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Nonrigid embeddings for dimensionality reduction

Matthew Brand

Mitsubishi Electric Research Labs, Cambridge MA USA

Abstract. Spectral methods for embedding graphs and immersing data mani-
folds in low-dimensional spaces are notoriously unstable due to insufficient and/or
numerically ill-conditioned constraint sets. Why show why this is endemic to
spectral methods, and develop low-complexity solutions for stiffening ill-conditioned
problems and regularizing ill-posed problems, with proofs of correctness. The
regularization exploits sparse but complementary constraints on affine rigidity
and edge lengths to obtain isometric embeddings. An implemented algorithm is
fast, accurate, and industrial-strength: Experiments with problem sizes spanning
four orders of magnitude showO(N) scaling. We demonstrate with speech data.

1 Introduction
Embedding a graph under metric constraints is a central operation in nonlinear dimen-
sionality reduction (NLDR), ad-hoc wireless network mapping, and visualization of re-
lational data. Despite a recent wave of advances in spectral embeddings, it has not yet
become a practical, reliable tool. At root is the difficulty of automatically generating
embedding constraints that make the problem well-posed, well-conditioned, and solv-
able on practical time-scales. Well-posed constraints guarantee a unique solution. Well-
conditioned constraints make the solution numerically separable from poor solutions.
Spectral embeddings from local constraints are frequently ill-posed and almost always
ill-conditioned. Both problems manifest as a tiny or zero eigengap in the spectrum of
the embedding constraints, indicating that the graph is effectivelynonrigid and there is
an eigen-space of solutions whose optimality is numerically indistinguishable.

Section2 shows why small eigengaps are endemic to spectral methods for com-
bining local constraints, making it numerically infeasible to separate a solution from
its modes of deformation. To remedy this, section3 presents a linear-time method for
stiffening an ill-conditioned problem at all scales, and prove that it inflates the eigengap
between the space of optimal solutions and the space of suboptimal deformations.

If a problem is ill-posed, the graph is qualitatively nonrigid and the space of optimal
solutions spans all of its degrees of freedom. Section4 shows how to choose the most
dispersed embedding from this space in a semidefinite programming problem (SDP)
with a small number of variables and constraints, and proves feasability. AlthoughSDP

for graphs hasO(N6) complexity, our methods give a problem reduction that yields
embeddings of very large graphs in a matter of seconds or minutes, making million-
point problems practical on a ordinary consumerPC.

2 Setting
This paper considers the family of Laplacian-likelocal-to-globalgraph embeddings,
where the embedding of each graph vertex is constrained by the embeddings of its im-



Fig. 1. N = 500 points are randomly sampled from a square patch of a cylindrical sur-
face in RD=3, and connected in ak = 4 nearest neighbors graph which is then iso-
metrically embedded inRd=2. Spectral embedding methods preserve affine structure of
local star-shaped neighborhoods; convex optimization methods preserve edge lengths.
Neither is sufficient for sparse graphs, while more densely connected graphs present
exploding compute costs and/or may not embed without distortion and folds. Sparse
graphs also yield numerically ill-conditioned problems. This paper shows how to ob-
tain well-conditioned problems from very sparse neighborhood graphs and combine
them with distance constraints to obtain high quality solutions in linear time.

mediate neighbors (in graph terminology, its 1-ring). For dimensionality reduction, the
vertices are datapoints that are viewed as samples from a manifold that is somehow
curled up in the ambient sample space, and the graph embedding constraints are de-
signed to reproduce local affine structure of that manifold while unfurling it in a lower
dimensional target space. Examples include Tutte’s method [Tut63], Laplacian eigen-
maps [BN02], locally linear embeddings (LLE) [RS00], HessianLLE [DG03], charting
[Bra03], linear tangent-space alignment (LTSA) [ZZ03], and geodesic nullspace analy-
sis (GNA) [Bra04]. The last three methods construct local affine constraints of maximal
possible rank, leading to the stablest solutions. Due to their simplicity, our analysis will
be couched in terms ofLTSA and GNA. All other methods employ an subset of their
affine constraints, so our results will be applicable to the entire family of embeddings.

LTSA andGNA take anN-vertex graph already embedded in an ambient spaceRD

with vertex positionsX = [x1, · · · ,xN] ∈RD×N, and re-embed it in a lower-dimensional
spaceRd with new vertex positionsY = [y1, · · · ,yN] ∈ Rd×N, preserving local affine
structure. Typically the graph is constructed from point data by some heuristic such as
k-nearest neighbors. The embedding works as follows: Take one such neighborhood ofk
points and construct a locald-dimensional coordinate systemXm

.= [xi ,x j , · · ·] ∈ Rd×k,
perhaps by local principal components analysis. Now consider the nullspace matrix
Qm∈Rk×(k−d−1), whose orthonormal columns are orthogonal to the rows ofXm and to
the constant vector1. This nullspace is also orthogonal to any affine transformA(Xm) of
the local coordinate system, such that any translation, rotation, or stretch that preserves
parallel lines in the local coordinate system will satisfyA(Xm)Qm = 0. Any other trans-
form T(Xm) can then be separated into an affine componentA(Xm) plus a nonlinear
distortion,N(Xm) = T(Xm)QmQ>

m. The algorithmLTSA (resp.GNA) assembles these
nullspace projectorsQmQ>

m, m = 1,2, · · · into a sparse matrixK ∈ RN×N that sums



(resp. averages with weights) nonlinear distortions over all neighborhoods in the graph.
Now letV ∈ Rd×N have row vectors that are orthonormal and that span the the column
nullspace of[K ,1]; i.e.,VV> = I andV[K ,1] = 0. It follows immediately that ifV ex-
ists and we use it as a basis for embedding the graph inRd, each neighborhood in that
embedding will havezero nonlinear distortionwith respect to its original local coor-
dinate systems [ZZ03]. Furthermore, if the neighborhoods are sufficiently overlapped
to make the graph affinely rigid inRd, the transform from the original dataX to the
embedding basisV must stretch every neighborhoodthe same way[Bra04]. Then we
can estimate a linear transformT ∈Rd×d that removes this stretch givingY = TV , such
that the transform fromX to Y involves only rigid transforms of local neighborhoods
[Bra04]. I.e., the embeddingY is isometric.

When there is any kind of noise or measurement error in this process, a least-squares
optimal approximate basisV can be obtained via thinSVD of K ∈RN×N or thin EVD of
KK >. BecauseK is very sparse withO(N) nonzero values, iterative subspace estima-
tors typically exhibitO(N) time scaling. WhenK is built with GNA, the corresponding
singular valuesσN−1,σN−2, · · ·measure the pointwise average distortion per dimension.

One of the central problems of this paper is that the eigenvalues ofKK >—and in-
deed ofany constraint matrix in localNLDR—grow quadratically nearλ0 = 0, which
is the end of the spectrum that furnishes the embedding basisV. (A proof is given in
the first two propositions in the appendix.) Quadratic growth means that the eigenvalue
curve is almost flat at the low end of the spectrum (λi+1−λi ≈ 0) such that the eigen-
gap that separates the embedding basis from other eigenvectors is negligible. A similar
phenomenon is observed in the spectra of simplegraph Laplacians1 which are also
sigmoidal with quadratic growth near zero.

3 Stiffening ill-conditioned problems with multiscale constraints

In graph embeddings the constraint matrix plays a role akin to the stiffness matrix in
finite-element methods, and in both cases the eigenvectors associated with the near-zero
eigenvalues specify an optimal parameterization and its modes of vibration. The prob-
lem facing the eigensolver (or any other estimator of the nullspace) is that convergence
rate is a linear function of the relative eigengap|λc−λc+1|

λmax−λmin
or eigenratioλc+1

λc
between

the desired and remaining principle eigenvalues [Kny01]. The numerical stability of the
eigenvectors similarly depends on the eigengap [SS90]. As just noted, in local-to-global
NLDR the eigengap and eigenratio are both very small, making it hard to separate the
solution from its distorting modes of vibration. Intuitively, low-frequency vibrations
make very smooth bends in the graph, which incur very small deformation penalties
at the local constraint level. Since the eigenvalues sum these penalties, the eigenvalues
associated with low-frequency modes of deformation have very small values, leading to
poor numerical conditioning and slow convergence of eigensolvers. The problem gets
much worse for large problems where fine neighborhood structure makes for closely
spaced eigenvalues, making it impossible for iterative eigensolvers to accurately com-
pute the smallest eigenvalues and vectors.

We propose to solve this problem by stiffening the mesh with longer-range con-
straints that damp out lower-frequency vibrations. This can be done without looking

1 E.g., seehttp://www.cs.berkeley.edu/~demmel/ cs267/lecture20/lecture20.html
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Fig. 2. Stiffening the embedding constraint matrix drives up the eigenvalues associ-
ated with low-frequency bending modes. In this example, the constraint matrix is
derived fromN = 500 points forming a 2D manifold embedded inR256. The origi-
nal graph (green) is shown in green superimposed on a random multiscale stiffening
(blue). The low-frequency tail of the eigenspectrum is plotted at center, before (green)
and after (blue) stiffening. (The eigenvalue associated with the constant eigenvector
v0 = N−1/2 ·1 is suppressed.) The eigengap between the true 2D nullspace and the re-
maining approximate nullspace is improved by almost 2 orders of magnitude, whereas
the original spectrum appears to have a 3D nullspace. The price is a modest 15% in-
crease in constraint matrix density, shown at right as darkblue dots superimposed on
the original sparsity pattern. However, the subspace computation is better conditioned
and converges four times faster.

at the point data. Indeed, it must, because long-range distances in the ambient space
are presumed to be untrustworthy. Instead we combine short-range constraints from
overlapping rings in the graph, as follows:

ALGORITHM: Neighborhood expansion
1. Select a subgraph consisting of a small set of overlapped neighborhoods and
compute an basisVsubgraphfor embedding its points inRd.
2. Form a new neighborhood with at least d+1 points taken from the embedding
basis and add (LTSA) or average (GNA) its nullspace projector intoK .

Because theK matrix penalizes distortions in proportion to the distances between
the points, these larger-scale constraints can significantly drive up the eigenvalues out-
side the nullspace, enlarging the eigengap. It can be shown that

Proposition 1. The nullspace ofK is invariant to neighborhood expansions.

See the appendix for all proofs. Neighborhood expansion is physically analogous to
adding short ribs to a 2D plate to stiffen it against small-radius bends in 3D. However, in
order to usefully improve the eigengap, one must brace against large-radius bends. For-
tunately, stiffening lends itself very naturally to a multiscale scheme: We construct a set
of neighborhood expansions that approximately covers the graph but adds constraints
on just a small subset of all vertices. Note that this subset of vertices plus their param-
eterizations in the new neighborhoods constitutes a new embedding problem. Thus we
may recursively stiffen this problem in the same manner, and so on until the original
problem is stiffened at all scales:



ALGORITHM: Multiscale stiffening
1. Choose a constant fraction of vertices to be anchors.
2. Cover or partially cover the data with neighborhood expansions, adding con-
straints on any anchors that fall in an expansion.
3. Recurse only on the anchors, using their parameterizations in the neighborhood
expansions.

Proposition 2. If the number of neighborhoods and points is halved at each recursion,
multiscale stiffening can be performed in O(N) time with no more than a doubling of
the number of nonzeros in theK matrix.
For modern iterative nullspace estimators (e.g.,LOBPCG[Kny01]), compute time of each
iteration is typically linear in the number of nonzeros inK while convergence rate is
supra-linear in the eigengap. Consequently, stiffening is a winning proposition. Figure2
shows a simple example where stiffening the graph in figure1 makes the spectrum rank-
revealing and cuts theEVD time by 3/4. However, due to the difficulty of implementing
the appropriate data structures efficiently in Matlab, there was no reduction in overall
“wall time”.

4 Regularizing ill-posed problems with edge length constraints
Even if the eigenvector problem is numerically well-conditioned, it may be the case that
the graph is intrinsically nonrigid. This commonly happens when the graph is generated
by a heuristic such as k-nearest neighbors. In such cases the embedding basisV ∈Rc×N

has greater dimensionc than desired (c > d). For example, the initial constraints might
allow for a variety of folds inRd, thenV must span all possible folded configurations.
The embedding is thus ill-posed, and some regularization is needed to choose from the
space of possible embeddings. We will presume that in the most unfolded configuration,
some subset of vertices are maximally dispersed. For example, we might maximize the
distance between each vertex and all of its 4-hop neighbors. In order to prevent the
trivial solution of an infinitely large embedding, we must fix the scale in each dimension
by fixing some distances, i.e., edge lengths. Thus we seek an embedding that satisfies
the affine constraints encoded in theK matrix, maximizes distances between a mutually
repelling subset of vertices, and satisfies exact distance constraints on some subset of
edges. For this we adapt the semidefinite graph embedding of [LLR95].

Formally, let mixing matrixU∈Rc×d have orthogonal columns of arbitrary nonzero
norm. Let error vectorσ = [σ1, · · · ,σc]> contain the singular values of distortion matrix
K associated with its left singular vectors, the rows ofV. The matrixU will select
a metrically correct embedding from the space of possible solutions spanned by the
rows ofV. The target embedding,Y = [y1, · · · ,yN] .= U>V ∈ Rd×N, will have overall
distortion‖U>σ‖ and distance‖yi − y j‖ = ‖U>(vi − v j)‖ between any two points (vi
being theith column ofV). The optimization problem is to minimize the distortion
while maximizing the dispersion

U∗ = max
U
−‖U>σ‖2 +∑

pq
r2

pq‖yp−yq‖2 (1)

for some choice of weightsrpq≥ 0, preserving distances

∀i j∈EdgeSubset‖yi −y j‖ ≤ Di j (2)



on at leastd edges forming a simplex of nonzero volume inRd (otherwise the embed-
ding can collapse in some dimensions). We use inequality instead of equality because
theDi j , measured as straight-line distances, are chordal in the ambient spaceRD rather
than geodesic in the manifold, and thus may be inconsistent with a low dimensional
embedding (or infeasible). The inequality allows some edges to be slightly shortened in
favor of more dispersed and thus flatter, lower-dimensional embeddings. In general, we
will enforce distance constraints corresponding to all or a random sample of the edges
in the graph. Unlike [LLR95] (and [WSS04], discussed below),the distance constraints
do not have to form a connected graph.

Using the identity‖Y‖2
F = ‖U>V‖2

F = trace(U>VV>U) = trace(VV>UU>), we
massage eqns.1-2 into a small semidefinite program (SDP) on objectiveG .= UU> � 0:

max
G

trace((C−diag(σ)2)G) (3)

with C .= ∑
pq

r2
pq(vp−vq)(vp−vq)> (4)

subject to∀i, j∈EdgeSubsettrace((vi −v j)(vi −v j)>G)≤ D2
i j . (5)

In particular, when all points repel equally (∀pqrpq = 1), thenC = VV> = I , and
trace(CG) = ∑pq‖yp−yq‖2 = ‖Y‖2

F . BecauseV⊥1, the embedding is centered.
At the extreme ofc= d, we recover pureLTSA/GNA, whereU = T is the upgrade to

isometry (theSDP is unnecessary). Atc= D−1 we have an alternate formulation of the
semidefinite graph embedding [LLR95], where range(V) = span(RN⊥1) replaces the
centering constraints (theLTSA/GNA is unnecessary). In between we have a blend that
we will call Nonrigid Alignment (NA). With iterative eigensolving,LTSA/GNA takes
O(N) time, but requires a globally rigid set of constraints. The semidefinite graph em-
bedding does not require rigid constraints, but hasO(N6) time scaling. Nonrigid Align-
ment combines the best of these methods by usingLTSA/GNA to construct a basis that
drastically reduces the semidefinite program. In addition, we have the option of com-
bining an incomplete set of neighborhoods with an incomplete set of edge length con-
straints, further reducing both problems. (A forthcoming paper will detail which subsets
of constraints guarantee affine rigidity.)

Although this method does require an estimate of the local dimension for the ini-
tial LTSA/GNA, it inherits from semidefinite graph embeddings the property that the
spectrum ofX gives a sharp estimate of the global embedding dimension, because the
embedding is spanned byV. In fact, one can safely over-estimate the local dimension—
this reduces the local nullspace dimension and thus the global rigidity, but the additional
degrees of freedom are then fixed in theSDPproblem.

4.1 Reducing theSDP constraints

TheSDPequality constraints can be rewritten in matrix-vector form asA>svec(G) = b,
where svec(G) forms a column vector from the upper triangle ofX with the off-diagonal
elements multiplied by

√
2. Here each column ofA contains a vectorized edge length

constraint (e.g., svec((vi−v j)(vi−v j)>) for an equality constraint) for some edgei ↔
j; the corresponding element of vectorb contains the valueD2

i j . A major cost of theSDP

solver lies in operations on the matrixA ∈ Rc2×e, which may have a large number of



linearly redundant columns. Note thatc2 is relatively small due to the choice of basis,
bute, the number of edges whose distance constraints are used in theSDP, might be very
large. When the problem has an exact solution (equation5 is feasible as an equality),
this cost can be reduced by projection: LetF ∈ Re× f , f � e be a column-orthogonal
basis for the principal row-subspace ofA, which can be estimated inO(e f2c2) time
via thin SVD. From the Mirsky-Eckart theorem it trivially follows that thef equality
constraints,

F>A>vec(G) = F>b (6)

are either equivalent to or a least-squares optimal approximation of the original equality
constraints. In our experience, for large, exactly solvable problems, it is not unusual to
reduce the cardinality of constraint set by 97% without loss of information.

Proposition 3. The resultingSDPproblem is feasible.

When the problem does not have an exact solution (equation5 is only feasible as an
inequality), one can solve theSDP problem with a small subset of randomly chosen
edge length inequality constraints. In conjunction with the affine constraints imposed
by the subspaceV, this suffices to satisfy most of the remaining unenforced length
constraints. Those that are violated can be added to the active set and theSDPre-solved,
possibly repeating until all are satisfied.

These reductions yield a practical algorithm for very large problems:
ALGORITHM: Nonrigid LTSA/GNA

1. Obtain basis: Compute extended approximate nullspaceV and residualsσi of (stiff-
ened)K matrix.
2. SDP: FindG maximizing eq.3 subject to eq.6 or eq.5 with a constraint subset.
2a. Repeat 2 with violated constraints, if any.
3. Upgrade to isometry: FactorG → Udiag(λ)2U> and set embeddingY =
diag(λ)U>V.

4.2 Related work

Recently [WSS04] introduced an algorithm that applies theLLR embedding to densely
triangulated graphs, and [WPS05] introduced a related scheme called`SDE which uses
a landmark basis derived fromLLE to reduce the semidefinite program. We can high-
light some substantial differences between our approach and`SDE: 1) BecauseLLE is
quasi-conformal and has no isometry properties, one would expect that a much higher-
dimensionalLLE basis will be necessary to span the correct isometric embedding (this
we have verified numerically), either substantially increasing theSDP time or decreas-
ing solution quality if a lower-dimensional basis is used. 2) If the manifold has nonzero
genus or concave boundary, the number of randomly selected landmarks—and thus
basis dimensions—needed to span the isometric embedding can grow exponentially;
not so for theLTSA/GNA basis, which depends only on local properties of the mani-
fold. 3) graph triangulation increases the number of graph edges by a factor ofk2and
the complexity of theSDP problem byk6—a major issue becausek itself should grow
quadratically with the intrinsic dimension of the manifold. Thus we can solve problems
2 orders of magnitude larger in considerably less time, and reportexactsolutions.
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Fig. 3. A 2D NA embedding of a 4-neighbors graph on 300 points inR256 perfectly re-
covers the pre-image. TheLTSA/GNA solution has five affine degrees of freedom asso-
ciated with the distorted subgraphs on the bottom boundary. TheSDPsolution “foams”
around large cycles where the graph is nonrigid.

4.3 Example

In this example, the source manifold is a square planar patch, which is embedding iso-
metrically inR4 through the toric map that takes each ordinate(x)→ (sinx,cosx). R4

is in turn embedded inR8 by the same map, and so on until the ambient space has
D = 256 dimensions. The patch is randomly sampled inRD and each point connected
to its four nearest neighbors. The graph is too sparsely connected to determine a rigid
embedding for eitherLTSA/GNA or the LLR SDP (see figure3). Nonrigid GNA yields
near-perfect embeddings. For example, figure3 depicts the pre-image and three em-
beddings of a smallN = 300 point,K = 4 neighbors graph. OrdinaryLTSA/GNA has a
7-dimensional nullspace, indicating that some subgraphs have unwanted affine degrees
of freedom. This can be resolved by increasingK, but that risks bringing untrusted edge
lengths into the constraint set. SDE can fix most (but not necessarily all) of theseDOFs
by fully triangulating each neighborhood, but that increases the number of edges by a
factor ofK2 and theSDPtime complexity by a factor ofK6. Even for this small problem
NA is almost three orders of magnitude faster than untriangulatedSDE; that gap widens
rapidly as problem size grows.

Empirically, NA exhibits the predicted linear scaling over a wide range of problem
sizes. Working in MatLab on a 3GHz P4 with 1Gbyte memory, 102 points took roughly
0.3 seconds;103 points took roughly 2 seconds; 104 points took 21 seconds; 105 points
took roughly 232 seconds; we see linear scaling in between. The dominant computation
is theEVD, not theSDP.

5 Application to speech data

The TIMIT speech database is a widely available collection of audio waveforms and
phonetic transcriptions for 2000+ sentences uttered by 600+ speakers. We sought to
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Fig. 4.LEFT: A thin slice along the two principal axes of anNA embedding of 2.5×105

vowel feature vectors.TIMIT phoneme labels are scatter-plotted according to their em-
bedding coordinates. The distribution of phonemes is well correlated with mouth shape
(see discussion in section5). M IDDLE: Normalized spectra of theNA andPCA represen-
tations, showing the fraction of total variance captured in each dimension. RIGHT: An
equivalent slice through thePCA representation slice scatter-plot is far less interpretable.
Some sounds (e.g.,ix in debit) depend little on lip shape and are thus distributed freely
through both plots.

model the space of acoustic variations in vowel sounds. Starting with a standard repre-
sentation, we computed a vector ofD = 13 mel-cepstral features for each 10 millisecond
frame that was labelled as a vowel in the transcriptions. To reduce the impact of tran-
scription errors and co-articulatory phenomena, we narrowed the data to the middle
half of each vowel segment, yielding roughlyN = 240,000 samples inR13. Multiple
applications ofPCA to random data neighborhoods suggested that the data is locally
5-dimensional. AnNA embedding of the 7 approximately-nearest neighbors graph with
5-dimensional neighborhoods and a 25-dimensional basis took slightly less than 11
minutes to compute. The spectrum is sharp, with >99% of the variance in 7 dimensions,
>95% in 5 dimensions, and >75% in 2 dimensions. APCA rotation of the raw data
matches these percentages at 13, 9, and 4 dimensions respectively. Noting the discrep-
ancy between the estimated local dimensionality and global embedding dimension, we
introduced slack variables with low penalties to explore the possibility that the graph
was not completely unfolding. Since this left the spectrum substantially unchanged, we
conjecture that there may be topological loops or unnoticed 7-dimensional clusters, and
indeed some projections of the embedding showed holes.

Figure4 shows how the phonemes are organized in the two principal dimensions of
the NA andPCA representations. TheNA axes are clearly correlated with the physical
degrees of freedom of the speech apparatus: Roughly speaking, as one moves to the
right the mouth narrows horizontally, fromiy (beet) andey (bait) to ao (bought) and
aw (bout); as one moves up the mouth narrows vertically with the lower lip moving
forward and upward, fromah (but) andeh (bet) to ow (boat) anduh (book). The third
dimension (not shown) appears to be correlated with the size of the resonant chamber at



the back of the mouth, i.e. tongue position. After considerable study, it is still not clear
how to interpret the rawPCA axes.

A low-dimensional representation is advantageous for speech recognition because
it makes it practical to model phoneme classes with full covariance Gaussians. A long-
standing rule-of-thumb in speech recognition is that a full-covariance Gaussian is com-
petitive with a mixture of 3 or 4 diagonal-covariance Gaussians [LRS83]. The impor-
tant empirical question is whether theNA representation offers a better separation of
the classes than thePCA. This can be quantified (independently of any downstream
speech processing) by fitting a Gaussian to each phoneme class and calculating the
symmetrizedKL -divergence between classes. Higher divergence means that one will
need fewer bits to describe classification errors made by a (Gaussian) quadratic classi-
fier. We found that thedivergence between classes in the d= 5 NA representation was
on average approximately 2.2 times the divergence between classes in the d= 5 PCA

representation, with no instances where theNA representation was inferior. Similar
advantages were observed for other values ofd, even, surprisingly,d = 1 andd = D.

Even though both representations are unsupervised, we may conclude that preserv-
ing short-range metric structure (NA) is more conducive to class separation than pre-
serving long-range distances (PCA). We are now working on a larger embedding of
all phonemes which, when combined with theGNA out-of-sample extension, will be
incorporated into a speech recognition engine.

6 Discussion

We have demonstrated that rigidity is a key obstacle for viable nonlinear dimension-
ality reduction, but by stiffening the constraint set and recasting the upgrade to isom-
etry as a smallSDP problem, problems that are severely ill-posed and ill-conditioned
can be solved—in linear time. At time of submission, we have successfully embed-
ded problems of up to 106 points, and it appears that the principal challenge in using
these methods will be the most advantageous choice of basis dimension. The is a matter
of finding the eigengap of ill-posed problems, and we hope to make connections with
an existing literature on large-scale physical eigenproblems. Another issue is the initial
problem of graph building—at 105 points, the approximate nearest-neighbor algorithms
that make graph-building tractable begin to make substantial errors. ForNLDR to be
practical above 107 points—the size of bioinformatic and econometric problems—the
problem of reliable graph-building will have to be solved.
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A Analysis of local-to-global spectral models and misc. proofs

We can view the constraint matrixK as a discrete approximation to a convolution of a
candidate embeddingZ with a filter If we plot columns ofK , this filter resembles an
inverted Laplacian. Analysis shows that this is indeed the case:

Proposition 4. LetZ .= [z1, · · · ,zN] ∈Rd×N with zi = z(yi) be a data parameterization
given by some C2 multivalued map z: M → Rd on the intrinsic coordinatesyi . Let

K .=
(

∑
m

SmQmQ>
mdiag(wm)S>m

)
diag(∑

m
Smwm)−1 (7)

where binary indexing matrixSm ∈ {0,1}N×k select k points forming the mth neigh-
borhood and neighborhood weight vectorwm∈Rk assigns points weights according to
their distance from the neighborhood center: ({wm}i ∝ exp(−‖{Xm}i−Xm‖2/2σ2)/σ).
Then each column ofK is a discrete difference of Gaussians operator with the param-
eterization error‖ZK ‖2

F approximating‖z−G∗z−52G∗z‖2, the difference between
z and a smoothed version of itself, minus its convolution with a Laplacian-of-Gaussian
operator.

Proof. (prop.4) For simplicity, we will first consider the case of a 1D manifold sampled
at regular intervals. Recall thatK is an average of neighborhood nullspace projectors,
each of the formNm = QmQ>

m = I − 1
k11>−PmP>m, wherePk ∈ Rk×d is an orthogonal

basis of centered local coordinatesXm−Xm1>. Because orthogonalization is a linear
operation,1k −{Nm}i 6= j is proportional to‖{Xm}i −Xm‖ · ‖{Xm} j −Xm‖, the product
of the distances of pointsi and j from the clique centroid. Viewing the elements of the
matrixPmP>m as surface heights, we have a quadratic saddle surface, maximally positive
in the upper left and lower right corners, and maximally negative in the upper right and
lower left corners. In our simplified case,Pm = k−1/2 · [− j,1− j, · · · , j −1, j]> where



k = 2 j + 1 is the size of each neighborhood, and elements in each column ofK are
Gaussian-weighted sums along the diagonals ofNm. Precisely, for thepth non-boundary
neighborhood, thenth nonzero subdiagonal element in a column ofK is

Kp+n,p = −1
k

i=2 j

∑
i=n

(1+(i− j)(i− j−n)
3

j( j +1)
)e−(i− j)2

= −1
k

3
j( j +1)

i=2 j

∑
i=n
{(1− (i− j)2)e−(i− j)2

−(1−n(i− j))e−(i− j)2
+

j( j +1)
3

e−(i− j)2}.

Note that(1−(i− j)2)e−(i− j)2
is a Laplacian-of-Gaussian, and that if we holdi = n and

iterate overn (the elements of a column inK ), we obtain a difference of Gaussians and
LoG’s, each with finite support; summing overi gives a superposition of these curves,
each with a different support. To generalize to non-regular sampling, simply increment
i by the difference between neighboring points. To generalize to multidimensional man-
ifolds, note that the above arguments apply to any subset of points forming a geodesic
line onM , and by the linearity ofK and the Laplacian operator, to any linear combina-
tion of different subsets of points forming different geodesics.

Proposition 5. The near-zero eigenvalues of I−G−52G grow quadratically.

Proof. (prop. 5) Consider the harmonic equation, which describes how the graph vi-
brates in the space normal to its embedding:−(I −G−52G)Y(x, t) = d2Y(x, t)/d2t,
with Y(x, t) being the displacement at timet and positionx (in manifold-intrinsic co-
ordinates). For periodic motion, setY(x, t) = sin(ωt) ·Y(x), with Y(x) being a vibra-
tional mode. After substitution and cancellation, the harmonic equation simplifies to
(I −G−52G)Y(x) = ω2 ·Y(x), confirming that the modeY(x) is an eigenfunction of
the operatorI −G−52G. One can verify by substitution thatY(x) = sin(ax+ b) for
a∈ {1,2, · · · ,N} ,b∈ R is an orthogonal basis for solutions (eigenvectors) with eigen-
values on the sigmoid curveω2 = 1− (1+a2/

√
2π)e−a2

. A series expansion around
a = 0 reveals that the leading term is quadratic.

Proof. (prop.1) Expansion generates a new neighborhood whose parameterization is
affine to those of its constituent neighborhoods, thus its nullspace is orthogonal toK .

Proof. (prop.2) Because of halving, at any scale the number of vertices in each neigh-
borhood expansion is, on average, a constantv� N that is determined only by the
intrinsic dimensionality and the average size of the original local neighborhoods. Halv-
ing also guarantees that the total number of neighborhood expansions is∑i(1

2)iN < N.
Together these establishO(N) time. In each of the fewer thanN neighborhood expan-
sions, a point receives on averaged constraints from new neighbors—the same or less
than it receives in each of theN original neighborhoods.

Proof. (prop. 3) SinceF is a variance-preserving rotation of the constraints, one can
always rotate thef -dimensional row-space ofF = [f1, · · · , f f ] so that∀i f>i b > 0 . Then
any infeasible solutioñG can be scaled byz> 0 such that∀i f>i A>svec(zG̃)≤ f>i b, with
any differences made up by nonnegative slack variables.
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