
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Reconstructing Spectral Vectors with
Uncertain Spectrographic Masks for Robust

Speech Recognition

Bhiksha Raj, Rita Singh

TR2005-160 November 2005

Abstract

Missing-feature methods improve automatic recognition of noisy speech by removing unreliable
noise corrupted spectrographic components from the signal. Recognition is performed either by
modifying the recognizer to work from incomplete spectra, or by estimating the missing compo-
nents to reconstruct complete spectra. While the former approach performs optimal classification
with incomplete spectrograms, the latter permits recognition with cepstral features derived from
reconstructed spectra. Traditionally, spectral components are considered unequivocally reliable
or unreliable. Research has shown that the use of soft masks that provide a probability of reli-
ability to spectral components instead can improve the performance of missing feature mehtods
that modify the recognizer. However, soft masks have not been employed by methods that re-
construct the spectrogram. In this paper we present a new MMSE algorithm for spectrogram
reconstruction. Experiments show that the use of soft masks results in significantly improved
performance as compared to reconstruction methods that use binary masks.

IEEE Automatic Speech Recognition and Understanding Workshop

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2005
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



RECONSTRUCTING SPECTRAL VECTORS WITH UNCERTAIN SPECTROGRAPHIC
MASKS FOR ROBUST SPEECH RECOGNITION

Bhiksha Raj

Mitsubishi Electric Research Labs
Cambridge, MA, USA

Rita Singh

Haikya Corp.
Watertown, MA, USA

ABSTRACT

Missing-feature methods improve automatic recognition of
noisy speech by removing unreliable noise corrupted spec-
trographic components from the signal. Recognition is per-
formed either by modifying the recognizer to work from
incomplete spectra, or by estimating the missing compo-
nents to reconstruct complete spectra. While the former
approach performs optimal classification with incomplete
spectrograms, the latter permits recognition with cepstral
features derived from reconstructed spectra. Traditionally,
spectral components are considered unequivocally reliable
or unreliable. Research has shown that the use ofsoft masks
that provide a probability of reliability to spectral compo-
nents instead can improve the performance of missing fea-
ture methods that modify the recognizer. However, soft
masks have not been employed by methods thatreconstruct
the spectrogram. In this paper we present a new MMSE al-
gorithm for spectrogram reconstruction. Experiments show
that the use of soft masks results in significantly improved
performance as compared to reconstruction methods that
use binary masks.

1. INTRODUCTION

Speech recognition systems perform poorly when the speech
to be recognized has been corrupted by noise. Missing-
feature approaches comprise one family of noise compensa-
tion algorithms that have shown an ability to provide highly
robust recognition in the presence of high levels of noise.
In these approaches noise-corrupted regions of a spectro-
graphic representation of the speech signal are identified
and deemed unreliable. Recognition is performed using
only the remaining incomplete, but reliable spectrographic
information.

The actual recognition of the noisy speech can be per-
formed in one of two ways. Most commonly, the recog-
nizer, usually an HMM-based recognizer, is itself modi-
fied to work from incomplete spectrographic information
(e.g. [1], [2]). In these approaches, the manner in which
the recognition system computes likelihoods of classes or

states is modified to account for the unreliability of some
of the spectrographic components of the incoming speech.
Unreliable components are marginalized out of the class
(or state output) densities prior to computing likelihoods,
conditioned on any bounds on the true value of the com-
ponents that may be derived from the observed unreliable
values. We refer to these approaches as “classifier compen-
sation” methods since compensation for unreliable data is
performed within the classifier (or recognizer).

In principle, classifier-compensation methods perform
theoretically optimal classification and can therefore be ex-
pected to perform very well. However, in these methods
the recognizer must explicitly model the distribution of the
spectrographic features (typically log Mel spectra). Unfor-
tunately, spectrographic features (such as log spectra) are
suboptimal recognition; significantly superior recognition
can be obtained with cepstral coefficients derived through
linear transformations of the log spectra.

As an alternative approach, we have previously proposed
the use of missing-feature methods that provide robust recog-
nition throughfeature compensation[3]. These methods
modify the incoming spectrographic features rather than the
manner in which recognition is performed. Unreliable spec-
tral components are erased and reconstructed using statisti-
cal information derived from clean speech and the remain-
ing reliable components. This results in a set of complete
log spectral vectors from which standard cepstral coeffi-
cients can be derived. Although this approach is not the-
oretically optimal, this disadvantage is often overcome by
the improved recognition achieved in the cepstral domain.

In all cases, missing-feature methods depend critically
on the accurate determination of the “spectrographic masks”
that identify unreliable spectrographic components. Esti-
mation of spectrographic masks, however, is a difficult task,
since the very notion of “unreliability” in spectral compo-
nents is not clearly defined. The reliability of spectral com-
ponents is usually assumed to be indicated by their signal
to noise ratio (SNR): components with an SNR of 0db or
less are assumed to be unreliable (in reality the optimal SNR
threshold for tagging unreliable components depends on the
actual missing feature method employed [4]). However, it



is difficult to measure the SNR of spectral components of
noisy speech, particularly when the corrupting noise is non-
stationary or transient. Consequently, it is difficult to be cer-
tain if any particular spectral component is reliable. Thus,
any technique that makes binary estimates of the reliabil-
ity of spectral components will make mistakes, identifying
reliable components as unreliable and vice versa. Such er-
rors affect the performance of missing feature methods ad-
versely.

In [5] Barker et. al. describe a classifier-compensation
missing feature method that can utilizesoft masks, i.e. spec-
trographic masks that associate aprobability of reliability
with each spectrographic component instead of tagging them
in a binary manner as unequivocally reliable or unreliable.
Soft masks avoid the pitfalls of erroneous binary identifica-
tion of unreliable spectral components by merely associat-
ing with them a measure of confidence in their reliability.
In [5] the authors show that the performance of missing fea-
ture methods can be greatly improved through the use of
such soft masks.

The use of soft masks has thus far been restricted to clas-
sifier compensation missing feature methods. In this paper
we present a minimum mean squared estimator (MMSE)
based feature-compensation algorithm that utilizes soft masks
to reconstruct spectral vectors. As in the work of Barker
et. al., a real-valued number between 0 and 1 is associ-
ated with each spectrographic component. Since potentially
every component of every spectral vector now has a non-
zero probability of being unreliable, all spectral components
must be estimated (rather than just the subset of components
that have been tagged as unreliable). In order to do so, the
observed noisy spectrogram is modelled as the output of a
noisy channel where every component is either let through
unchanged with some probability, or modified by an addi-
tive noise. The input to the channel are the log spectral vec-
tors of clean speech. The probability distribution of these
vectors is modelled by a mixture Gaussian density. The
MMSE algorithm attempts to estimate the value of the in-
put to the channel, given the noisy output that is observed,
the probability with which the channel corrupts the input
(which is given by the soft mask) and a simple assumed
model for the distribution of the corrupting noise. Once all
components of all log spectral vectors are estimated, cep-
stral vectors are derived from them and used for recognition.

Experiments conducted on a digits database corrupted
to different degrees by four varieties of noise show that the
proposed soft-mask-based spectral reconstruction method
can result in significantly improved recognition over pre-
viously proposed feature compensation algorithms that use
binary masks. The recognition performance obtained with
cepstra derived from reconstructed spectral vectors is also
found to be superior to that obtained with classifier com-
pensation missing feature methods, as in previous studies at
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Fig. 1. Spectrogram of a speech signal corrupted to 10db
by white noise. In the right panel all components with SNR
less than 0db have been erased.

all evaluated SNRs.
The rest of the paper is arranged as follows: In Section

2 we briefly describe the principles behind missing-feature
methods. In Sections 3 and we briefly review some relevant
current missing feature methods and the techniques used to
obtain binary and soft masks for noisy data. In Section 4 we
describe the proposed soft mask based MMSE algorithm.
In Section 5 we describe our experimental results and in
Section 6 we present our conclusions.

2. MODELLING NOISY SPEECH WITH
INCOMPLETE SPECTROGRAMS

The speech signal is a highly non-stationary signal with
spectral characteristics that vary both with time and fre-
quency. When a speech signal is corrupted by noise, some
of its time-frequency components are affected to a greater
degree than others. The components of any time-frequency
representation of the signal such as a spectrogram will there-
fore exhibit varying SNRs. High-SNR components from
such a representation chiefly represent the characteristics of
the speech and provide reliable information about the un-
derlying phonetic content of the signal. Low-SNR compo-
nents, on the other hand, also represent the characteristics
of the noise and cannot be relied upon to represent the un-
derlying speech. The only reliable measurement that can
be derived from them is anupper boundon the true (noise-
free) value of the components, if the noise is assumed to be
additive.

Missing feature methods are based on the premise that
speech recognition accuracy on noise-corrupted speech can
be improved greatly if the evidence required for recognition
were derived primarily from the reliable high-SNR compo-
nents of time-frequency representations of the signal, deriv-
ing only minimal bounding information from the unreliable
low-SNR components. This is illustrated by Figure 1. The
left panel shows the spectrogram of a speech signal that has
been corrupted to 10dB by white noise. In the figure in the
right panel all spectrographic components with a local SNR



less than 0dB have been deemed unreliable and have been
erased. Recognition must now be performed using only the
incomplete data represented in the right panel.

The spectrographic representations used in missing fea-
ture methods are typically sequences of Mel-scaled log spec-
tral vectors derived from the speech signal. Reliable and
unreliable components are identified on these vectors.

3. REVIEW OF CURRENT TECHNIQUES

In this section we briefly review some current missing fea-
ture algorithms, as well as some methods for estimating
spectrographic masks that have been used for comparative
evaluations in Section 5.

3.1. Missing-Feature Algorithms

Recognition with incomplete spectrograms such as the one
shown in Figure 1 can be done in one of two ways. Classifier
compensation methods modify the recognizer to perform
recognition with only the reliable (visible) regions of the
spectrogram. Feature compensation methods reconstruct
complete spectrograms by estimating the true value of the
components in the unreliable (blanked out) regions and per-
form recognition with features derived from the complete
spectrogram. We describe some fundamental missing fea-
ture algorithms of both varieties below. Bounded marginal-
ization and soft mask based marginalization are classifier
modification methods, while cluster based reconstruction is
a feature compensation method.

3.1.1. Bounded Marginalization

In bounded marginalization [2], the unreliable components
of a log-spectral vector are integrated out of the distribution
of a class, constrained by upper and lower bounds on the
true values of these components implicit in their observed
values. For HMM-based recognizers that model state output
densities as mixtures of Gaussians with diagonal covariance
matrices, this results in the following modification in the
computation of the contribution of thedth dimension of any
log spectral vector to the state output densities of the HMM:

P (xd|k, s, θd) =





∫ xd

Ld
P (xd|k, s)dxd θd = 0

P (xd|k, s) θd = 1
(1)

wherexd is thedth component of a log-spectral vectorx,
P (xd|k, s) is thedth component ofkth Gaussian in the mix-
ture Gaussian density for states, andLd is an empirically
derived lower bound on the true value ofxd. θd is a binary
tag, obtained from the spectrographic mask for the signal,
that takes the value 1 whenxd is reliable, and 0 when it is
not. P (xd|k, s, θd) is used in lieu ofP (xd|k, s) to perform
recognition.

3.1.2. Soft Mask based Marginalization

Soft mask based marginalization [5] is similar to bounded
marginalization with the difference that the mask variable
θd now represents the probability thatxd is reliable and
takes real values between 0 and 1. The state output density
component described by Equation 1 gets modified to:

P (xd|k, s, θd) = θdP (xd|k, s)+(1−θd)

∫ xd

Ld
P (xd|k, s)dxd

xd − Ld
(2)

Equation 2 can be derived from a model assumption that
is also used by the MMSE algorithm presented in this paper
and is described in Section 4.

3.1.3. Cluster-Based Reconstruction

Cluster-based reconstruction [3] is a feature compensation
method that reconstructs complete log spectral vectors from
noisy vectors with unreliable components (identified thusly
by a binary mask). Here, the distribution of the log-spectral
vectors of clean speech is modelled by a mixture Gaussian:

P (x) =
∑

k

ckN (x;µk,Ωk) (3)

N (x; µk,Ωk) represents a Gaussian with meanµk and vari-
anceΩk. ck is the mixture weight of thekth Gaussian. To
estimate the true value of unreliable components, thea pos-
teriori probability of each Gaussian is first computed:

P (k|x) = Z
∏

d

P (xd; k, θd) (4)

wherexd is thedth component ofx. P (xd; k, θd) is com-
puted analogously to Equation 1 andZ is a normalizing
constant. The estimated value for any unreliable compo-
nent xd is obtained as a linear combination of Gaussian-
dependent maximuma posteriori(MAP) estimates:

x̂d =
∑

k

P (k|x)MAP (xd|x, µk, Ωk) (5)

The result of the operation is a complete spectrogram
where all unreliable components have been reestimated. Cep-
stra derived from the spectrograms are used for recognition.

3.2. Estimating Spectrographic Masks

The most difficult component of missing-feature approaches
is the estimation of spectrographic masks. In this paper
we have used the MaxVQ algorithm [6] to generate binary
spectrographic masks and the soft mask algorithm of [7] to
generate probabilistic soft masks. Both algorithms assume
that the distribution of the corrupting noise is known - an
assumption that was valid for the experiments reported in
this paper. We outline the two algorithms below.
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Fig. 2. a) Mel spectrogram of a noisy signal b) Binary mask
from MaxVQ c) Soft mask

3.2.1. The Max-VQ algorithm

The MaxVQ algorithm models the distributions of the log
spectral vectors of speech,x and noise,n as mixtures of
Gaussians with diagonal covariance matrices. The proba-
bility density of the log spectral vectors of the noisy speech,
y, is assumed to have the following form:

P (y) =
∑

k

∑

j

cx
kcn

jN (y;max(µx
k, µn

j ), Ω) (6)

wherecx
k andcn

j are the mixture weights of thekth andjth

Gaussians respectively from the mixture Gaussian distrib-
utions of speech and noise, andµx

k andµn
j are the corre-

sponding means. Themax(·) is a component-by-component
operator.

In order to find the spectrographic mask for any noisy
vectory, the most likely combination(kmax, jmax) of Gaus-
sians from the distributions of speech and noise is deter-
mined. The binary mask for any componentxd is obtained
asθd = 1 if µx

kmax,d > µn
jmax,d; 0 else. Figure 2b shows

an example of a spectrographic mask derived by MaxVQ.

3.2.2. Soft Mask Estimation

The soft mask estimation algorithm also models the distri-
butions of the log spectra of speech and noise by mixture
Gaussians. A noisy log spectral vectory is assumed to be
related to the log spectra of the underlying speech and noise
asy = max(x, n). The soft mask foryd, thedth component
of a noisy log spectral vectory is obtained as:

θd =
∑

k

∑

j

P (k, j|y)Px(yd|k)Cn(yd|j)
Cx(yd|k)Pn(yd|j) + Px(yd|k)Cn(yd|j)

(7)
wherePx(yd|k) andCx(yd|k) represent the Gaussian den-
sity value and Cumulative probability atyd of the dth di-
mension of thekth Gaussian for the speech andPn(yd|j)
andCn(yd|j) are similar terms for the distribution of the
noise. Figure 2c shows an example of a soft mask derived
in this manner. Note that in SNR terms, this mask repre-
sents the probability that any spectrographic component has
SNR greater than 0.

P=θ

P=1-θ
x

n

x

f(x,n)

Fig. 3. Noisy channel model for soft masks

4. MINIMUM MEAN SQUARE ESTIMATION OF
SPECTRAL COMPONENTS FROM SOFT MASKS

In this section we describe the proposed MMSE algorithm
for reconstructing spectral vectors from soft masks. The
algorithm models the log spectral vectors of noisy speech as
the output of a noisy channel. Figure 3 illustrates the model.
The input to the noisy channel are thexd components of the
the log spectral vectors of clean speech and the output are
the components of the noisy log-spectral vector.

The operation of the channel may be described as fol-
lows. As before, we represent the log spectral vectors of
clean speech byx. The probability distribution of the log
spectral vectors of clean speech is assumed to be a mixture
Gaussian with diagonal covariance matrices:

P (x) =
∑

k

cx
kN (x; x

k, Ωx
k) (8)

In order to generate an outputy, a Gaussian is drawn
from the mixture, a vector is drawn randomly from the Gaussian,
and the components of the vector are transmitted through
the channel. A separate channel is assumed for each dimen-
sion of the log-spectral vector. The channel transmits the
input unchanged to the output with a probabilityθd. With
probability1− θd it corrupts the input during the transmis-
sion. To corrupt the input it randomly draws a noise sample
nd from a distributionPn(nd), and combines it with the in-
put xd through a functionf(·) such thatf(xd, nd) ≥ xd.
The noise-corrupted output of the channelyd = f(xd, nd).
The parameterθd which represents the value of the soft
mask, and the distribution of the noisePn(nd) are assumed
to be different for each channel. The distribution of the out-
put of the channel for thedth dimension of the log spectral
vectors, given that the input vector has been drawn from the
kth Gaussian is given by:

Py(yd|k) = θdPx(yd|k) + (9)

(1− θd)
∫ ∞

−∞
Px(zd|k)Pn(f−1(yd, zd))dzd

wheref−1(yd, zd) is the inverse function off(·) that com-
putes the set of allnd values such thatf(zd, nd) = yd.



Px(yd|k) is the GaussianN (yd; x
k,d, Ω

x
k,d). We assume that

Pn(f−1(yd, zd) is a uniform probability distribution between
f−1(yd, yd) andf−1(yd, Ld), whereLd is some known con-
stant (typically set to the lowest possible value ofxd). Using
these values, we now get

Py(yd|k) = θdPx(yd|k) +
1− θd

Hd

∫ yd

Ld

Px(zd|k)dzd (10)

whereHd is a normalizing constant1. Note that Equation
10 is identical to Equation 2 of Section 3.1.3. The overall
probability distribution ofy is given by

Py(y) =
∑

k

cx
k

∏

d

Py(yd|k) (11)

Thea posterioriprobability, giveny, of thekth Gaussian is

P (k|y) =
ck

∏
d Py(yd|k)∑

j cj

∏
d Py(yd|j) (12)

It can now be shown that thea posterioriprobability of
xd giveny and Gaussian indexk is given by

Px(xd|y, k) =





θdδxd
(yd) +(1− θd)

Px(xd|k)
Cx(yd|k)−Cx(Ld|k)

if Ld ≤ xd ≤ yd

0 else
(13)

whereδxd
(yd) is a Kronecker delta function centered atyd

and, as before,Cx(yd|k) represents the cumulative proba-
bility at yd of thedth dimension of thekth Gaussian. The
overalla posterioriprobability ofxd is given by

Px(xd|y) =
∑

k

P (k|y)Px(xd|y, k) (14)

The MMSE estimate ofxd is simply the expected value
of xd, given the observed vectory. To obtain the MMSE
estimate ofxd we draw upon the following identity:

∫ a

−∞
xN (x; µ, σ)dx = µ

∫ a

−∞
N (x;µ, σ)dx−σN (a; µ, σ)

(15)
Combining Equations 15, 14 and 13 we get the follow-

ing MMSE estimate forxd

x̂d = θdyd + (1− θd)
∑

k

P (k|y) ·
(

µx
k,d − Ωx

k,d

Px(yd|k)− Px(Ld|k)
Cx(yd|k)− Cx(Ld|k)

)
(16)

The MMSE estimateŝxd are arranged into a vector̂x
that is used to compute cepstra that are used for recognition.

1If we assumef(x, y) = x + y, Hd = yd − Ld

5. EXPERIMENTAL EVALUATION

The proposed soft-mask-based MMSE feature compensa-
tion algorithm was evaluated on a Spanish telephone speech
database provided by Telefonicá Investigacíon y Desarrollo
(TID), using the CMU Sphinx-3 speech recognition system.
Continuous density 8 Gaussian/state HMMs with 500 tied
states were trained from 3500 utterances of clean telephone
recordings. The test data consisted of telephone recordings
corrupted to various SNRs by traffic noise, music, babble
recorded in a bar, and noise recordings from a subway. A
total of 1700 test utterances were used in each case. The
distribution of the log spectral vectors of clean speech was
modelled by a 512 component mixture Gaussian density,
the parameters of which were trained from the 3500 utter-
ance training corpus. The distributions for the noises were
modelled as mixtures of 256 Gaussians, the parameters of
which were learned from training examples of the noises. A
separate distribution was learned for each noise.

In all cases it was assumed that the type of noise affect-
ing the speech was known. Binary spectrographic masks
were estimated for all noise-corrupted utterances using the
MaxVQ algorithm described in Section 3.2.1. Soft masks
were estimated using the soft mask estimation algorithm
described in Section 3.2.2. Two separate recognition ex-
periments were conducted. In the first, acoustic models
were trained with the log-spectral vectors of clean speech.
No difference or double difference features were employed.
No mean normalization of the training data was performed.
Recognition was performed using the classifier modification
methods presented in Section 3.1, namely bounded mar-
ginalization and soft mask based marginalization. Note that
it is difficult to employ mean normalization with classifier
modification methods. The benefit from difference and dou-
ble difference features is also greatly reduced since they can
have upto twice or four times as many unreliable compo-
nents as the basic log spectral vectors themselves.

In the second experiment the recognizer was trained with
cepstral vectors from clean speech. Mean normalization
was performed. Difference and double difference features
were also employed. For the noisy test data complete log
spectral vectors were constructed using the cluster-based
algorithm of Section 3.1.3 and the proposed MMSE algo-
rithm. Since the former utilizes binary spectrographic masks
while the latter employs soft masks, the difference in perfor-
mance between the two shows the improvements to be ob-
tained from the use of soft masks. The four panels in Figure
4 show the recognition performance obtained on speech cor-
rupted by each of the four varieties of noise. In each panel,
baseline recognition with cepstra, recognition obtained by
bounded marginalization of log spectra using hard masks,
the performance obtained by soft-mask-based marginaliza-
tion of log spectra, and that obtained with cepstra derived
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(c) Babble
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Fig. 4. Recognition error vs. SNR on speech corrupted by
a) traffic noise b) music c) babble and d) subway noise

from spectra reconstructed using cluster-based reconstruc-
tion (using hard masks) and the proposed soft-mask-based
MMSE technique are all shown.

6. CONCLUSIONS

We observe from Figure 4 that the proposed soft mask based
MMSE algorithm results in significantly improved recog-
nition over cluster based reconstruction, which uses binary
masks, particularly for traffic and subway noises where it re-
sults in a 25% relative improvement at 0dB. In general, we
also observe that soft-mask based methods are superior to
missing feature methods that utilize binary spectrographic
masks.

We also observe that in these experiments, feature com-
pensation algorithms combined with recognition in the cep-
stral domain significantly outperform classifier compensa-
tion methods that work in the log spectral domain, in spite
of the fact that the latter are theoretically optimal in the log
spectral domain. This is consistent with results published
previously, e.g. [3]. The proposed MMSE method, which
is a feature compensation method, is observed to result in
the best recognition of all four methods evaluated. On the
other hand, the difference between classifier compensation
and feature compensation methods is observed to decrease
at very low SNRs. In some of the experiments, classifier
compensation methods working from log spectral vectors
actually result in greatly improved performance over base-
line cepstra-based recognition at SNRs below 15dB.

We wish to emphasize here that the purpose of this pa-
per is to present a spectrogram reconstruction technique that

works from soft masks. The comparison between feature
compensation and classifier compensation methods is only
a peripheral, but related topic. It is likely that incorpora-
tion of difference features and percentile-based normaliza-
tion (proposed in [8] as a substitute for mean normaliza-
tion) will improve the performance of our implementation
of classifier compensation methods and reduce the differ-
ence in performance obtained by the two classes of missing
feature approaches.
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