computer Aided Design, pp. 259–263, Nov 2001.

[16] J. Luo and N. Jha, “Battery-aware static scheduling for distributed real-time embedded sys-
tems,” in Proceedings, Design Automation Conference, pp. 444–449, June 2001.

[17] “Intel XScale Technology.” http://www.intel.com/design/intelxscale/.
[18] “Transmeta crusoe overview.” http://www.transmeta.com/crusoe/.
[19] T. Sakurai and A. Newton, “Alpha-power law MOSFET model and its application to CMOS

inverter delay and other forumals,” in IEEE Transactions on Solid State Circuits, vol. 25,
pp. 584–594, 1990.

[20] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R.
Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A System for Sequen-
tial Circuit Synthesis,” Tech. Rep. UCB/ERL M92/41, Electronics Research Lab, Univ. of
California, Berkeley, CA 94720, May 1992.

[21] “BSIM3 Homepage.” http://www-device.eecs.berkeley.edu/∼bsim3/intro.html.
[22] L. Nagel, “Spice: A computer program to simulate computer circuits,” in University of Cal-

ifornia, Berkeley UCB/ERL Memo M520, May 1995.

5118


	Title Page
	Title Page
	page 2


	Computing During Supply Voltage Switching in DVS Enabled Real-time Processors
	page 2
	page 3
	page 4


