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Abstract
In recent times, the ratio of the cross-coupling capacitance between ad-

jacent on-chip wires on the same metal layer to the total capacitance of
any wire is becoming quite large. As a consequence, signal wires exhibit
a significant delay variation and noise immunity problems. This problem
is aggravated for long on-chip buses. In this paper, we develop memory-
based crosstalk canceling CODECs for on-chip buses. We describe an
Reduced Ordered Binary Decision Diagram (ROBDD) based methodol-
ogy to accurately compute the bus area overhead of the CODECs. We
report the asymptotic overhead for CODECs which cancel three kinds of
crosstalk patterns, and demonstrate that the bus size overheads are lower
than the corresponding overheads for a memoryless CODEC. This results
in a reduced overall area utilization for memory-based cross-talk canceling
CODECs, compared to their memoryless counterparts. We also demon-
strate that the use of these cross-talk canceling CODECs enables a user to
speed up a bus by a factor of over 6×. Further, by using our techniques, a
user may trade off the speed gain against the attendant bus size overhead.

1. Introduction
Crosstalk has become a significant problem in deep sub-micron (DSM)

VLSI design [8]. The aggressive scaling of processes that lies at the heart
of the relentless drive towards smaller and faster ICs results in an increase
in wiring delays due to increasing wire sheet resistivities. To reduce this
effect, recent processes have scaled wires only in the horizontal dimension,
effectively creating ’tall’ wires. As a consequence, the cross-coupling ca-
pacitance (Cx) between two minimally spaced adjacent wires on the same
metal layer is much greater than the substrate capacitance (Csub) of any of
the wires.

If the ratio r = Cx
Csub

is large, crosstalk between adjacent wires on the
same metal layers manifests in ways that make designs unpredictable. In
particular, it results in a significant delay variation in a wire, depending
on the state of its neighbors. Also, it can result in possible signal integrity
problems, since a static wire can suffer a glitch caused by capacitively
coupled voltages from its switching neighbors. Crosstalk has therefore
become a critical design issue in modern IC design.

Consider three adjacent wires in an on-chip bus, which are driven by
signals bi−1, bi and bi+1. The total effective (switched) capacitance of
driver bi is dependent on the state of bi−1 and bi+1. In the best case1, the
total effective capacitance of bi is Cmin = Csub, and in the worst case2, the
effective capacitance is Cmax = 4 ·Cx +Csub. With r� 1, we observe that
Cmax
Cmin
� 1, and hence the delay of bus signals strongly depends on the data

pattern being transmitted on the bus. As a result of this large delay vari-
ation, the worst case delay of a signal in an on-chip bus is also increased,
limiting system performance. The problems due to crosstalk are aggra-
vated in long on-chip buses, since bus signals are longer and therefore
more capacitive, resulting in larger worst case delays3. Therefore, special
consideration must be given to crosstalk immunity for such signals. The
focus of this paper is to develop memory based encoding techniques to al-
leviate crosstalk in on-chip buses. Our encoding approaches allow for the

1In the best case, bi−1,bi,bi+1 all simultaneously transition in the same
direction.
2In the worst case, bi−1 and bi+1 simultaneously transition in the opposite
direction as bi.
3Although current designs attempt to reduce the impact of this worst case
delay by staggering bus signals in space and/or time, they are unable to
speed up the bus by exploiting capacitive cross-talk among wires, which
is an important feature of our approach

selective reduction of the crosstalk effects in on-chip buses. By providing
immunity from crosstalk in buses, our encoding based techniques reduce
the crosstalk induced delay variation effect in on-chip buses. This has the
important benefit of reducing the maximum delay as well as reducing sig-
nal integrity problems in the bus signals. The bus size overheads of our
techniques are high when a greater crosstalk immunity is desired. This
allows the designer to effectively trade off the degree of crosstalk control
desired with the bus size overhead. In the sequel, we refer to bus over-
head as the additional number of bits required in order to encode a bus in
a cross-talk free manner.

The most aggressive of our encoding techniques actually speeds up a
bus by exploiting crosstalk. In this encoding approach, if a bus signal rises
(falls), then our encoding forces one of its neighbors to rise (fall) as well,
while the other neighbor is static. As a result, we actually improve the
risetime of the wire by utilizing crosstalk to our benefit. This is not pos-
sible with current approaches to alleviate the cross-talk problem in buses
(which stagger bus signals in space and/or time to mitigate the cross-talk
problem among bus signals).

In recent times, with wiring delays increasing compared to gate de-
lays [8], it is often the case that the critical delay in a circuit is deter-
mined by long buses. In such a case, buses could be encoded with the
techniques described in this paper, allowing the design to be operated at
a much greater frequency. A designer would gladly tolerate the bus size
overhead involved with the use of our approach, in such a scenario.

This paper is organized as follows. Section 2 provides definitions used
in the rest of the paper. This section also provides a classification (simi-
lar to that of [5]) of bus data patterns based on the maximum amount of
crosstalk incurred by such patterns. In Section 3, we discuss previously
published approaches for solving this problem. In Section 4, we describe
our approach of creating memory-based crosstalk canceling CODECs. In
Section 5 we report the results of experiments that we have performed to
quantify the tradeoff between the degree of crosstalk immunity achieved
by the above techniques, and the bus size overhead incurred. We compare
our bus size overheads with those reported in [5, 4], in which memoryless
CODECs to eliminate 4 ·C, 3 ·C and 2 ·C crosstalk patterns were described.
We conclude the paper in Section 6.

2. Preliminaries
In this section, we introduce the classification scheme for bus data tran-

sitions which we will utilize in the sequel. Our classification is largely
borrowed from that introduced in [5].

Consider an n-bit bus, consisting of signals b1,b2,b3 · · ·bn−1,bn.

DEFINITION 1. : A Vector v is an assignment to the signals bi as fol-
lows:
bi = vi, (where 1≤ i≤ n and vi ∈ {0,1}).

Consider two successive vectors v j and v j+1, being transmitted on a bus.
For vector v j , assume bi = v j

i (where 1≤ i≤ n and v j
i ∈ {0,1}). Similarly,

for vector v j+1, assume bi = v j+1
i (where 1≤ i≤ n and v j+1

i ∈ {0,1}).
Consider a vector sequence v1,v2, · · · ,v j,v j+1, · · ·vk, applied on a bus.

This sequence consists of k n-bit vectors. We define five types of crosstalk
conditions below. For these definitions, we assume that 0 ≤ i≤ n−2 and
0≤ j ≤ k−1.

DEFINITION 2. A sequence of vectors is called a 4·C sequence if ∃i, j
s.t.
v j

i = v j+1
i+1 = v j

i+2 = v and v j+1
i = v j

i+1 = v j+1
i+2 = v, where v ∈ {0,1}.

DEFINITION 3. A sequence of vectors is called a 3·C sequence if it is
not a 4·C sequence and ∃i, j s.t.1119 ISCAS 20060-7803-9390-2/06/$20.00 ©2006 IEEE



• v j
i = v j+1

i+1 = v1 and v j+1
i = v j

i+1 = v1 and v j
i+2 = v j+1

i+2 = v2 where
v1,v2 ∈ {0,1} OR

• v j
i+1 = v j+1

i+2 = v1 and v j+1
i+1 = v j

i+2 = v1 and v j
i = v j+1

i = v2 where
v1,v2 ∈ {0,1}.

DEFINITION 4. A sequence of vectors is called a 2·C sequence if it is
not a 4·C or 3·C sequence and ∃i, j s.t.
v j

i = v j+1
i = v1 and v j

i+1 = v2 and v j+1
i+1 = v2 and v j

i+2 = v j+1
i+2 = v3, where

v1,v2,v3 ∈ {0,1}.

DEFINITION 5. A sequence of vectors is called a 1·C sequence if it is
not a 4·C, 3·C or 2·C sequence and ∃i, j s.t.

• v j
i = v j+1

i = v1 and v j
i+1 = v j

i+2 = v2 and v j+1
i+1 = v j+1

i+2 = v2, where
v1,v2,v3 ∈ {0,1} OR

• v j
i+2 = v j+1

i+2 = v1 and v j
i = v j

i+1 = v2 and v j+1
i = v j+1

i+1 = v2, where
v1,v2,v3 ∈ {0,1}.

DEFINITION 6. A sequence of vectors is called a 0·C sequence if it is
not a 4·C, 3·C, 2·C, or 1·C sequence.

DEFINITION 7. A p·C crosstalk canceling CODEC (or p·C crosstalk
free CODEC) transforms an arbitrary m-bit vector sequence into a n-bit
vector sequence (m < n) such that the output vector sequence is a (p−1) ·
C sequence.

DEFINITION 8. A set Cn of n-bit vectors is said to be a p ·C crosstalk
free clique iff any vector sequence v1→ v2 made up of vectors v1,v2 ∈Cn
is a l ·C sequence (where l < p), and there exists v∗1,v

∗
2 ∈ Cn such that

v∗1→ v∗2 is a (p−1) ·C sequence.

If a sequence of vectors on a bus is a p·C sequence (0≤ p≤ 4), then the
physical interpretation of this is that:

• This vector sequence has at least one bit b for which there exists con-
secutive vectors that require the driver of this bit to charge a capacitance
p ·Cx +Csub. Note that Cx�Csub.

• For this sequence, there does not exist any bit such that the driver of this
bit is required to charge a capacitance greater than p ·Cx +Csub.

A memoryless CODEC simply encodes an m bit vector with a unique
n bit vector. A memory-based CODEC encodes an m bit vector with an n
bit vector. The encoding depends on the k previous n bit vectors that were
transmitted on the bus (for a memory depth k).

Note that in the sequel, if we say that a CODEC is kC− f ree, we mean
that it results in cross-talk of magnitude (k−1)C or less, for any bus tran-
sition.

3. Previous Work
Crosstalk reduction for on-chip buses has been the focus of some recent

research. In [15], the main contribution of the authors was to extend the
Elmore delay model to account for distributed nature of self and cross-
coupling capacitances in on-chip buses. They suggest the possibility of
using CODECs to eliminate certain bus transitions. They also suggest that
encoding could speed up buses by 2× (this would be achieved by ensuring
that bus never exhibits 4 ·C or 3 ·C transitions). In [5], the authors classify
bus data transitions from a crosstalk viewpoint, and describe memoryless
CODECs to eliminate 4 ·C and 3 ·C transitions on the bus. They show
that the asymptotic overhead when eliminating 3 ·C transitions is about
44%. In [4], the authors describe 2 ·C and 1 ·C cross-talk canceling mem-
oryless CODECs. The CODECs described in [5, 4] are memoryless. The
authors of [16] discuss memory based as well as memoryless encoding
techniques to eliminate crosstalk. However, area and delay overheads due
to CODEC implementation were not quantified. Further, the algorithm to
determine the bus overhead required an explicit enumeration of all 22n vec-
tor transitions. In contrast, we employ implicit enumeration, resulting in a
more compact representation and therefore a more efficient computation.
In [7], the authors reduce crosstalk induced delay variation in buses by
selectively skewing bus data signals. Finally, [11] proposes a bus repeater
sizing methodology which accounts for crosstalk induced delays and con-
trols them by upsizing the drivers. This could result in driver circuits with
large power and area requirements.

In [12], the authors describe a technique to simultaneously minimize
bus power consumption while eliminating 3 ·C and 4 ·C crosstalk. The
possibility of eliminating 1 ·C and 2 ·C crosstalk is not discussed. Further,
the overhead for CODEC implementation is not discussed. The overhead
in terms of bus size, of their 3 ·C crosstalk eliminating CODEC is between
62.5% and 72% (depending on bus size), in contrast to the asymptotic
overhead of 44% reported in [5] and [16]. The work of [13] focuses on
bus energy as opposed to delay. No CODECs are utilized, rather the ap-
proach is to adjust the spacing between bus wires non-uniformly (based
on specific bus data statistics), with the ultimate goal of reducing bus en-
ergy. However, the worst case bus bit still incurs 4 ·C crosstalk, so delay
is reduced (due to the increase in wire spacing) only minimally.

In [17], [6] and [18], the authors focus on routing techniques which uti-
lize crosstalk information about the wires being routed. The work of [19]
aims to reduce crosstalk in datapath circuits. Our paper, on the other hand,
focuses on crosstalk in buses (where the problem is significantly more
acute since buses tend to be longer, resulting in larger capacitances and
therefore more aggravated worst-case delays).

In [15], [5], [7], [11] and [16], the goal was to avoid 4 ·C and 3 ·C tran-
sitions. In contrast, our techniques can speed up a bus even further, by en-
suring that the bus never exhibits 2 ·C transitions as well. In other words,
our 2 ·C free approach can exploit cross-talk to speed up a bus further.
Additionally, unlike the above papers as well as [4], our techniques uti-
lize memory-based CODECs, resulting in much lower bus size overheads.
Our algorithms to find the bus overhead utilizes ROBDDs [3], and thereby
represents the vector transitions implicitly and therefore compactly. We
report the bus size overheads for 4 ·C, 3 ·C and 2 ·C free memory-based
CODECs.

4. Memory-based Crosstalk Cancellation
For a memory-based code, let vr be the vector present on the bus at time

tr. Let vr+1 be the vector present on the bus at time tr+1. If it is guaranteed
that for any r, vr → vr+1 is a p ·C transition, then the sequence is a p ·C
sequence (sufficient condition). For an m bit bus, such a sequence satisfies
the property that at any given time tr, there must be at least 2m distinct
(p+1) ·C free transitions available. In other words, for any vr , there must
be at least 2m distinct vr+1’s which are (p+1) ·C free with respect to vr.

To decode the data, the receiving decoder needs to know both the cur-
rent received symbol and the previously received symbol. The encoder
generates the next symbol based on the data input and the previously trans-
mitted symbol. As a consequence, memory elements are needed in both
the encoder and decoder.

A memory-based code will satisfy the (p + 1) ·C free condition iff for
each vector v in the set, there are at least 2m vectors (including v itself)
that are (p + 1) ·C free with respect to v. It is not required that every pair
of vectors in the set is a (p+1) ·C free pair.

4.1 Summary of our Approach
Our approach to determine the effective bus of width m that can be en-

coded in a k ·C free manner, using a physical bus of width n consists of
two steps:

• First, we construct an ROBDD GkC− f ree
n which encodes all vector tran-

sitions on the n-bit bus that are k ·C free.
• From GkC− f ree

n , we find the effective bus width m, such that an m bit
bus can be encoded in a k ·C free manner using GkC− f ree

n .

These steps are described in the sequel.

4.1.1 Efficient Construction of GkC− f ree
n

We employ an ROBDD [3] based construction of GkC− f ree
n . In particu-

lar, we inductively compute GkC− f ree
n . Since the ROBDD of a function and

its complement contain the same number of nodes (except for a comple-
ment pointer), this enables an efficient construction of GkC− f ree

n . Further,
the ROBDD allows us to represent the legal (and illegal) k ·C free crosstalk
transitions on the bus implicitly, sharing nodes maximally and in a canon-
ical manner.

Suppose we want to construct GkC− f ree
n . In that case, we allocate 2n

ROBDD variables. The first n variables correspond to the vector from
which a transition is made (referred to as v = {v1,v2, · · · ,vn}). The next1120



n variables correspond to the vector to which a transition is made (re-
ferred to as w = {w1,w2, · · · ,wn}). If a vector sequence v∗→ w∗ is legal
with respect to k ·C crosstalk, then w∗→ v∗ is also legal. In other words,
GkC− f ree

n (v∗,w∗) = GkC− f ree
n (w∗,v∗).

We construct the ROBDD for GkC− f ree
n by using ROBDDs for inter-

mediate, partially k ·C cross-talk free ROBDDs GkC
i (3 ≤ i ≤ n). The

construction of the ROBDD of GkC
n proceeds inductively, starting with the

base case of GkC
3 . The construction of G4C

3 , G3C
3 and G2C

3 are described
next.

G4C
3 =






v
︷ ︸︸ ︷
v1 v2 v3 v4 · · · vn

w
︷ ︸︸ ︷
w1 w2 w3 w4 · · · wn

1 0 1 − ·· · − 0 1 0 − ·· · −
0 1 0 − ·· · − 1 0 1 − ·· · −






We initialize G3C
3 with the transitions of G4C

3 , and then append addi-
tional 3 ·C transitions:

G3C
3 = G4C

3

G3C
3 + =


















v
︷ ︸︸ ︷
v1 v2 v3 v4 · · · vn

w
︷ ︸︸ ︷
w1 w2 w3 w4 · · · wn

0 0 1 − ·· · − 0 1 0 − ·· · −
0 1 0 − ·· · − 0 0 1 − ·· · −
1 0 1 − ·· · − 1 1 0 − ·· · −
1 1 0 − ·· · − 1 0 1 − ·· · −
0 1 0 − ·· · − 1 0 0 − ·· · −
1 0 0 − ·· · − 0 1 0 − ·· · −
0 1 1 − ·· · − 1 0 1 − ·· · −
1 0 1 − ·· · − 0 1 1 − ·· · −


















In a similar manner, we initialize G2C
3 with the transitions of G3C

3 , and

then append additional 2 ·C transitions. Note that the ROBDDs for G4C
3 ,

G3C
3 and G2C

3 are only partially free of 4 ·C, 3 ·C and 2 ·C transitions. They
are immune to 4 ·C, 3 ·C and 2 ·C transitions only on the first three bits
of the bus. We utilize the complements of these ROBDDs to construct

GkC− f ree
n (for k = 2,3 and 4) . The ROBDD GkC− f ree

n is free of k ·C
transitions for all n bits of the bus.

Algorithm 1 describes the inductive construction of GkC− f ree
n from GkC

3 .
In this algorithm, GkC

3 ((vi+1,vi+2,vi+3)← (v1,v2,v3),(wi+1,wi+2,wi+3)←
(w1,w2,w3)) refers to the ROBDD variable substitution of (vi+1,vi+2,vi+3)
and (wi+1,wi+2,wi+3) by (v1,v2,v3) and (w1,w2,w3) respectively.

Algorithm 1 Inductive Construction of GkC− f ree
n from GkC

3
for i = 1 to n−3 do

GkC
i+3 = GkC

i+2 +GkC
3 ((vi+1,vi+2,vi+3)← (v1,v2,v3),(wi+1,wi+2,wi+3)← (w1,w2,w3))

end for
GkC− f ree

n ← GkC
n

return GkC− f ree
n

Note that only the final GkC− f ree
n that is constructed using Algorithm 1

is utilized for CODEC construction, since the intermediate ROBDDs for
GkC

i (i < n) will possibly have k ·C or greater crosstalk transitions, since
they are expressed over 2n variables.

The final GkC− f ree
n encodes a family of Finite State Machines (FSMs)

containing all legal transitions (in an implicit form using ROBDDs). From
GkC− f ree

n , we can find the effective size m of the bus that can be encoded.
This procedure is discussed in Section 4.1.2.

4.1.2 Finding the Effective k ·C Free Bus Width from GkC− f ree
n

If an m-bit (m < n) bus can be encoded using the legal transitions in
GkC− f ree

n , then there must exist a closed set of vertices Vc ⊆ Bn in the v
space of GkC− f ree

n (v,w) such that:

• Each source vertex vs ∈ Vc has at least 2m outgoing edges (vs,wd) to
destination vertices wd (including the self edge), such that the destina-
tion vertex wd ∈Vc.

• The cardinality of Vc is at least 2m.

The resulting encoder is memory-based.
Given GkC− f ree

n , we find m using Algorithm 2. The input to the al-
gorithm is m and GkC− f ree

n . We first find the out-degrees (self-edges are
counted) of each vs ∈ V (where V is a hash table). This is done by log-
ically ANDing the ROBDD of the vertex vs with GkC− f ree

n . We find the
cardinality of the resulting ROBDD – it represents the out-degree of vs. If
the number of out-edges of any vs is greater than 2m, we add vs (and its
out-degree) into the hash table V .

For each vs ∈ V , we next check if each of its destination nodes wd are
in V . If wd 6∈V , we decrement the out-degree of vs by 1. If the out-degree
of vs becomes less than 2m, we remove vs from V .

These operations are performed until convergence. If at this point, the
number of surviving vertices in V is 2m or more, then an m-bit memoryless
CODEC can be constructed from GkC− f ree

n .
We initially call the algorithm with m = n− 1 (where n is the physical

bus size). If an m bit bus cannot be encoded using GkC− f ree
n , then we

decrement m. We repeat this until we find a value of m such that the m-bit
bus can be encoded by GkC− f ree

n .
Once we know the effective bus size m, we can construct an FSM for

the encoder and decoder. There is significant flexibility in constructing the
FSMs.

• From the vertices in V , we can select a subset V FSM such that |V FSM =
2m|.

• Once this selection is made, we have further flexibility in assigning the
2m labels out of each v ∈V FSM .

In our current implementation, we make both these selections randomly.
An interesting avenue for future work is to devise an optimal algorithm to
make the selections in each of the above steps, in order to minimize the
size of the resulting CODEC implementation.

Algorithm 2 Testing if GkC− f ree
n can encode an m-bit bus

test encoder(m, GkC− f ree
n )

f ind out−degree(vs) o f each node vs, insert (vs ,out−degree(vs)) in V if out−degree(vs)≥
2m

degrees changed = 1
while degrees changed do

degrees changed = 0
for each vs ∈V do

for each wd S.T. GkC− f ree
n (vs,wd) = 1 do

if wd 6∈V then
decrement out−degree(vs) in V
degrees changed = 1

end if
if out−degree(vs) < 2m then

V ←V \ vs
break

end if
end for

end for
end while
if |V | ≥ 2m then

print(m bit bus can be encoded using GkC− f ree
n )

else
print(m bit bus cannot be encoded using GkC− f ree

n )
end if

5. Experimental Results
We ran our algorithm to construct GkC− f ree

n and to find the effective bus
width m for 4 ·C, 3 ·C and 2 ·C free transitions. The ROBDD of GkC− f ree

n is
constructed as described in Section 4.1.1, and the test for the effective bus
width is performed as described in Section 4.1.2. Based on the values of
the real bus width n and the corresponding effective bus width m, we plot
the overhead (defined as n−m

m ) in Figure 1. The irregularity of the curves
arises from the fact that sometimes, two buses (of width n and n+1) have
an identical effective bus width of m. In that case, the overhead as defined
above is larger for the bus of real width n+1.

Note that this figure indicates that the asymptotic bus size overheads for
the memory based CODECs are much lower than the memoryless CODEC
overheads reported in [5, 4]. The overhead for a 2 ·C free memory based
CODEC is about 117% compared to 146% for a memoryless CODEC. The
overhead for a 3 ·C free memory based CODEC is about 30% compared1121
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Figure 1: Bus size overheads for Memory-based CODECs
bus trace buffer 1C 2C 3C 4C

length size delay (ps) delay (ps) delay (ps) delay (ps)

5mm 30× 121 241 516 665
5mm 60× 131 213 399 402
5mm 120× 117 136 196 279
10mm 30× 153 437 912 1026
10mm 60× 164 413 722 919
10mm 120× 137 270 379 548

Table 1: Delay comparison for different driver size and trace length
(ps)

to 44% for a memoryless CODEC. The overhead for a 4 ·C free memory
based CODEC is about 8% compared to 33% for a memoryless CODEC.

For wider buses, we recommend that the bus be partitioned into smaller
bus segments (with inter-segment cross-talk eliminated as outlined in [5]),
and each segment be encoded and decoded independently. In such a situ-
ation, we could choose a bus width n that yields the lowest overhead, by
referring to Figure 1. In particular, the choice of 4 or 6 bit segments is
preferable over 5 or 7 bit segments, if we were trying to eliminate 2 ·C
cross-talk.

The standard cell based implementation of the encoder and decoder re-
sults in a delay of 280ps, using a 0.1µm bsim100 process [1] (this is the
worst delay among all decoders and decoders required for any of the 2·C-
free, 3·C-free and 4·C-free approaches). A Programmable Logic Arrays
(PLA) based realization may reduce this delay further.

The implementation of the memory-based CODECs is more complex
(compared to memoryless CODECs). Our experiments demonstrate that
the encoder/decoder area and delay penalty of our approach (over the
memoryless encoders and decoders of [5, 4]) is about 15% and 10% re-
spectively.

However, the total area of the memory-based approach (including the
area of bus wiring) is about 25%, 10% and 20% lower than the memo-
ryless approach (for buses that are free of 2 ·C, 3 ·C and 4 ·C transitions
respectively).

In spite of the 10% delay increase of our memory-based CODECs over
memoryless CODECs, the bus operates faster compared to an unencoded
bus. Further, encoding and decoding delays are unimportant for heav-
ily pipelined systems, where these delays can be hidden. In case of heavily
pipelined systems, the maximum data-rate is significantly improved by us-
ing our encoding schemes, just as in the case of the memoryless approach.

Table 1 reports the worst-case delay among the bus signals under all
cross-talk conditions. The results were generated using SPICE [14]. A
0.1µm BPTM bsim100 [1] process was used, and buses were assumed to
be routed on Metal4. Wiring parasitics were obtained from [2] using the
interconnect dimensions reported in [10, 9]. Wires were modeled as dis-
tributed RC transmission lines. In Table 1, the first column reports the
length of the bus wires. Column 2 reports the driver size (in multiples of a
minimum-sized driver). Columns 3 through 6 report the worst case delay
of the bus in picoseconds, assuming that no greater than 1·C through 4·C
cross-talk patterns are allowed respectively.

From the above, we can note that eliminating 2 ·C transitions on a bus
(i.e. the bus has no greater than 1 ·C transitions) can speed up the bus
significantly. For example, in the configuration of 60× drivers, 10mm
wires, the delay reduces by about 5.6× compared to the unencoded (i.e.
the bus has no greater than 4 ·C transitions) case.

5.1 Robustness of the Approach
In this section, we discuss the robustness of our approach in terms of its

applicability to wide on-chip buses.
For wide buses, we propose that the bus be partitioned into smaller seg-

ments (whose size is determined by the results from Figure 1). The re-
sulting segments are quite small (with a real width of 4, 5 and about 64

bits for 2·C-free, 3·C-free and 4·C-free buses respectively. Each segment
has independent encoders and decoders, with static or dynamic shields be-
tween segments for inter-segment cross-talk immunity (as described in [5,
4]). The worst case delay of the resulting standard cell based implemen-
tation (the worst case delay is the largest delay of the encoder or decoder,
for any of the 2·C-free, 3·C-free and 4·C-free approaches) is about 280ps,
for a 0.1µm bsim100 [1] process. As a result, the overall delays on the
bus are reduced for longer on-chip buses with reasonably sized drivers,
even when encoding and decoding delay is accounted for. However, in
case of heavily pipelined systems, the maximum data-rate is significantly
improved by using our encoding schemes. In such pipelined systems, the
encoding/decoding delays are unimportant.

6. Conclusions
We have developed a CODEC based approach to alleviate the cross-

talk problem in on-chip buses. Our CODECs are memory-based. The
construction of these CODECs is performed using an ROBDD-based ap-
proach. By using this approach, we avoid explicitly enumerating all legal
bus transitions (and instead enumerate only the illegal transitions). The
ROBDD based approach represents the transitions compactly and in a
canonical fashion. We have also developed a ROBDD based approach to
find the effective k ·C free bus bandwidth m of a bus with physical width
n.

We demonstrate that the asymptotic bus size overheads for memory-
based CODECs that are free of 2 ·C, 3 ·C and 4 ·C transitions are respec-
tively around 117%, 30% and 8%. This is in contrast to the memoryless
CODEC overheads for the same transitions, which are 146%, 44% and
33% respectively. The overall area reduction (compared to memoryless
CODECs) of our approach is about 25%, 10% and 20% for 2 ·C, 3 ·C and
4 ·C free encoded buses respectively. The user can trade off the bus size
overhead against the cross-talk immunity that is desired. According to our
experiments, this tradeoff can result in a bus speed up of above 6×.
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