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Abstract

This paper discusses the design decisions underlying the CRM114 Discriminator software, how
it can be configured as a spam filter, and what we may glean from the preliminary TREC
2005 results. Unlike most other filters, CRM114 is not a fixed-purpose antispam filter; rather,
it’s a general purpose language meant to expedite the creation of text filters. The pluggable
CRM114 architecture allows rapid prototyping and easy support of multiple classifier engines;
rather than testing different cutoff parameters, the CRM114 TREC test set tested different
classifier algorithms and learning protocols.
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Abstract: This paper discusses the design decisions underlying the CRM114 Discriminator software,
how it can be configured as a spam filter, and what we may glean from the preliminary TREC 2005
results. Unlike most other filters, CRM114 is not a fixed-purpose antispam filter; rather, it’s a general
purpose language meant to expedite the creation of text filters. The pluggable CRM114 architecture
allows rapid prototyping and easy support of multiple classifier engines; rather than testing different
cutoff parameters, the CRM114 TREC test set tested different classifier algorithms and learning
protocols.

Introduction and History: The CRM114 Discriminator was initially begun as a rough design in 1998
as a hypothetical filter design, meant to categorize incoming mail into a significant number of different
“topics” (and with spam as an acknowledged target, but by no means the sole target). One of the
design assumptions that CRM114 has held from day O has been that single word features are not as
important as N-feature tuples. The initial CRM114 test code worked on N-letter tuples, rather than N-
word tuples, but the groundwork had been laid. Testing against the very poorly camouflaged spam of
1999, the letter-tuple code showed an accuracy in excess of 98%, providing convincing evidence that
the concepts of tuple features being substantially superior to single-token features and that a “no
preconceived notions” machine-learning classifier could converge to superior accuracy over any
human-designed heuristic system.

Work on CRM114 progressed past the initial EMACS macros and shell scripts that proved the concept
to a C-coded multi-class classifier in 2000. With this came the realization that most of the work of
filtering and categorizing email was not in the classifier itself- it was in massaging the inputs and
outputs to conform to the vary large number of individual configurations, mail transfer agents, mail
delivery agents, mail user agents, and user desires. Rather than wrap the learning and classification
functions inside voluminous shell scripts, an initial look at making a Perl module that performed the N-



tuple, N-class classification was made. However, Perl being what it was, the idea of a standalone
language made for manipulating the long overlapping strings needed for text classification became
much more tenable. The first general public release of CRM114 under the Gnu Public License (GPL)
occurred in early 2001, although “friends and family” releases had occurred since the beginning of the
project.

This initial release has been followed by “whenever it’s time” releases ever since. Typically CRM114
major releases occur three to six times a year, with bug-fix and “secret new feature” releases being
done roughly monthly (or whenever a significant advance occurs). The releases are coded with both a
date of release, and a nickname; the nickname often indicates the major contributor or motivator for
that release. New releases have included multiple classifier engines (the current release has seven
different classifiers built in) as well as major improvements such as TRAP/FAULT support, a JIT
compiler, a preprocessor, and full 8-bit-safe data paths.

Overview of the CRM114 language: The CRM114 language is described in depth in the manual
CRM114 Revealed [Yerazunis 2005], available for free download from the CRM114 web page at
http://crm114.sourceforge.net. The language is a command based language with a declensional
(rather than positional) syntax, and only one data type — the overlapping string. All CRM114 functions

are designed to operate efficiently on strings that may contain other partially overlapping strings; this
includes efficient reclamation of unused string space. The language contains only overlapping strings;
there are no specific constructs for numbers, pointers, continuations, coroutines, open files, or anything
else except overlapping strings.

The CRM114 language contains specific constructs for string-oriented matching, alteration, iteration,
decision, and translation, however in the current context the most important statements are the LEARN
and CLASSIFY statements. LEARN and CLASSIFY accept a uniform set of parameters and properly
map those parameters onto whichever classifier is requested. Thus, it’s possible to change classifiers in
a CRM114 program (or even compare different classifiers, such as a Bayesian and a Winnow, or a
Markovian and a Hyperspatial) without having to change the rest of the support structure.

Most of the CRM1 14 classifiers start with the concept of a word tuple as the basic feature to be
considered. The tuple is defined as a series of words, and a word is defined as whatever matches a
programmer-supplied regex (the default is that a word is one or more printable characters surrounded
by whitespace). CRM114 kits include the very efficient TRE approximate regex engine [Laurikari
2001][Laurikari 2004] allowing a large amount of freedom in defining a word.

Structure of a CRM114 classifier: CRM114 classifiers are designed to be “pluggable”; a new
classifier can be written in as little as a few hours by using a basic classifier code as a skeleton. A
classifier is given a pointer to the unknown text, the unknown text’s length, and a pointer to an
argument parameter block containing any flags or word-definition regexes supplied; the classifier



returns a condition code and optionally a textual representation of the results of the classification.

Almost all of the CRM 114 classifiers use tuple-based features. That is, as words are tokenized by the
regex engine, they are recombined into a series of short phrases of between one and five words long.
The recombination sequence varies with the classifier and with the classifier flags; in newer versions of
CRM1 14 any classifier can be configured to use single words as features with the <unigram>
keyword; in the case of classifiers using Bayes rule this results in a Graham-style Bayesian filter (albeit
one with an unlimited “peak window”).

A more detailed description of the CRM114 classifiers may be found in [Chhabra 2004] and [Siefkes
2004]; we will give only a basic description here.

The original CRM114 classifier was the Markovian classifier; this classifier uses a Sparse Binary
Polynomial Hashing (SBPH) feature generator that uses all in-order sequences of up to five words to
form feature phrases. For example, the sentence “TREC is sponsored by NIST” will generate the
following feature phrases:

TREC

TREC is

TREC <skip> sponsored

TREC is sponsored

TREC <skip> <skip> by

TREC is <skip> by

TREC is sponsored by

TREC <skip> <skip> <skip> NIST
TREC is <skip> <skip> NIST
TREC <skip> sponsored <skip> NIST
TREC is sponsored <skip> NIST
TREC <skip> <skip> by NIST
TREC is <skip> by NIST

TREC is sponsored by NIST

All sixteen of these phrases are then used as features; in the Markovian filter they are weighted
unequally; longer phrases are given more weight than short ones [Yerazunis 2004].

The OSB, OSBF, Winnow, and Hyperspace classifiers all use a simpler feature generator which
(paradoxically) simultaneously gives higher performance and higher accuracy. This feature generator
is called OSB, for Orthogonal Sparse Bigram; it generates only four features instead of sixteen.

Using the same example text “TREC is sponsored by NIST”, the features are:



TREC is

TREC <skip> sponsored

TREC <skip> <skip> by

TREC <skip> <skip> <skip> NIST

Note that the unigram feature (single words taken one at a time, in isolation) is not used in the OSB
feature set; extensive testing shows that presence of the unigram does not improve results; in fact, it
sometimes causes a paradoxical decrease in accuracy.

After generating the features, a lookup is done into the stored statistics files. In order to accelerate this
lookup, CRM114 does not use a general-purpose database such as MySQL or PostgreSQL. Instead, the
feature is converted to a 64-bit hash, and that hash value used as the starting index for searching an in-
memory hash table index. On the average, this lookup takes only six adjacent 32-bit reads from
memory (assuming that the feature hasn’t been seen before and isn’t in the CPU L1 cache). Almost all
CRM1 14 classifiers use this hashing scheme to accelerate feature lookups. As a secondary effect, the
actual text is not stored; this gives a modicum of security to the statistics files (although individual
features would fall quickly to a dictionary attack, the sequences would be more difficult, and of course,
it would be impossible to recover any particular learned text with certainty.).

Once the individual feature lookups are performed, the counts are multiplied by the appropriate feature
weight and an appropriate set of conversion and combining rules are used to convert individual feature
frequencies into a final judgment. In Markovian, OSB, and Bayesian operation which by default use a

Bayes Rule-like combining law, the conversion from frequency-of-occurrence to a priori probability is:

in_class occurrences — out_of_class occurrences
Plocal = 0-5 + == === === === === === -
16 * ( total occurrences + 1)

Note that this produces a local probability that is strongly biased toward 0.5 (that is, toward
uncertainty). These probabilities are weighted and combined via this modified Bayes chain rule to
yield the output probabilities:

Pinitial_class_i * Plocal_class_i

Pfinal_class_i = - -- -- -

SUM over all classes (Pinitial_class _j * Plocal_class _j)

These probabilities are then normalized. Additionally, two manipulations are performed — to avoid
floating-point underflow, the value of the largest probability is renormalized at each step from the sum
of the smaller probabilities, and for the purposes of human-readable output, the result is converted to



pR; pR is the base-10 log of the probability ratio, and given IEEE floating-point inputs, varies from
-340 to +340. This allows expression of a very large range of numbers in human readable terms.
CRM1 14 also has some support for a chi-squared decision rule, however that support was not used in
the current NIST TREC test set.

Filter Configurations As Tested: The four filter configurations for CRM114 were OSBF, Winnow,
OSB Unique, and “plain” OSB. Because CRM114 is a language, not just a filter, changing between
these four variants only requires setting a parameter variable to the CLASSIFY and LEARN
statements. The version of CRM114 used was CRM114-20050518.BlameMercury, (except for the
Winnow version, which uses the Java implementation created by Christian Siefkes, available at
http://www.inf.fu-berlin.de/inst/ag-db/software/tie/ because of a suspected minor bug in the CRM114

implementation that causes very slight discrepancies between what should be identical programs).

Additionally, all four variants enabled some form of “microgrooming”, a method of aging out old data
from the statistics files to keep the statistics files from growing without bound. Microgrooming is
based on the concept that when it is necessary to make room in the database file, and given two
seldom-seen features, one old and one new, get rid of the older one first as it has a longer history of not
being useful. Because CRM114’s hash storage structure uses linear in-table overflow chaining, this
information is indirectly available as the distance each feature is actually found in, compared to its
nominal location (i.e. the further down the overflow chain that we actually find a feature compared to
where the feature would have been placed if no overflow was present, the newer the feature is.). The
Java Winnow system used exact explicit rather than implicit approximate aging; results are similar.

All four filter configurations use a phrase-creation window of length 5 and OSB-style features. By
using these N-word tuples, OSB features provide a Markov Random Field model rather than a
Bayesian model of the texts learned [Chhabra 2004].

None of the CRM114 filters use any preprocessing whatsoever. There is no stop word removal, no
tagging of items in the headers versus those in the body, and no decoding of any type, not even MIME
decoding. All four classifiers operated on the “as seen” texts, without any further interpretation, and
the default word defining regex was used (specifically, [[:graph:]]+ defines a word except in the Java
Winnow code which used the X tokenizer from [Siefkes 2004]; the X tokenizer is XML/HTML-aware
and is expressed as [Mp{Z \p{C}[/!M#]7[-\p{LPN\p{ M N\p{N }*(?:[""=;]/?>I:/*)? using Unicode
categories.

Descriptions of individual filters: We will now describe the four configurations tested.
OSBF': OSBF is a variant of OSB that uses confidence factors that vary depending on the number of

documents learned, The confidence factor is used to influence the local per-feature probability and
distance-weighting of the features is used, with an inverse-exponential weighting as distance increases.



Beyond that, OSBF uses Bayes rule to combine the local feature probability (a gross abuse of Bayes’
assumptions of independence that most filter authors simply live with). Unlike most Bayesian spam
filters, there is no “top 10” window of the most extreme values; all values are used, no matter how
insignificant. Unfortunately, the version of OSBF used in these tests contained a significant bug in the
chain rule, hence the values reported below are much worse than the algorithm is capable of. The
training was configured so that if a text did not score at least +10 pR units in the correct class, then the
text was trained, whether or not it actually was classified correct by some narrow margin. The first
500,000 characters of each text were used.

WINNOW: WINNOW is an implementation of Nick Littlestone’s Winnow algorithm. Winnow is
comparable to a back-propagating perceptron- individual features start out with a weight of 1.0000 and
are multiplicatively promoted or demoted according to whether the feature is found or not found in a
particular text being learned. Instead of Bayes rule, WINNOW uses a simple summing of the weights;
the class with the highest weight count wins. Our Winnow implementation uses a thick threshold for
learning. Documents are trained not only in case of mistakes, but also if the determined score was near
the threshold. This makes the classifier more robust when classifying borderline instances. See [Siefkes
2004] for a detailed description.

OSB and OSB Unique: OSB and OSB Unique use the basic local probability formula above without
confidence factors; like OSBF they use all local probability values (there is no extremum window).
Feature counts are weighted in an empirically derived decreasing sequence. There is only one
difference between OSB and OSB Unique: whether a repeated feature is allowed to further influence
the output or is simply discarded. Among all tested classifies, only OSB uses all repeated features.
OSB Unique discards repeated features, as do OSBF and Winnow. In both OSB and OSB Unique, a
single-sided thick threshold for training of +20 pR units was used; any text not scoring at least +20 pR
units in the correct class was trained. Only first 4096 characters of each text were used for
classification; this is the default for one of the more commonly used CRM114 mail filters deployed.

Analysis of the TREC pre-conference partial release results: The following four tables show how
CRM1 14 fared with respect to the pre-conference data release. 1-ROCAC% and Average LAM% are
only prepublished as median values; final LAM% is not prepublished at all (note that unlike some
filters, none of the CRM114 configurations contained any preloaded learning. Everything was learned
strictly on the fly.) Despite this “no preload”, all of CRM114’s classifiers beat both the pre-publication
median 1-ROCAC% and LAM%, often by an order of magnitude.

The design of most CRM114 classifiers assumes a “balanced error” configuration- that all
misclassifications are equally bad. Although common wisdom is that a false reject is more dangerous
than a false accept, at least one author considers this incorrect. Consider the situation of a well-done
phishing spam being falsely accepted. Then, consider it being believed by a nontechnical computer
(say, a grandmother); the likely resulting financial costs of this one false accept will approach if not



exceed the likely financial costs of a false reject of a typical legitimate financial notification. Thus, to a
first approximation, we consider that all misclassifications are roughly equally costly and an equal-
error-rate configuration is a good loss minimization guideline.

To examine the behavior of filters operated in this equal-error configuration, we consider two “sweet
spots” that our experience show are reasonably representative of equal-error operation- specifically,
what the error rates are for spam when the good error rate is fixed at 1%, and what the error rate for
good is when the spam error rate is fixed at 1%. These representative “sweet spots” are shown as the
last two columns in the charts. The “sweet spot” column header shows three values — the best value for
any filter tested, the median value, and the worst value. A sweet spot entry in BOLD TYPE is used
to highlight where CRM114 performance was either “best in class” or “statistically indistinguishable at
the 95% confidence level from best in class” over the entire set of 44 filter configurations tested.

As shown below, for every corpus, and for every “sweet spot”, at least one of the four CRM114
configurations was either “best”, or statistically indistinguishable from “best”. Interestingly, no one
configuration of CRM114 was consistently best. This may well be a manifestation of the No Free
Lunch theorem in decision and optimization [Wolpert 1997]

MRX Corpus: The MRX ( Mr. X) corpus is a “single person” corpus sponsored by Prof. Gordon
Cormack of Waterloo University. It is biased toward spam — it contains about 9K good emails and 40K
spams: (about 18% good emails). Here we see that Winnow, operating with the OSB feature set, was
statistically indistinguishable in performance with the best of the 44 filter configurations submitted to
TREC. It also had an impressively small 1-ROCAC% of just 0.051.

MRX I-ROCAC% AVG LAM% Final Ham 1.0% Spam 1.0%
corpus median= 1.613 median = 2.53 LAM% 0.34 24.24 99.65  0.37 13.35 99.16
OSBF 0.311 1.46 1.4 3.85 2.85
(0.244-0.397) (1.34-1.59) (1.13-1.62) (2.82-5.22) (2.49 - 3.27)
OSB 0.051 0.60 0.24 0.43 0.51

Winnow  (0.035-0.075) (0.53-0.68) (0.17-0.33) (0.31 - 0.62) (0.37 - 0.69)

OSB 0.177 0.98 0.23 1.07 1.07
Unique  (0.128 - 0.246) (0.85-1.13)  (0.12-0.42) (0.86 - 1.35) (0.83 - 1.39)

OSB 0.218 0.79 0.34 0.63 0.56
(0.157-0.304) (0.69-0.90) (0.23-0.52) (0.50 - 0.79) (0.42 - 0.75)

FULL corpus: The FULL corpus is a fairly balanced corpus. It contains 39K good emails and 53K
spams (that’s 42% good email). In this corpus, the plain OSB (that is, a tuple-based Bayesian filter,
using no prefiltering or other “gimmicks”, was the best filter tested across all TREC submissions, for



both sweet spots. Interestingly, omitting replicated features degraded filter performance to barely
statistically significant levels (the error bars still overlap, but the central values are not covered in the
opposite configuration’s error bars.). Note that in this corpus, OSB beats OSB Unique in everything
but 1-ROCAC% (0.049 versus 0.042) — keep this in mind as you read the next corpus.

FULL 1-ROCAC% LAM% Final Ham 1.0% Spam 1.0%
corpus median= 0.861 median = 2.02 LAM% 0.2310.3594.44  0.1514.20 98.11
OSBF 0.169 1.74 3.6 3.14 3.15
(0.151-0.190) (1.66-1.83) (3.28-3.97) (2.81 - 3.50) (2.94 - 3.38)
OSB 0.122 0.73 0.86 0.68 0.51
Winnow  (0.102 - 0.145) (0.68-0.79)  (0.72-1.02) (0.59 - 0.79) (0.42-0.62)
OSB 0.042 0.63 0.43 0.35 0.21
Unique  (0.031-0.056) (0.56-0.70)  (0.33-0.56) (0.30 - 0.42) (0.16 - 0.27)
OSB 0.049 0.47 0.37 0.23 0.15
(0.035-0.068) (0.43-0.52) (0.29-0.47) (0.19 - 0.27) (0.11 - 0.20)

SB Corpus: The SB corpus is a smaller corpus with 6K good emails and only 775 spams (88% good);
thus it is heavily weighted toward filters with a prejudice to accept borderline emails as good. Both
OSB and OSB Unique did very well in this corpus — both are statistically indistinguishable from the
best of the 44 filters submitted to TREC. However, OSB Unique seems to have a slight edge in 1-
ROCAC%, LAM%, and Final LAM%. Note that this is an inversion from the FULL corpus, where
OSB was better than OSB Unique.

SB 1-ROCAC% LAM% Final Ham 1.0% Spam 1.0%
corpus median= 2.845 median =4.79 LAM% 3.48 27.23 100.00 3.79 63.76 99.52
OSBF 2.393 2.34 0.91 8.77 97.11
(1.689 -3.382) (1.87-2.93) (0.56-1.47) (7.05 - 10.88) (57.03 - 99.88)
OSB 1.888 2.14 1.2 10.32 62.35
Winnow  (1.315-2.704) (1.68-2.73)  (0.73-1.88) (8.32-12.74) (37.84 - 81.84)
OSB 0.231 1.64 0.59 3.48 4.01
Unique  (0.142-0.377) (1.28-2.10) (0.34-1.03) (2.26 - 5.32) (2.40 - 6.63)
OSB 0.393 1.67 0.44 3.74 5.62
(0.203-0.759) (1.32-2.12)  (0.24-0.80)

(2.32 - 5.97)

(1.99 - 14.86)




TM Corpus: The TM corpus is also highly biased toward nonspam emails- it contains 150K good
emails and 19K spams (88% good emails). Here OSB is statistically clearly better than OSB Unique;
the error bars don’t even overlap. What’s also of interest is that Winnow beats OSB in 1-ROCAC%,
LAM%, and ties it in Final LAM%, yet the 95% confidence interval error bars for OSB and Winnow
barely touch, with OSB being “better” in both sweet spots (apparently equal to the best of all 44 filters

submitted to TREC.)
™ 1-ROCAC% LAM% Final Ham 1.0% Spam 1.0%
corpus median=2.712 median = 2.54 LAM% 1.0410.28 99.06  1.07 47.70 99.40
OSBF 0.790 2.44 2.5 10.28 16.93
(0.720 - 0.868) (2.33-2.56)  (2.28-2.80) (9.71 - 10.89) (13.00 - 21.74)
OSB 0.166 0.79 0.46 1.30 1.86
Winnow  (0.138 - 0.201) (0.74-0.85)  (0.39-0.54) (1.15 - 1.46) (1.34-2.57)
OSB 0.195 1.08 0.68 1.58 1.71
Unique (0.160-0.238) (1.01-1.14)  (0.59-0.78) (1.40 - 1.78) (1.49-1.97)
OSB 0.272 0.83 0.46 1.04 1.07
(0.225-0.329) (0.77-0.89)  (0.39-0.54)

(0.92 - 1.16) (0.86 - 1.34)

Conclusions: As can be seen, one or more of CRM114’s classifiers was either the best or statistically

indistinguishable from the best in all eight sweet spots (4 corpora x 2 sweet spots/corpus). However,

interesting inversions occurred in things like 1-ROCAC% and rate of learning.

It seems that the No Free Lunch theorem [Wolpert 1997] is alive and well with a vengeance in the

spam filtering world; statistically significant variation exists with even simple changes like whether to

allow repeated features as classifier input or not.

The design decision to make CRM114 a “learning” system versus a “prelearned” system seems to be

justified; at least one CRM114 classifier learned fast enough to win every 1% sweet spot in every

corpus.

The design decision to use a hash-based statistics system rather than a database seems to have been

justified; because the hash-based system is so fast, CRM114 developers can feasibly test hundreds of

variations when other developers can only test two or three different ideas.

The design decision to make CRM114 a language rather than a single-purpose spamfilter tool seems to

been justified; because the language allows easy creation of multiple coexisting variants that can be



tested against each other easily.
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