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BubbleSearch: A Simple Heuristic for
Improving Priority-Based Greedy Algorithms

N. Lesh* M. Mitzenmacher®

Abstract

We introduce BubbleSearch, a general approach for extending priority-based greedy heuristics.
Following the framework recently developed by Borodin et al., we consider priority algorithms, which
sequentially assign values to elements in some fixed or adaptively determined order. For example,
the First-Fit-Decreasing algorithm for bin packing considers the items in order of decreasing size,
and assigns each item to the lowest-numbered bin in which it will fit. For many problems, there exist
priority algorithms that are good heuristics and/or provably competitive algorithms.

BubbleSearch extends priority algorithms by selectively considering additional orders near an
initial good ordering. While many notions of nearness are possible, we explore algorithms based
on the Kendall-tau distance (also known as the BubbleSort distance) between permutations. Our
contribution is to elucidate the BubbleSearch paradigm and experimentally demonstrate its effec-
tiveness.

1 Introduction

Recently, Borodin, Nielsen, and Rackoff introduced a framework that encompasses a large subclass of
greedy algorithms, dubbed priority algorithms [1, 5]. Priority algorithms have historically been used
for and are especially effective at solving scheduling and packing problems. We provide a formalization
below, but the essential contribution of the framework is to represent priority algorithms with two
functions: a placement function that sequentially assigns values to elements, and an ordering function
that determines the order in which elements are assigned values. For example, the First-Fit-Decreasing
algorithm for bin packing sequentially places items in order of decreasing size, where each item is placed
into the lowest-numbered bin in which it will fit. Priority algorithms are commonly used because they
are simple to design and implement, run quickly, and often provide very good heuristic solutions.
Additionally, many priority algorithms have been shown to have a bounded competitive ratio.

In work on heuristics and metaheuristics, the following idea has appeared in many guises: while
the solutions produced by greedy algorithms are typically quite good, there are often better solutions
“nearby” that can be found with small computational effort by perturbing the greedy construction.
Early work in this area was done by Hart and Shogan [9]. This idea is also part of the basis for Greedy
Randomized Adaptive Search Procedures, or GRASP algorithms (see, e.g. [16] and the references
therein). GRASP algorithms have two phases. The construction phase generates solutions in a greedy
fashion, introducing some randomness to obtain many solutions. The local search phase attempts to
improve these solutions via a local search heuristic, in order to reach a local optimum.

We introduce a generic extension to the priority algorithm framework for specifying in which order
variations of the priority algorithm’s ordering should be evaluated. This approach yields algorithms for
finding better solutions given additional running time. The GRASP literature provides several possible
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methods for perturbing the ordering that can be easily represented within our framework. In this paper,
we focus on a different method for perturbing the original ordering based on the Kendall-tau distance.
The Kendall-tau distance is also known as the BubbleSort distance, which is why we call our approach
BubbleSearch. Additionally, as described in Section 2.5, BubbleSearch allows a simple mechanism for
replacing the base ordering to perturb in future iterations. The mechanism substantially improves the
performance of our algorithms in some of the examples below.

BubbleSearch is domain independent: our generic implementation treats the ordering and placement
functions of a priority algorithm as black boxes, and can therefore easily extend any priority algorithm
that uses these components. While the particular ordering and placement functions for a priority
algorithm must be constructed to be effective in that problem domain, BubbleSearch does not require
any additional domain-specific knowledge.

We provide results from case studies for several problems: rectangular strip packing, jobshop
scheduling, and edge crossing. (We have results for other problems as well, but omit them for lack
of space.) We show that BubbleSearch can significantly improve upon the priority algorithm it extends
after evaluating only a small number of orderings. In particular, for all three problems, the average
result of randomized BubbleSearch after evaluating 100 orderings was always at least 20% closer to
the optimal than the average result of the original priority algorithm. The results continue to improve
as BubbleSearch evaluates more orderings. We also compare BubbleSearch to the naive randomized
strategy that applies the placement rule to permutations chosen uniformly at random. This approach
is well known and commonly tried, but is usually ineffective. Finally, BubbleSearch can also be seen as
an alternative to the typical randomized greedy strategies used in the construction phase of GRASP
algorithms. We therefore compare BubbleSearch to suggested strategies from the GRASP literature.
We find that BubbleSearch performs at least as well or better in almost all cases.

To summarize, our contributions are the following:

e A consistent formalization for BubbleSearch and priority algorithms. This formalization leads to
domain-independent implementation, as well as several interesting and novel variations. While
we have not used this formalization to prove theoretical results for BubbleSearch, we hope that
it may be a step toward theoretical results in the future.

e A code base for implementing BubbleSearch algorithms. This code base is freely available for
research purposes.

e The introduction of a replacement mechanism that improves both BubbleSearch and similar
GRASP strategies.

e Experimental results demonstrating the effectiveness of BubbleSearch in general, including its
effectiveness compared to similar standard heuristics.

2 Priority Algorithms and BubbleSearch

2.1 Priority Algorithms

We first introduce terminology for optimization problems. A problem is characterized by a universe U
of elements and a universe V of values. A problem instance includes a subset of elements £ C U. A
solution is a mapping of elements in F to a value in V. We use the term partial solution to emphasize
that only a subset of the elements in £ may have values. The problem definition also includes a total
ordering (with ties) on solutions.

Along the lines of Borodin et al., we define a placement function f as a function which maps a
partial solution and an element to a value for that element.



A fized priority algorithm can be defined from a placement function f and an ordering function
0. The input to the priority algorithm is a problem instance I. The ordering function maps I to an
ordered sequence of the elements in I. Let o(I) be x1,...,2,. Let Sy be an empty mapping, and for
1 < i < n, let S; be the mapping defined by extending S;_1 by adding v(z;) = f(S;—1, ;). The priority
algorithm returns the solution S,,. (In some cases, a partial solution Sy could be returned; this will
not be the case for any algorithms in this paper.) The key points are that a fixed priority algorithm
requires an ordering of all elements in the problem instance; the algorithm is greedy, in that the value
assigned to z; is a function only of previously assigned elements; and the value of an element is fixed
once decided.

An adaptive priority algorithm is similar, except that elements are reordered after each placement.
The ordering function o now takes as input a problem instance I and a partial solution S, and returns
an ordered list of all elements in I not assigned a value in S. Let Sy be an empty mapping, and for
1 < i < nlet z; be the first element of o(Z,S;_1). That is, z; is the first unplaced element in the
adaptive ordering based on the values assigned to the previously placed elements. As above, let S; be
the mapping defined by extending S;_1 with v(z;) = f(Si—1,%;).

A simple example distinguishing these variations is provided by the well-known heuristics for vertex
coloring. The problem is to color the vertices of the graph so that no two endpoints of an edge have
the same color; the goal is to accomplish this with the minimum number of colors. Let the set of
possible colors be {1,2,...}. Here the elements are the vertices. (Note a problem instance also contains
information in addition to the set of elements, namely the graph that relates the vertices.) The values
are the colors. A natural placement function, given a partial solution and an additional vertex, is to
assign the vertex the lowest-numbered color that yields a valid coloring consistent with the partial
solution. The standard fixed priority algorithm orders the vertices by decreasing degree. The related
adaptive priority algorithm orders the vertices by decreasing remaining degree, where the remaining
degree does not count edges that involve a vertex that has already been colored in the partial solution.'

2.2 Anytime Priority Algorithms

An anytime priority algorithm is an extension of a fixed or adaptive priority algorithm that continues
to apply its placement function to new orderings of the problem elements. It can be halted at any
point and will return the best solution it has evaluated so far. Note that according to our definitions,
a placement function yields a solution if applied to any ordering of the problem elements.

In fixed and adaptive priority algorithms, the highest-priority element is placed at each step. Our
generalization is to choose elements other than the highest-priority element at each step. To more easily
describe this generalization for both fixed and adaptive priority algorithms, we introduce the notion
of a decision vector (ai,as,...,a,). The number a; represents which remaining element should be
considered at each step; if a; = k, then the kth-highest-priority element is placed in step j. Specifically,
for 1 < i < n, we modify the above definition of S; by letting z; be the a;th element of o(I) for
fixed priority algorithms or of o(I,S;_1) for adaptive priority algorithms. It follows that we require
1 <a; <n —1+4 1 in the decision vector.

With the above formulation, we can characterize priority algorithms by how they choose decision
vectors to evaluate. For example, standard fixed and adaptive priority algorithms evaluate a single
ordering corresponding to the all-ones vector 1,, = (1,1,...,1). A simple anytime priority algorithm
repeatedly applies the placement function to random orderings. In terms of decision vectors, this
corresponds to choosing each a; independently and uniformly at random from [1,n — i + 1].

!Both algorithms have the issue that there may be ties according to this ordering. Ties can be broken in an arbitrary
or random fashion.



2.3 GRASP algorithms

As previously mentioned, GRASP algorithms have a construction phase that generates solutions in a
greedy fashion. This construction phase can generally be described in our framework above. Although
not usually described as such, many GRASP implementations can be represented with an ordering
function and a placement function. In our terminology, the construction phase randomly chooses each
a; in the decision vector uniformly over min(k,n — i + 1) for some fixed constant k. That is, at each
step, one of the top k elements remaining is selected. Usually & is two or three.

Another common GRASP approach is to assign each element a score after each placement, where
elements with high scores are more desirable. That is, in the adaptive setting, there is a scoring function
s which takes as input a problem solution I and a partial solution S and returns a score for all elements
in I not assigned a value in S. The scoring function can be seen as a generalization of the ordering
function; often an ordering function is derived from some scoring function, although in our framework a
scoring function is not necessary. Let ¢;_1 and u;_1 be the lowest and highest scores after ¢ — 1 elements
have been placed. Then the next element be to be placed is uniformly selected from all elements whose
score is at least u;—1 — a(u;—1 — ¢;—1), where @ < 1.0 is a predetermined parameter. (Alternatively,
a can be changed dynamically as the process runs. See [16] for more information.) In this case the
possible range of values for each a; depends on the results of the scoring function, and hence the decision
vectors cannot be computed in advance.

Notice that for both of these methods there are some orderings of elements which can never be
evaluated.

2.4 Kendall-tau distance

Recall that our insight is to explore solutions close to the one determined by the priority algorithm, which

corresponds to evaluating decision vectors close to the all-ones vector. While there are many notions of

closeness, we found Kendall-tau distance to be well justified theoretically and useful algorithmically.
The Kendall-tau distance is defined as follows. Consider two orderings 7 and o of an underlying set

{z1,...,2,}, so that 7(7) is the position of z; in the ordering 7. Then
dien(m,0) = Y I[x(i) < x(j) and o (i) > ()],
1<i<j<n

where I[z] is 1 if expression z is true and 0 otherwise. The Kendall-tau distance is the minimum number
of transpositions needed to transform 7 to o, and hence it is also referred to as the BubbleSort distance.

Suppose that we have an ordering of elements m = x1,...,x,. Consider the ordering o determined
by a decision vector ¢ applied to 7. The following lemma is easily verified.

Lemma 1 The value |a — 1,| is the Kendall-tau distance between m and o where the norm is the Ly
distance.

2.5 BubbleSearch

We now present BubbleSearch, a generic approach for producing anytime priority algorithms from fixed
or adaptive priority algorithms. In particular, we describe natural exhaustive and random methods for
determining which decision vectors to evaluate.

An exhaustive anytime algorithm must eventually consider all possible n! decision vectors with
1 <a; <n—1i+4+1. We refer to this set of vectors as O,. As considering all n! decision vectors is
likely to be too expensive computationally, the order in which the vectors are evaluated is important
to performance. Our exhaustive BubbleSearch algorithm uses the following order. We define a total
ordering on Oy:



I.a<bif|la—1,] <|b—1,];

2. if la—1,| = |b—1,], then a < b is true if and only if a comes before b in the standard lexicographic
ordering for vectors.

Note that in the case where |a — 1,,| = |b — 1,,|, alternative total orderings could be used to determine
when a < b. Further, considering decision vectors in this order is easy to implement in practice.

The intuition for this total ordering on decision vectors derives from fixed priority algorithms. Given
a fixed priority algorithm, let us call the ordering of elements in a particular problem instance determined
by the ordering function the base ordering. Our exhaustive BubbleSearch algorithm searches outward
from the base ordering in order of increasing Kendall-tau distance.

For many problems, small perturbations to an element ordering tend to make only a small dif-
ference in solution quality. In this case, larger perturbations may be more effective. This motivates
our randomized BubbleSearch algorithm, which chooses decision vectors to try at each step randomly
according to some probability distribution. A decision vector a is chosen with probability proportional
to g(|a — 1,]) for some function g. We suggest using the function (1 — p)l*~ 1=/ for some parameter p,
which determines how near the base ordering our randomly chosen orderings tend to be. In the case of
fixed priority algorithms, this has a natural interpretation: if 7 is the base ordering, then at each step
an ordering o is chosen with probability proportional to (1 — p)®sen(70),

We note that we have found that a similar idea has appeared previously in the GRASP literature.
Bresina [6] considers choosing candidate elements from a rank ordering in a biased fashion; one of the
bias functions suggested is to chose at each step the ith ranked item with probability proportional to
e~t. Our suggestion is an obvious generalization, choosing the ith item with probability proportional
to (1 — p)~ for some p. The generalization allows improved performance. In our experiments below,
the best performing value of p varied by application.

One reason for choosing this function is that it has a simple algorithmic implementation. To choose a
decision vector according to the distribution above, we determine each a; as follows. Let g be 0, initially.
Repeat the following: with probability p, terminate and output a; = ¢ + 1; otherwise increment ¢ by 1
modulo n — ¢ + 1. Of course more efficient implementations are possible.

Both the exhaustive and randomized BubbleSearch algorithms apply equally well to dynamic priority
algorithms. Because the ordering function o changes as elements are placed, we cannot directly tie this
ordering to the Kendall-tau distance between orderings, as we can in the fixed priority case. We feel
however that this is approach is still quite natural for dynamic priority algorithms.

BubbleSearch offers a great deal of flexibility. For example, there can be several ordering functions,
with the algorithm cycling though them (or running on several ordering functions in parallel). Similarly,
there can be several placement functions. Local search can be done as postprocessing, as with GRASP;
as a specific example, we can truncate the last k£ fields of the decision vector, and exhaustively search
over all completions of the first n — k fields. We have tried many of these variations in our experimental
work.

The most successful variant of BubbleSearch we have found applies to fixed priority algorithms. In
such algorithms, the base ordering does not need to remain static. If an ordering leads to a new best
solution, it can replace the base ordering (or be used as an additional base ordering). Decision vectors
are then applied from the new base ordering. We refer to the variation that replaces the base ordering
as BubbleSearch with replacement, which is apparently novel and performs very well in the experiments
described below.

Replacement can be seen as a simple type of memory or learning added to the BubbleSearch ap-
proach. While other types of memory or learning have been suggested for GRASP algorithms [16],
this simple but useful technique does not appear to have been explored. However, it can be easily
incorporated into many GRASP strategies.



3 Applications of BubbleSearch

In this section, we present experiments demonstrating the effectiveness of BubbleSearch, including its
effectiveness compared to GRASP heuristics. Because BubbleSearch is simple and generic, we believe
these results provide a strong case for the utility of BubbleSearch for any problem on which a priority
algorithm is currently used. We note that we have experimented with both exhaustive and random
BubbleSearch, but because random BubbleSearch performs better in all the cases below, we present
only the results for the random BubbleSearch method.

For each experiment, we compare BubbleSearch to the naive algorithm that repeatedly places the
elements in a random order, and to three variations of GRASP. We refer to the variation that returns
one of the top k elements as GRASP-k. The second variation is GRASP-k with replacement. The
third variation is the one described above that uses a scoring function on elements, which we refer to
as GRASP-a. In all cases below, our ordering function was based on a scoring function and so it was
easy to apply GRASP-a. Notice that replacement cannot be applied to GRASP-«, as it is not based
on fixed priorities.

For these experiments, we use the same (unoptimized) Java implementation of BubbleSearch. We
developed our generic BubbleSearch code using the HuGS Toolkit, Java middleware for rapidly pro-
totyping interactive optimization systems [12]. (For the packing application described below, we have
also implemented an interactive system that includes BubbleSearch [15].) This code provides an inter-
face for defining the domain-specific components for each application, including the problem definition,
placement function, and ordering functions. Thus our generic BubbleSearch code treats the priority
algorithm’s components as black boxes. In each iteration, BubbleSearch evaluates one ordering. Our
BubbleSearch algorithm always first applies the placement function to the base ordering before consid-
ering perturbations. When more than one ordering function is provided, the BubbleSearch algorithm
iterates through them in a round-robin fashion. This code is freely available for research or educational
purposes.?

3.1 2D Strip Packing

Packing problems involve constructing an arrangement of items that minimizes the total space required
by the arrangement. In this paper, we specifically consider the two-dimensional (2D) rectangular strip
packing problem. The input is a list of n rectangles with their dimensions and a target width W. The
goal is to pack the rectangles without overlap into a single rectangle of width W and minimum height
H. We further restrict ourselves to the orthogonal, fixed-orientation variation, where rectangles must
be placed parallel to the horizontal and vertical axes and the rectangles cannot be rotated. (We have
considered the variable-orientation variation, in which rectangles can be rotated by 90 degrees, and
obtained similar results [15].) For all of our test cases, all dimensions are integers. Even with these
restrictions, 2D rectangular strip packing, like most packing problems, is NP-hard.

3.1.1 Applying BubbleSearch

The Bottom-Left (BL) placement function, introduced in [3], is probably the most widely studied and
used heuristic for placing rectangles for the fixed-orientation problem. BL sequentially places rectangles
first as close to the bottom and then as far to the left as they can fit relative the already-placed
rectangles. The BL heuristic has been shown to be a 3-approximation when the the rectangles are
sorted by decreasing width (but the heuristic is not competitive when sorted by decreasing height)
[3]. While BL cannot find the always find the optimal packings even if applied to every permutation

2Contact lesh@merl.com for details.



BubbleSearch p value

replacement || 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
without 8.033 | 7.433 | 6.533 | 6.300 | 6.033 | 5.900 | 6.400 | 6.567 | 7.767
with 9.000 | 8.367 | 7.567 | 6.400 | 6.400 | 6.167 | 6.267 | 6.267 | 6.767

Table 1: Tuning the input probability for randomized BubbleSearch on Packing

iter- random BubbleSearch GRASP-k GRASP-«
ations w/o replace | w/ replace | w/o replace | w/ replace
p=20.6 p=20.6 k=3 k=2 a=0.3

1 (base) || N/A | 6.25 6.25 6.25 6.25 6.25
100 12.20 4.50 4.52 4.48 4.65 4.85
500 10.65 3.92 3.97 4.05 4.18 4.33
1000 9.93 3.77 3.85 3.90 4.13 4.20
5000 8.90 3.50 3.40 3.65 3.65 3.63
10000 8.70 3.35 3.32 3.50 3.38 3.58
15000 8.40 3.30 3.22 3.48 3.35 3.50
20000 8.28 3.27 3.15 3.35 3.28 3.43

Table 2: BubbleSearch applied to Packing problems

of rectangles [3, 7], it performs very well in practice when applied under the ordering (or scoring for
GRASP-«) functions of decreasing height, width, perimeter, and area [10]. We refer to taking the best
result from BL on all four of these ordering functions as Bottom-Left-Decreasing (BLD).

The BLD priority algorithm has been shown to handily outperform the best-published implemen-
tations of more sophisticated search techniques, such as simulated annealing or genetic algorithms. For
more details see the thesis of Hopper [10].

We evaluated BubbleSearch using BL and the four ordering functions on benchmarks recently de-
veloped by Hopper. All instances in this benchmark can be packed with no empty space into a square
with side length 200. The instances are derived by recursively splitting the initial large rectangle ran-
domly into smaller rectangles; for more details, see [10]. This benchmark set contains problems with
size ranging from 17 to 197 rectangles. We use the non-guillotinable instances from this set, collections
N1 (17 rectangles) through N7 (197 rectangles), each containing 5 problem instances. We found the
instances in N1-N3 easy to solve using exhaustive search [14].

For all our experiments, we pack the rectangles into a strip of width 200, so that the optimal height
is 200. We score a solution by the percentage over optimal. Each entry in our tables is an average over
all relevant problem instances.

We tuned our BubbleSearch algorithms using collections N1-N3 and tested them on N4-N7. We
ran randomized BubbleSearch with and without replacement on N1-N3 for 10,000 iterations and with
p=0.1xqfor 1 <i<9. As shown in Table 1, the best p with and without replacement was 0.6. We
use this p in our experiments on N4-NT7.

We also tuned the GRASP algorithms on N1-N3 and tested them on N4-N7. We ran GRASP-£
with and without replacement for 10,000 iterations and with £ = 2,...,10. We ran GRASP-« with
a=01x*xg3forl1<3<9.

3.1.2 Results

Table 2 shows the results for applying several BubbleSearch variations and random orderings to BL on
the 20 instances in the N4-N7 collections. The first row shows the results from BLD, which requires an



iteration for each of the four base orderings.

While using even 20,000 random orderings does not perform as well as BLD, just 100 iterations of
each variation of BubbleSearch significantly improved upon BLD. In particular, randomized Bubble-
Search without replacement scored 28% closer, on average, to optimal than BLD after 100 iterations.
These improvements continue, but taper off over time. BubbleSearch performs better than the GRASP
variants over almost all iterations, although the improvement is small.

For both randomized BubbleSearch and GRASP-k, replacement offers minor gains. However, this
was not the case for the training data N1-N3 above, in which randomized BubbleSearch performed
better without replacement. More experimentation would be required to determine if replacement is
truly valuable for this problem, although we believe these results are encouraging.

The BubbleSearch results are the best we know of for the 2D Strip Packing problem, with the
exception of the results provided by our interactive system [15]. This system allows human users to
guide the BubbleSearch algorithm and modify solutions directly.

3.2 Jobshop Scheduling

The Jobshop application is a widely-studied task scheduling problem [2]. In the variation we consider,
a problem consists of n jobs and m machines. Each job is composed of m operations which must be
performed in a specified order. The ordered list of operations for each job is called an itinerary. Each
operation must be performed by a particular machine, and has a fixed duration. In our variation, every
job has exactly one operation that must be performed on each machine. Each machine can process only
one operation at a time.

A solution is a jobshop problem is a jobshop schedule that specifies a roster for each machine, which
indicates the order in which the operations will be performed on that machine. Given a solution, each
operation starts as soon as all predecessors on its machine’s roster and predecessors on its job’s itinerary
have completed. The goal is to find a schedule which minimizes the time that the last job finishes, called
the makespan.

3.2.1 Applying BubbleSearch

Several priority algorithms exist for Jobshop scheduling. These are often used to quickly find reasonably-
good solutions, to find near-optimal solutions for easy problems, or to find a starting solution for a more
sophisticated search algorithm such as tabu search.

A wide variety of ordering rules have been proposed (e.g., [4]) for jobshop scheduling. After a small
amount of experimentation, we focused on one of the more popular which orders operations by the
Most Work Remaining (MWKR). The work remaining for an operation o is the sum of the durations
of the operations subsequent to o on its job. MWKR is a fixed ordering function.

We experimentally compared two placement functions. We describe the comparison in some detail,
here, in order to demonstrate how one can evaluate the tradeoffs between efficiency and effectiveness
within BubbleSearch. (That is, we are not claiming to make an novel contribution for jobshop schedul-
ing.) The nonDelay placement function simply schedules the given operation o at the earliest time
possible after the last currently-scheduled operation on o’s machine.?> The second placement function
bestPlace, considers inserting o at every location in o’s machine’s current roster, and chooses the lo-
cation that produces the partial schedule with minimum makespan (after repacking to eliminate any
unnecessary delays in the schedule). The bestPlace function is likely to produce a better schedule, but
requires more computation time per placement.

3However, if scheduling o after the last scheduled operation would introduce a cycle, we introduce it earlier.



Note that the bestPlace function can change the time at which already placed operations are sched-
uled. However, once an operation is placed its relative position to (i.e., before or after) all the other
placed operations on its machine never changes. Therefore, to define bestPlace as a placement function,
it should return a relative value and not an absolute time for each operation. After all operations are
placed, their times can be computed from these values.

We compared the two placement functions using randomized BubbleSearch, without replacement,
and p = 0.5. We ran the algorithm with each placement function for 20 minutes on the four instances of
size 20x 20 named ynl-yn4 [17] that are available at the OR-Library (http://www.ms.ic.ac.uk/info.html).
Table entries present the average makespan found for the relevant problems. For these instances and
algorithm settings, BubbleSearch performed an average of 17,343.3 iterations with bestPlace placement
and 802,516.8 iterations with nonDelay in 20 minutes. However, the average makespan of bestPlace
was 1141.50 while nonDelay was 1253.75. Based on this experience, we use bestPlace for the remainder
of our experiments.

This example demonstrates one strength of the BubbleSearch framework: it allows experimentation
with multiple ordering and placement functions.

We then tuned the input probability for randomized BubbleSearch, as above, by running it on the
ynl-yn4 problems for 10,000 iterations with p = 0.1 x4 for 1 <7 < 9. As shown in Table 3, the best p
without replacement was 0.3 and with replacement was 0.7. We used the same test data and number
of iterations to tune the GRASP algorithms. We ran GRASP-k£ with and without replacement with
k=2,...,10. We ran GRASP-a with a = 0.1 %7 for 1 < ¢ < 9. Based on these results, it appeared
that even smaller values of a would lead to better performance, so we also tested GRASP-a with
a = 0.012,0.025, and 0.05 as well. We found that o = 0.025 offered the best performance.

3.2.2 Results

We evaluated BubbleSearch on the 20 problems called 1a21-1a40, also available in the OR-Library. These
problems have sizes 15 x 10, 20 x 10, 30 x 10, or 15 x 15. We computed a conservative lower bound
for each problem by taking the maximum total duration of operations scheduled for any single job or
machine. The average lower bound was 1227.9 for these problems.

The results in Table 4 demonstrate the value of BubbleSearch. Even using 20,000 random orderings
does not perform as well as the priority algorithm. On the other hand, even 100 iterations of randomized
BubbleSearch significantly improved upon it. In particular, randomized BubbleSearch without replace-
ment scored 22.3% closer, on average, to our conservative lower bound than the priority algorithm,
after 100 iterations.

For this problem, we find that BubbleSearch without replacement performs essentially the same as
the best GRASP variation without replacement. Our replacement mechanism consistently improves
both BubbleSearch and GRASP-£ with GRASP-k£ having a slight advantage.

For this application, sophisticated algorithms such as tabu search generally produce better solutions
than BubbleSearch has found [11]. Often such algorithms use priority algorithms to generate an initial
solution to search from. We expect that BubbleSearch could provide value by improving that initial
solution. More generally, a complete GRASP for the problem could use BubbleSearch or GRASP-k
with replacement in the construction phase and a tabu search for the local search phase.

3.3 Edge Crossing

Edge-crossing minimization is a graph layout problem [8]. A problem consists of m levels, each with n
nodes, and edges connecting nodes on adjacent levels. The goal is to rearrange nodes within their level
to minimize the number of intersections between edges.



BubbleSearch p value
replacement || 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
without 1159.00 | 1118.50 | 1114.25 | 1121.75 | 1118.50 | 1121.75 | 1129.50 | 1138.00 | 1141.25
with 1176.25 | 1129.50 | 1132.00 | 1104.00 | 1103.75 | 1101.50 | 1093.00 | 1102.00 | 1115.50

Table 3: Tuning the input probability for randomized BubbleSearch on Jobshop

iter- random BubbleSearch GRASP-k GRASP-«
ations w/o replace | w/ replace | w/o replace | w/ replace

p=20.3 p=0.7 k=28 k=2 a =0.025
1 (base) || N/A 1672.60 1672.60 1672.60 1672.60 1672.6
100 2220.80 | 1573.45 1567.95 1580.20 1562.80 1590.70
500 2147.85 | 1554.65 1533.60 1559.90 1529.25 1580.90
1000 2104.15 | 1547.15 1523.65 1546.05 1522.60 1571.75
5000 2028.75 | 1528.40 1502.00 1531.45 1500.50 1568.75
10000 2007.20 | 1523.00 1497.35 1523.70 1489.10 1566.10
15000 1984.45 | 1520.45 1494.55 1521.25 1486.35 1564.9
20000 1981.55 | 1518.30 1492.25 1517.75 1485.70 1562.35

Table 4: BubbleSearch applied to Jobshop problems

3.3.1 Applying BubbleSearch

We used a placement function similar to bestPlace above, which positions each node in the best location
(in its assigned level) to minimize intersections with the previously placed nodes. We considered two
factors when developing the ordering function: the number of edges per node, and the closeness of the
node to the middle level. After a modest amount of experimentation, we determined that the best
combination was to order nodes by decreasing degree, breaking ties by closeness to middle.

We evaluated BubbleSearch on ten 12x8 graphs with 110 edges that are publicly available*. To
tune the p parameter for randomized BubbleSearch, we randomly generated 10 other, similar 12x8
graphs. As above, we ran BubbleSearch 10,000 iterations with p = 0.1 %7 for 1 <7 < 9. As shown in
Table 5, the best p without replacement was 0.2 and with replacement was 0.3. Again, we used the
same test data and number of iterations to tune the GRASP algorithms, trying values & = 2,...,10 for
GRASP-k with and without replacement and values o = 0.1 x4 for 1 <14 <9 for GRASP-a.

We also designed an adaptive priority function for this problem. After each node is placed, the
remaining nodes are reordered in decreasing order of degree, but edges count differently if they are
connected to an already-placed node. We tested variations in which these edges count twice as much and
half as much. We ran 10,000 iterations of randomized BubbleSearch with the adaptive priority function
on our random graphs with p = 0.5. Counting the “half-placed” edges twice as much produced the best
results, with an average of 135.5 intersections, while counting them equally yielded an average of 147.7
intersections, and counting them half as much produced an average of 166.1 intersections. While these
results show that the adaptivity helps, we choose to emphasize the comparison among BubbleSearch
and the GRASP variants without adaptivity, for consistency with our previous experiments.

3.3.2 Results

The results in Table 6 show the average number of intersections of the algorithms over the 10 problems
in our benchmark. (Again, all algorithms used the fixed priority function.) BubbleSearch without
replacement has performance similar to but slightly better than the best GRASP variant without

* At http://unix.csis.ul.ie/~ grafdath/TR-testgraphs.tar.Z
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BubbleSearch p value
replacement || 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
without 144.300 | 140.000 | 144.600 | 145.400 | 146.000 | 149.600 | 157.600 | 157.900 | 171.300
with 153.800 | 136.100 | 124.900 | 127.700 | 127.000 | 128.600 | 136.000 | 146.800 | 152.600

Table 5: Tuning the input probability for randomized BubbleSearch on Crossing

iter- random BubbleSearch GRASP-k GRASP-«
ations w/o replace | w/ replace | w/o replace | w/ replace
p=02 p=03 k=10 k=4 a=03

1 (base) || N/A 754.90 754.90 754.90 754.90 754.90
100 868.40 | 414.30 378.00 408.20 378.30 429.10
500 816.30 | 353.40 266.40 353.40 238.90 379.30
1000 774.60 | 336.00 218.90 336.40 185.60 360.00
5000 699.30 | 263.00 139.30 277.40 147.30 325.40
10000 682.10 252.60 121.70 259.40 142.80 312.30
15000 661.30 | 232.40 114.40 243.20 137.60 295.60
20000 653.80 | 232.40 108.30 235.50 129.10 292.60

Table 6: BubbleSearch applied to Crossing problems

replacement. For this problem, replacement provided dramatic benefits for both BubbleSearch and
GRASP-k. BubbleSearch with replacement is the best performer (after sufficiently many iterations).

The optimal answers to these problems are known to contain an average of 33.13 intersections [13].
Our results therefore suggest that our initial priority algorithm was rather weak; for example, even
2,000 iterations with random orderings also outperforms the original priority algorithm. This also
explains why replacement offers significant advantages; being able to change the order from the priority
function should be helpful if the initial ordering is not very good. Notice that for this problem the nodes
were ordered by decreasing degree, which creates a lot of ties, along with an additional tie-breaking
procedure. We suspect that replacement will be especially useful for many similar problems where the
natural ordering is based on an integer-valued function (such as the degree) where there can be many
ties that must be broken in an ad hoc fashion. While none of the algorithms came very close to the
optimal answers, a local search could again be implemented in conjunction with them. Alternatively,
we suspect that better ordering and placement functions would yield better results.

We also ran randomized BubbleSearch with the adaptive algorithm on this problem, and it scored
an average of 113.0 intersections on these benchmarks after 10,000 iterations which is slightly better
than the best non-adaptive algorithm, but still far from the optimal.

4 Conclusions and Future Work

We have described a black-box approach for more fully exploiting the implicit knowledge embedded in
priority functions. BubbleSearch can extend any priority algorithm that fits our formulation into an
anytime algorithm. For all the problems we evaluated, BubbleSearch dramatically improved upon
the original solution with very few iterations and continued to improve steadily given more time.
BubbleSearch compares favorably with similar GRASP-based variations, and the simple addition of
replacing the base ordering when a better ordering is found appears to improve performance, in some
cases dramatically.

There is a great deal of potential future work. On the practical side, we expect that BubbleSearch
could improve several other natural priority algorithms and existing GRASP algorithms. Determining
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what types of problems BubbleSearch and BubbleSearch with replacement are most effective on would
be useful.

On the theoretical side, it would be worthwhile to understand if using additional perturbed orderings

in a manner similar to BubbleSearch can yield improved competitive ratios for priority algorithms. A
specific question is whether there are any problems for which there is a natural and effective fixed priority
algorithm with competitive ratio ¢;, but for which the competitive ratio can be provably reduced to
¢y < ¢1 by trying all orderings within Kendall-tau distance 1 (or some other fixed constant) from the
base ordering.
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