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Abstract

In this paper, we consider the two-dimensional rectangular strip packing
problem. A standard simple heuristic, Bottom-Left-Decreasing (BLD), has
been shown to perform quite well in practice. We introduce and demonstrate
the effectiveness of BLD*, a stochastic search variation of BLD. While BLD
places the rectangles in decreasing order of height, width, area, and perime-
ter, BLD* successively tries random orderings, chosen from a distribution
determined by their Kendall-tau distance from one of these fixed orderings.
Our experiments on benchmark problems show that BLD* produces signif-
icantly better packings than BLD after only 1 minute of computation. Fur-
thermore, we show that BLD* outperforms recently reported metaheuristics.

Furthermore, we observe that people seem able to reason about packing
problems extremely well. We incorporate our new algorithms in an inter-
active system that combines the advantages of computer speed and human
reasoning. Using the interactive system, we are able to quickly produce
significantly better solutions than BLD* by itself.

Subject classification: Cutting stock/trim: 2D rectangular strip packing. Artifi-
cial intelligence: interactive methods.
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1 Introduction

Packing problems involve constructing an arrangement of items that minimizes
the total space required by the arrangement. In this paper, we specifically con-
sider the two-dimensional (2D) rectangular strip packing problem. The input is
a list of n rectangles with their dimensions and a target width W . The goal is to
pack the rectangles without overlap into a single rectangle of width W and min-
imum height H . We further restrict ourselves to the orthogonal variation, where
rectangles must be placed parallel to the horizontal and vertical axes. We con-
sider two variations: fixed orientation in which the rectangles cannot be rotated,
and variable orientation in which they can be rotated by 90 degrees. Further, for
all our test cases, all dimensions are integers. Like most packing problems, 2D
rectangular strip packing (even with these restrictions) is NP-hard.

A common method for packing rectangles is to take an ordered list of rect-
angles and greedily place them one by one. Perhaps the best studied and most
effective such heuristic for the fixed-orientation variation is the Bottom-Left (BL)
heuristic, where rectangles are sequentially placed first as close to the bottom and
then as far to the left as they can fit. For some problems, BL cannot find the
optimal packing under any ordering of the rectangles [2, 4], nor does it perform
well in practice when applied to random orderings. However, a very successful
approach is to apply BL to the rectangles ordered by decreasing height, width,
perimeter, and area and return the best of the four packings that result [11]. We
refer to this scheme as Bottom-Left-Decreasing (BLD).

A natural alternative approach would be to find good orderings of the rectan-
gles for BL or other similar heuristics, using standard search techniques such as
simulated annealing, genetic algorithms, or tabu search. Despite significant efforts
in this area, the search space has not generally proven amenable to such search
techniques; for more details see the thesis of Hopper [11]. Recently, genetic algo-
rithms and tabu search, using a different search space, have proven more success-
ful [14].

In this paper, we present a variation of the BLD heuristic called BLD* that
considers successive random perturbations of the original four decreasing order-
ings. We also present an apparently novel generalization of BL, and consequently
of BLD and BLD*, for the variable orientation case. Our experiments on both
benchmark and randomly generated problems show that BLD* substantially out-
performs BLD, as well as BL applied to randomly chosen orderings. For example,
for the benchmarks taken from Hopper [11] in the case of fixed orientation, BLD*
reduces the packing height from an average of 9.4% over optimal by BLD to about
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4.9% over optimal after just one minute. These are the best published results for
these benchmarks that we are aware of. We note that improvements of even 1%
can be very valuable for industrial applications of this problem, such as glass and
steel cutting.

This work was done as part of Human-Guided Search (HuGS) project, an
ongoing effort to develop interactive optimization systems [16]. Determining
how people can effectively interact with powerful stochastic search algorithms is
important because it leverages people’s abilities in areas in which they currently
outperform computers, such as visual perception and strategic assessment. Fur-
thermore, involving people in the process of optimization can help them under-
stand and trust the produced solutions, as well as modify them on the fly if the
need arises. Human-guided search makes particular sense in the context of cut-
ting and packing problems, where humans can often find better solutions than the
best current algorithms. Our interactive optimization system is designed to allow
people to effectively use the computer’s speed and preprogrammed algorithms to
more quickly find good solutions than they could themselves find alone, especially
for larger problems.

For the 2D packing problem, we explored people’s ability to guide our BLD*
heuristic. We found that people can reason about this problem to make use of the
computer’s power extremely well. People can identify particularly well-packed
subregions of a given packing and then focus a search algorithm on improving
the other parts. People can also devise multi-step repairs to a packing problem to
reduce unused space, often producing packings that could not be found by the BL
heuristic for any ordering of rectangles. Our experiments on large benchmarks
show that interactive use of BLD* can produce solutions 1% closer to optimal in
about 20 minutes than BLD* produces on its own in 2 hours. Thus, 2D packing
seems to be a problem for which people and computers can currently produce
better results together than either can alone.

2 Background

Packing problems in general are important in manufacturing settings; for example,
one might need n specific rectangular pieces of glass to put together a certain piece
of furniture, and the goal is to cut those pieces from the minimum-height fixed-
width piece of glass. The more general version of the problem allows for irregular
shapes, which is required for certain manufacturing problems such as clothing
production. However, the rectangular case has many industrial applications [11].
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The 2D rectangular strip packing problem has been the subject of a great deal
of research, both by the theory community and the operations-research commu-
nity [6, 8, 21]. One focus has been on approximation algorithms. The Bottom-
Left heuristic has been shown to be a 3-approximation when the rectangles are
sorted by decreasing width; that is, the resulting height is always within a fac-
tor of 3 of optimal [2]. The Bottom-Left heuristic is not within a factor of k of
optimal for any fixed constant k when the rectangles are sorted by decreasing
height. Other approximation results include algorithms that give an asymptotic
5/4-approximation [3], an absolute 5/2-approximation [26], and an absolute 2-
approximation algorithm [27]. Recently, Kenyon and Remilia have developed an
asymptotic fully polynomial approximation scheme [15].

Another focus has been on heuristics that lead to good solutions in practice.
There are two main lines of research in this area. One line considers simple heuris-
tics such as BLD. Another line focuses on local search methods that take substan-
tially more time but have the potential for better solutions: genetic algorithms,
tabu search, hill-climbing, and simulated annealing. The recent thesis of Hopper
provides substantial detail of the work in this area [11, 12]. We compare BLD*
with more recent work by Iori et. al., who provide results for their novel tabu
algorithm, genetic algorithm, and hybrid algorithm on a wide range of instances
from the literature [14].

Exact algorithms have received relatively little consideration. We have devel-
oped an exhaustive branch-and-bound algorithm which generally solves problem
instances with fewer than 30 rectangles for which a perfect packing, i.e., one with
no empty space, exists [19, 20]. Other recent work includes that of Fekete and
Schepers, who suggest branch-and-bound techniques for bin and strip packing
problems [9, 10]. They test their general approach on the knapsack problem, and
not strip packing problems, and hence we are unable to provide a direct com-
parison Other similar work has also been done simultaneously by Korf [18] and
by Martello, Monaci, and Vigo [23], who use branch-and-bound techniques to
determine optimal packings.

The fixed-orientation problem has received much more attention than the variable-
orientation problem, although some genetic-algorithm approaches have allowed
reorientation as one of the mutation operations (e.g., [13, 7]). We are unaware of
any previous work on adapting the BL algorithm for variable orientations (as we
describe below).
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2.1 The Bottom-Left Heuristic

The Bottom-Left (BL) heuristic, introduced in [2], is perhaps the most widely used
heuristic for placing rectangles. We think of the points in the strip to be packed as
being ordered lexicographically, so that point A lies before point B if A is below B
or, if A and B have the same height and A is to the left of B. Given a permutation
of the rectangles, the Bottom-Left heuristic places the rectangles one by one, with
the lower left corner of each being placed at the first point in the lexicographic
ordering where it will fit. There are natural algorithms that require O(n3) time
in the worst case for the problem; Chazelle devised an algorithm that requires
O(n2) time and O(n) space in the worst case [5]. In practice the algorithm runs
much more quickly, since a rectangle can usually be placed in one of the first
open spots available. When all rectangle dimensions are integers, this can be
efficiently exploited. Hopper discusses efficient implementations of this heuristic
in her thesis work [11].

Perhaps the most natural permutation to choose for the Bottom-Left heuristic
is to order the rectangles by decreasing height. This ensures that at the end of
the process rectangles of small height, which therefore affect the upper boundary
less, are being placed. It has long been known that this heuristic performs very
well in practice [6]. It is also natural to try sorting by decreasing width, area, and
perimeter, and take the best of the four solutions. While usually decreasing height
is best, in some instances these other heuristics perform better. We refer to the
algorithm that takes the best packing produced by these four orderings as BLD.

2.2 Benchmarks

In this paper, we evaluate our algorithm and interactive system on both a set of
structured benchmarks with known optimal packings and on randomly generated
test instances without known optimal packings. The former is a set of benchmarks
recently developed by Hopper. All instances in this benchmark have perfect pack-
ings of dimension 200 by 200. The instances are derived by recursively splitting
the initial large rectangle randomly into smaller rectangles; for more details, see
[11]. This benchmark set contains problems with size ranging from 17 to 197
rectangles. We use the non-guillotinable instances from this set, collections N1
(17 rectangles) through N7 (197 rectangles), each containing 5 problem instances.

The strengths of this benchmark are that a wide range of algorithms have been
tested against it, providing meaningful comparisons; problem sizes vary from the
small to the very large; and the optimal solution is known by construction. The
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benchmark problems, however, are highly structured, and because all instances
have perfect packings, they yield limited insight on the performance of algo-
rithms when perfect packings are not available. We note that we have developed
an exhaustive branch-and-bound algorithm which can quickly solve the N1-N3
problem instances [19, 20]; therefore we tend to focus on the N4-N7 collections
to evaluate our heuristic methods.

After developing our algorithms, we ran them on other instances available in
the literature to compare it to the recently reported results of [14]. These instances
include the “ht” benchmarks by Hopper and Turton and the “gcut” examples avail-
able at the Operations Research Library (http://mscmga.ms.ic.ac.uk/info.html).
We also ran BLD* on 10 classes of randomly-generated problems from the lit-
erature, described in [14]. The target width and the range of width and heights for
the rectangles varies by class. The specific instances are available for download
at http://www.or.deis.unibo.it/ORinstances/2BP/. Each class has problems of five
sizes, ranging from 20 to 100 rectangles, and 10 instances per size.

3 Orienting rectangles

We modified the BL and BLD heuristics for the variable orientation problem. The
modified heuristic again places rectangles one at a time according to some per-
mutation, but now it considers both orientations when placing each rectangle. For
each orientation, the placement is determined by the first point in the bottom-
left lexicographic ordering where the rectangle will fit, following the Bottom-
Left paradigm. Given these two possible placements, the algorithm must decide
between them. We experimented with three decision rules. The first rule com-
putes where the bottom-left corner would be positioned by both orientations, and
chooses the orientation in which the bottom-left corner is earliest in the lexico-
graphic ordering. The second and third rules are the same, except that they com-
pare where the center and top-right corner of the rectangle is positioned, respec-
tively. In the case of ties (which turn out to be very rare), we choose randomly
between the two orientations.

Because the rectangles can be reoriented, it does not make sense to order them
by decreasing width or height. Instead, we consider ordering the rectangles in
decreasing order of the length of their minimum or maximum dimension, as well
as in decreasing order by area and perimeter.

We ran experiments to evaluate the possible combinations of ordering methods
and decision rules for the rectangles of the 20 instances in the N4 to N7 collections
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sort by choose by
bottom top

min max area perim. center left right
yes no no no 5.62 15.38 4.43
no yes no no 5.58 6.40 5.98
no no yes no 5.15 8.08 4.60
no no no yes 5.23 5.58 4.70
no no yes yes 5.00 6.28 4.40
no yes no yes 4.83 5.30 4.70
no yes yes no 4.85 5.82 4.53
no yes yes yes 4.83 5.83 4.33
yes no no yes 4.68 5.58 4.33
yes no yes no 4.85 8.08 4.43
yes no yes yes 4.78 6.28 4.23
yes yes no no 4.73 6.47 4.38
yes yes no yes 4.45 5.50 4.33
yes yes yes no 4.68 6.50 4.43
yes yes yes yes 4.60 6.08 4.23

Table 1: Results of BLD modified for variable orientation. Each number is an
average of the 20 problem instances in the N4-N7 benchmark collections.

using this variation of BLD. Table 1 shows the average percent over optimal from
the various combinations. If more than one ordering is used, then we took the
best packing produced from all of the relevant orderings. The results indicate that
the most effective decision rule is to chose the orientation that places the top-
right corner as early as possible in the lexicographic ordering. The most effective
ordering is to sort the rectangles by their minimum dimension.

Our current understanding of why sorting by minimum dimension is bet-
ter than by maximum dimension when the rectangles are reorientable is best
expressed by an example: a 50 × 1 rectangle can be oriented so as to only add
at most 1 to the height, and so it is reasonable to place this rectangle toward
the end. Similarly, using the top-right corner to decide orientation most closely
approximates the objective function being used to evaluate an entire packing.
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4 Improving the BLD Heuristic

A natural way to improve the BLD heuristic is to apply BL to other permutation
orders. At the expense of more time, more orders besides the four suggested can
be tried to attempt to improve the best solution found. One standard technique
would be random-repeat: permutations are repeatedly chosen uniformly at ran-
dom, and the best solution found within the desired time bound is used. Random
permutations, however, are known to perform poorly [11]. We tried BL on random
permutations on the N4 through N7 benchmark collections. After 20 minutes, the
average height of the best solution found was 9.6% over the optimal compared to
the 6.4% over optimal generated by the BLD heuristic in less than a second. (All
times reported in this paper are for experiments run on a Linux machine with a
2000 MhZ Pentium processor running Java code.)

Instead, we suggest the following stochastic variation of BLD, which we call
BLD*. Our intuition for why BLD performs so much better than BL with random-
repeat is that the decreasing sorted orders save smaller rectangles for the end.
Therefore, BLD* chooses random permutations that are “near” the decreasing
sorted orders used by BLD, as they will also have this property. There are many
possible ways of doing this; indeed, there is a deep theory of distance metrics for
rank orderings [22]. BLD* uses the following simple approach: start with a fixed
order (say decreasing height), and generate random permutations from this order
as follows. Items are selected in order one at a time. For each selection, BLD*
goes down the list of previously unaccepted items in order, accepting each item
with probability p, until an item is accepted. If the last item is reached and not
selected, then we restart at the beginning of the list, again taking an item with
probability p. After an item is accepted, the next item is selected, starting again
from the beginning of the list of unaccepted items. (See Figure 1.) More formally,
choose the ith item as follows. Let q initially be 0. Repeat the following: with
probability p, terminate and output the (q + 1)st unselected item from the original
sorted list; otherwise increment q by 1 modulo n− i+1. This approach generates
permutations that are near decreasing sorted order, preserving the intuition behind
the heuristic, while allowing a large number of variations to be tried.

The probability starting from some fixed ordering x of obtaining some other
ordering y is proportional to (1 − p)Ken(x,y), where Ken(x, y) is the Kendall-
tau distance between the two permutations. This is also known as bubble-sort
distance, because it counts the number of swaps bubble-sort would make trans-
forming x to y.

Our current version of BLD* first tries the four orders used by BLD and then
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Algorithm BLD*:

1. Let p← 0.5.

2. Repeat until halted:

(a) Let R1, R2, . . . , Rn be the n rectangles in order of decreasing height.

(b) For j = 1 to n do:

i. Let q ← 0.

ii. Repeat until a rectangle is selected:

A. Choose x uniformly from [0, 1].

B. If x < p, select rectangle Rq+1.

C. If x > p, q ← q + 1 mod n− j + 1.

iii. Place the selected rectangle according to the Bottom Left rule.

iv. Remove the selected rectangle from the list, leaving the list
R1, R2, . . . , Rn−j of remaining rectangles in sorted order.

(c) Save if the solution is the best seen so far.

3. Return the best solution.

Figure 1: A pseudocode description of BLD*. Different orderings, different p
values, and different placement rules could be used.

Fixed orientation BLD* score after t seconds
problem 0(BLD) 30 60 120 300 600 1800 3600
Hopper N1, size=17 16.4 6.0 6.0 6.0 5.6 5.1 5.0 4.5
Hopper N2, size=25 12.2 6.6 6.4 5.8 5.7 5.4 4.8 4.7
Hopper N3, size=29 12.4 6.1 6.0 6.0 5.6 5.1 5.0 4.6
Hopper N4, size=49 9.0 5.3 5.1 4.9 4.4 4.4 4.0 3.9
Hopper N5, size=73 7.6 5.0 4.6 4.4 4.4 4.3 4.0 4.0
Hopper N6, size=97 5.4 4.3 4.0 3.9 3.8 3.5 3.4 3.0
Hopper N7, size=197 3.0 2.8 2.3 2.3 2.2 1.9 1.8 1.8
Hopper N1-N7 9.4 5.3 4.9 4.8 4.5 4.2 4.0 3.8

Table 2: Average results of BLD* on Hopper benchmarks with fixed orientation.

permutes each of these orders in round-robin fashion.
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Variable orientation BLD* score after t seconds
problem 0(BLD) 30 60 120 300 600 1800 3600
Hopper N1, size=17 12.5 4.6 4.6 3.8 3.8 3.7 3.7 3.5
Hopper N2, size=25 9.7 4.7 4.6 4.1 4.0 3.9 3.6 3.3
Hopper N3, size=29 10.0 4.4 4.0 3.9 3.7 3.5 3.3 3.2
Hopper N4, size=49 6.1 3.4 3.2 3.1 3.0 2.9 2.9 2.6
Hopper N5, size=73 6.6 3.0 3.0 2.8 2.8 2.6 2.1 2.1
Hopper N6, size=97 3.6 2.3 2.3 2.2 1.9 1.9 1.9 1.9
Hopper N7, size=197 1.4 1.0 1.0 1.0 1.0 1.0 0.9 0.9
Hopper N1-N7 7.1 3.6 3.2 3.0 2.9 2.8 2.6 2.5

Table 3: Average results of BLD* on Hopper benchmarks with variable orienta-
tion.

4.1 Experimental Results

We first ran BLD* on the Hopper benchmarks N1-N7 to quantify how much
improvement BLD* provides over BLD. We used p = 0.5 based on a small
amount of preliminary investigation of different values. For the fixed orienta-
tion problem, we used all four orderings (height, width, area, and perimeter). The
Hopper instances are given in a format that specifies the dimension of each rectan-
gle when the orientation is fixed in such a way that a perfect packing is possible.
For the variable orientation problem, we used our modified version of BLD* with
using only the minimum-dimension ordering and the top-right decision rule.

The results are shown in Tables 2 and 3. The table shows the results of
running BLD and the results of running BLD* at various time increments. The
numbers represent the percentage over the optimal width of 200. For all cases,
BLD* dramatically improves solutions over BLD even with just one minute of
computation. It continues to improve steadily, though improvements taper off with
time. Note that BLD performs poorly on small instances and so the improvements
for BLD* are more substantial.

We also ran experiments on the N4-N7 collections to measure how many per-
mutations BLD* considered before improving upon the best solution by BLD; it
considered an average of only 15.25 permutations to do so.

Tables 4 and 5 compare the performance of BLD* against those reported by
[14] for the fixed orientation case (the only case they consider). Their work
presents an algorithm for computing lower bounds for these problems, as well
as the results of running three algorithms (a tabu search, a genetic algorithm, and
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Problem Iori et. al. BLD*
est. best best result after t seconds computation

C n W LB score 60 120 300 600 1800 3600
1 20 10 60.3 61.1 61.5 61.4 61.3 61.3 61.3 61.3
1 40 10 121.6 121.8 122.1 122.1 122.0 122.0 122.0 122.0
1 60 10 187.4 189.0 189.1 189.0 189.0 189.0 188.9 188.9
1 80 10 262.2 262.8 262.9 262.9 262.9 262.9 262.9 262.8
1 100 10 304.4 305.5 305.9 305.8 305.8 305.7 305.6 305.5
2 20 30 19.7 19.9 20.0 19.9 19.9 19.9 19.8 19.8
2 40 30 39.1 39.9 39.5 39.5 39.3 39.1 39.1 39.1
2 60 30 60.1 61.6 61.0 61.0 60.9 60.9 60.9 60.6
2 80 30 83.2 84.6 84.0 83.9 83.6 83.6 83.6 83.6
2 100 30 100.5 101.8 101.1 101.1 101.0 101.0 100.8 100.8
3 20 40 157.4 164.7 164.6 164.6 164.3 164.3 164.2 164.2
3 40 40 328.8 337.9 336.6 335.4 335.1 335.1 334.8 334.8
3 60 40 500.0 515.9 513.0 512.4 511.3 511.0 510.4 510.1
3 80 40 701.7 717.4 716.9 716.5 715.8 713.6 713.5 713.0
3 100 40 832.7 847.7 847.8 846.7 845.9 845.1 844.4 844.1
4 20 100 61.4 65.6 64.5 64.4 64.3 64.2 64.1 63.9
4 40 100 123.9 131.2 129.6 129.3 128.8 128.6 128.2 128.1
4 60 100 193.0 202.1 201.0 201.0 200.8 200.6 200.1 199.9
4 80 100 267.2 278.6 278.8 278.4 277.6 277.3 277.1 276.6
4 100 100 322.0 332.2 334.6 334.2 333.8 333.6 332.4 332.1

Table 4: Comparison of BLD* on randomly generated problems, with fixed ori-
entation, proposed by Martello and Vigo. Results averaged over 10 instances.

a hybrid algorithm) for five minutes of CPU time on a Pentium III 800 MHz
machine. The hybrid algorithm generally performed the best, but not in all cases.
In [14], the scores are reported as a percent gap, defined as (s − LB)/s where s
is the score obtained by the algorithm on the problem and LB is the lower bound
computed by their algorithm. We felt that reporting absolute scores would sim-
plify future comparisons, especially since improved lower bounds would decrease
the percent gap for a given packing score achieved by a packing algorithm. We
thus estimated the absolute scores of the algorithms in [14] by finding the score
that would produce the reported percent gap. The number is approximate because
the reported lower bounds and percent gaps are averaged over 10 instances.

The first three columns of the tables indicate the problem class, the number
of rectangles, and the target width. The next two columns give the lower bound
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Problem Iori et. al. BLD*
est. best best result after t seconds computation

C n W LB score 60 120 300 600 1800 3600
5 20 100 512.2 536.2 536.6 536.3 535.7 535.5 534.9 534.8
5 40 100 1053.8 1085.8 1084.2 1083.2 1081.5 1079.9 1078.5 1076.7
5 60 100 1614.0 1667.9 1656.9 1655.2 1654.1 1651.5 1651.2 1651.1
5 80 100 2268.4 2304.7 2303.2 2302.6 2300.0 2298.6 2297.6 2297.2
5 100 100 2617.4 2695.9 2680.8 2675.6 2672.4 2670.5 2670.1 2669.5
6 20 300 159.9 174.9 172.5 172.3 171.6 171.3 170.5 170.3
6 40 300 323.5 346.0 343.8 342.7 342.2 340.5 339.4 339.2
6 60 300 505.1 530.9 536.6 535.3 533.8 531.8 531.0 529.7
6 80 300 699.7 732.2 743.9 740.1 737.4 736.3 734.8 733.9
6 100 100 843.8 874.9 890.6 888.4 884.9 883.7 882.7 882.1
7 20 100 490.4 502.7 501.9 501.9 501.9 501.9 501.9 501.9
7 40 100 1049.7 1060.3 1059.4 1059.4 1059.0 1059.0 1059.0 1059.0
7 60 100 1515.9 1529.5 1530.4 1530.4 1530.4 1529.8 1529.7 1529.7
7 80 100 2206.1 2224.4 2223.7 2223.6 2223.5 2223.0 2222.4 2222.2
7 100 100 2627.0 2646.4 2648.4 2647.1 2646.7 2646.6 2646.5 2646.5
8 20 100 434.6 467.6 466.0 465.8 463.6 462.8 461.9 461.6
8 40 100 922.0 979.3 978.6 977.1 973.4 971.2 968.7 967.8
8 60 100 1360.9 1436.0 1437.5 1433.3 1432.8 1429.9 1426.7 1425.1
8 80 100 1909.3 2007.2 2014.9 2010.9 2005.9 1997.8 1994.0 1992.0
8 100 100 2362.8 2477.2 2491.4 2486.5 2477.4 2473.0 2468.5 2466.7
9 20 100 1106.8 1119.2 1106.8 1106.8 1106.8 1106.8 1106.8 1106.8
9 40 100 2189.2 2231.2 2190.9 2190.7 2190.7 2190.7 2190.6 2190.6
9 60 100 3410.4 3410.4 3410.4 3410.4 3410.4 3410.4 3410.4 3410.4
9 80 100 4578.6 4873.9 4588.1 4588.1 4588.1 4588.1 4588.1 4588.1
9 100 100 5430.5 5718.9 5434.9 5434.9 5434.9 5434.9 5434.9 5434.9

10 20 100 337.8 355.1 352.0 351.7 351.5 351.3 351.3 351.1
10 40 100 642.8 674.2 670.1 669.0 667.9 667.1 666.0 665.7
10 60 100 911.1 953.6 946.9 945.0 943.0 941.5 940.7 940.1
10 80 100 1177.6 1229.6 1226.1 1223.6 1221.4 1221.1 1218.7 1217.8
10 100 100 1476.5 1537.5 1536.0 1532.8 1529.6 1528.4 1526.6 1525.3

Table 5: Comparison of BLD* on randomly generated problems, with fixed ori-
entation, proposed by Berkey and Wang. Results averaged over 10 instances.

and the best of the three results from [14]. The next five columns show the result
of running BLD* for 60, 120, 300, 600, 1800, and 3600 seconds of wall-clock
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Problem Iori et. al. BLD*
best best result after t seconds computation

name n W LB score 60 120 300 600 1800 3600
ht13 73 60 90.0 94.0 92.0 92.0 92.0 92.0 92.0 92.0
ht14 73 60 90.0 93.0 92.0 92.0 92.0 92.0 92.0 92.0
ht15 73 60 90.0 94.0 92.0 92.0 92.0 92.0 92.0 92.0
ht16 97 80 120.0 126.0 123.0 123.0 123.0 123.0 122.0 122.0
ht17 97 80 120.0 124.0 123.0 123.0 122.0 122.0 122.0 122.0
ht18 97 80 120.0 124.0 123.0 123.0 123.0 123.0 122.0 122.0

gcut1 10 250 1016.0 1016.0 1016.0 1016.0 1016.0 1016.0 1016.0 1016.0
gcut2 20 250 1133.0 1207.0 1211.0 1211.0 1207.0 1205.0 1204.0 1195.0
gcut3 30 250 1803.0 1803.0 1803.0 1803.0 1803.0 1803.0 1803.0 1803.0
gcut4 50 250 2934.0 3130.0 3072.0 3072.0 3072.0 3072.0 3063.0 3054.0
gcut5 10 500 1172.0 1273.0 1273.0 1273.0 1273.0 1273.0 1273.0 1273.0
gcut6 20 500 2514.0 2675.0 2682.0 2682.0 2682.0 2682.0 2675.0 2656.0
gcut7 30 500 4641.0 4758.0 4795.0 4788.0 4783.0 4774.0 4774.0 4754.0
gcut8 50 500 5703.0 6197.0 6181.0 6155.0 6089.0 6089.0 6081.0 6081.0

Table 6: Comparison of BLD* on problems from the literature, with fixed orien-
tation.

time on a 1000 MHz Alpha processor. Each result is an average over 10 instances.
If the result from [14] is the best result, it appears in bold; otherwise the earliest
result for BLD* that beats the best result reported by [14] is in bold. An underlined
result indicates a tie.

From these results, BLD* clearly performs better than all three of the algo-
rithms in [14]. In 31 of the 50 comparisons in these tables, BLD* after 1 minute
produces a better result than all three of the other algorithms do in five minutes (on
a slightly slower processor), and ties in one other case. In three additional cases,
BLD* outperforms the other algorithms after two minutes and in two cases, BLD*
ties the other algorithms after two minutes.

Additionally, [14] also provides the time at which their algorithms found the
best result during the five minutes of running time. Quite often, the best result is
found within 20 or 30 seconds. Thus, for very short running times, it is possible
that their algorithms outperform BLD*. As shown in the tables, however, BLD*
generally continues to improve steadily over time.

Finally, we also compare BLD* using some of the other benchmarks from the
literature. Table 6 shows results for the larger (in terms of number of rectangles)
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“ht” problems and the “gcut” problems reported on in [14]. BLD* after 1 minute
performs better on all the “ht” problems and the two largest “gcut” problems.
Even on the smaller “gcut” problems, BLD* eventually beats or matches the best
score from the other algorithms. Of course, BLD* is designed for larger problems.

5 Interactive Packing

Human guidance has been shown to improve the performance of stochastic opti-
mization algorithms for a variety of problems (e.g., [1, 16, 17] and the papers cited
therein). In order for human interaction to be justified for an optimization prob-
lem, improvements in solution quality must have high enough value to warrant
investing human effort. This is the case for packing problems in which manu-
facturing costs, and thus potential savings, are high. In order for interaction to
be applicable to an optimization problem, there must exist effective visualizations
for its problems and solutions. Fortunately, the obvious geometric visualization
for packing problems (e.g., see Figure 2) is simple and effective.

In order for human interaction to be beneficial, human reasoning must offer
some advantages over the best automatic methods. We have found that people can
help overcome many of the limitations of the BLD* heuristic. People can identify
particularly well-packed subregions of solutions, and focus BLD* on improving
the other parts. Furthermore, people can readily envision multi-step repairs to a
packing problem to reduce unused space. These repairs often involve producing
solutions that could not be produced by the BLD heuristic.

5.1 Interactive System

We have developed an interactive rectangle-packing system in Java using the
Human-Guided Search (HuGS) Toolkit [17]. The toolkit provides a conceptual
framework for interactive optimization as well as software for interacting with
a search algorithm, logging user behavior, providing history functions including
undo and redo, file I/O, and some other GUI functions. We did not however utilize
the human-guidable tabu or hill-climbing search algorithms provided in HuGS, as
we did not find them effective for this problem in our initial explorations.

In our system, the user is always visualizing a current solution as shown in
Figure 2. Given the aspect ratio of a computer monitor, we found it more natural
to rotate the problem by 90 degrees, so that there is a fixed height and the goal is
to minimize the width of the enclosing rectangle.
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The user can manually adjust the current solution by dragging one or more
rectangles to a new location. The interface allows the user to cause all the rectan-
gles to be shifted downward or leftward. This basically has the effect of pulling all
of the rectangles in one direction until each touches its neighbor or an edge of the
possible packing area. These functions also resolve overlaps among rectangles.
Additionally, the user can freeze particular rectangles. Frozen rectangles appear
in red and will not be moved by the computer. Rectangles that are not frozen
appear in green. For the variable orientation problem, the user has the option of
reorienting rectangles, manually.

The user can also invoke, monitor, and halt the BLD* heuristic. The user spec-
ifies a target region in which to pack rectangles, denoted by a purple rectangular
outline. The user can then invoke BLD* by pressing a Start button. Any frozen
rectangles within the region are left where they are. BLD* then tries to fill the
region using any rectangles that are not currently frozen. The system works in
the background, and uses a text display to indicate the value of the best, i.e., most
tightly packed, solution it has found so far. The user can retrieve this solution by
pressing the Best button. The user can retrieve the current solution the engine is
working on by pressing the Current button. The user can manually modify the cur-
rently visualized solution without disturbing the current search. When the search
algorithm finds a new best solution, the Best button changes color to alert the user.
The user can halt the search algorithm by pressing the Stop button, or reinvoke it
by pressing the Start button again.

The user can optionally set a target for the solution she is trying to reach.
For example, the user can indicate that the enclosing rectangle should be 200 ×
204. The system provides some visual cues for how to meet this goal. More
importantly, the target solution size affects how solutions are ranked. Rather than
using the true objective function (i.e., the size of the enclosing rectangle), the
system ranks solutions based on the total area of the rectangles that fall within the
target solution size. We found this feature to be extremely useful. For example, the
user typically begins a session by having BLD* try to pack the entire target region.
Because of our modification, the search algorithm might return, for example, a
packing with one rectangle that sticks out of the target region by several units
rather than a packing in which many rectangles stick out of the target region by
one unit. We usually found the former packings much easier to repair.
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Figure 2: Interactive system: The top image is a screen shot of our system in
use. The user has selected a region to apply BLD* to and has frozen most of
the rectangles (frozen rectangles shown in red/dark gray, unfrozen in green/light
gray). The image on the right shows a blowup of the selected portion on the
packing, after BLD* has run for a few seconds and the user has pressed the Best
button to see the best solution found.
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dataset number of percent over optimal time for users to find
rectangles by BLD* in two hours packing 1% closer to optimal

N4 49 4.3% 3.3% in 14 min., 21 sec.
N5 73 4.1% 3.1% in 13 min., 52 sec.
N6 97 3.3% 2.3% in 17 min., 12 sec.

Table 7: Interaction experiment results with fixed orientation: The second column
shows the average percentage over optimal achieved by BLD* in two hours. These
results are at least 2%-3% closer to optimal than the best previously published
results. The third column shows the average time it took interactive use of BLD*
to achieve a solution another 1% closer to optimal. The values are averaged over
the five problem instances in the corresponding collection.

5.2 Interaction Experiments

The primary goal of these experiments was to evaluate the hypothesis that inter-
active use of BLD* can produce superior solutions than BLD* can on its own.

We ran our first set of experiments on the fixed-orientation problem, using the
15 problem instances in the N4-N6 collections in the Hopper benchmark suite.
We ran BLD* for 2 hours on on each instance. (We optimized the code slightly
since we ran the user experiments and thus BLD* was slower here than shown in
Tables 2 and 3.) We then performed one trial for each instance in which a user
attempted to find a solution 1% closer to optimal than the best solution found by
BLD* within 2 hours, e.g., if BLD* found a solution of width 206, we would
give the users a target of 204. The users were two authors of this paper. We were
careful that a user had never before seen the particular instances on which they
were tested. We logged the users’ actions, but the primary measure was how long
it took the user to reach their target.

As shown in Table 7, the users were able to reach these targets in about 15
minutes on average. In every case, the target was reached within 30 minutes.
While this is not exactly a “head-to-head” comparison, since the users had the
target scores to reach, the fact that people were able to improve on the solutions
so quickly confirms our hypothesis.

The N7 problem instances presented a significant challenge because BLD*
was able to produce extremely tight packings, only 1.8% over optimal on average,
even for the fixed-orientation problem. In our practice trials, we found it difficult
to improve upon these solutions, interactively, using only BLD*. The difficulty is
that the unused space is distributed into a great number of tiny gaps throughout
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dataset number of percent over optimal time for users to find
rectangles by BLD* in two hours packing 1% closer to optimal

N4 49 2.9% 1.9% in 26 min., 21 sec.
N5 73 2.6% 1.6% in 19 min., 59 sec.

Table 8: Interaction experiment results with variable orientation: The second
column shows the average percentage over optimal achieved by BLD* in two
hours. The third column shows the average time it took interactive use of BLD*
to achieve a solution another 1% closer to optimal. The values are averaged over
the 2 trials each of five problem instances in the corresponding collection.

the packing. This makes it harder to pack the remaining rectangles into the target
space. We were able to make steady progress, but it seemed like it would take
hours to get a better solution. Instead, we devised a divide-and-conquer algorithm
which produced solutions in which unused space is more concentrated (described
more fully in [19]). Using the divide-and-conquer algorithm as well as BLD*,
our test subjects were able to produce solutions 1% over optimal (or about 0.8%
closer than BLD* could achieve on average) in 12.5 to 36 minutes of interactive
use.

We also ran a set of experiments for the variable-orientation problem. In these
experiments, the users employed our variation of BLD* that orients the rectangle
and could also manually orient them. As in the first experiments, we measured
how long it took the users to find solution 1% closer to optimal than the best
solution found by BLD* within 2 hours. We ran these experiments on the N4
and N5 collections, with the same users as the first experiments. Thus, in this
experiment, the users had previously worked on the problem instances in the fixed-
orientation variation. However, we believe both that there is little transfer between
the problem variations, and that it is extremely hard to remember anything about
a given problem instance. For these problems, we ran both users on each problem
instance.

We thought this task might be too difficult since the targets were so much
closer to optimal. However, as shown in Table 8, the users were able to reach the
targets almost as quickly as in the first experiments, requiring an average of 23
minutes and 10 seconds.

To verify that our results were not dependent on the Hopper dataset, we ran
interaction experiments on random test instances (designed before we were aware
of the random problems in the literature.) We used four problems with 50 rectan-
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Figure 3: Our solution to the D1 dataset, which is one unit better than the best pre-
viously published solution. The solution has width 46 in our interface, or height
46 in the standard formulation.

percent over ideal percentage time for users to find
by BLD* in two hours successful trials packing approx. 1% closer to ideal
3.85% 93.75% 2.90% in 15 minutes, 35 seconds

Table 9: Interaction experiment results on random data sets with variable orien-
tation. The values are averaged over the 2 trials each of eight problem instances
(excluding one that was not solved within an hour).

gles, and four with 100 rectangles. For half of each size, we chose the dimensions
of the rectangles uniformly from 1 to 50. For the other half, we chose the width
x uniformly at random from 1 to 50, and the height by choosing a number y uni-
formly at random from 1 to 50 and fixing the dimension to be either y or 50− y,
whichever is further from x; this skews the rectangles making them less square.
Since we do not know the optimal answer for the randomly generated benchmarks,
we evaluate a packing with a given height in terms of its percentage over ideal,
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where the ideal is the nearest integer rounding up from the total area divided by
the target width.

Two users each tried all eight problem instances. As in the second set of
experiments, variable orientation was allowed. We measured how long it took the
users to find solution 1% closer to ideal than the best solution found by BLD*
within 2 hours, rounding to the nearest integer. Notice that the ideal width is not
always evenly divisible by 100, and so when aiming for 1% closer to ideal, we
were forced to round. Furthermore, since we do not know the optimal width, we
did not know a priori that the targets were achievable.

As shown in Table 9, the results were similar to the previous experiments. In
one case, a user was not able to achieve the target within an hour, but for the other
15 cases, the average time to reach the target was only 15 minutes and 35 seconds.

Finally, we also tested our interactive system on the few other (fixed-orientation)
benchmarks we could find in the literature, including in particular ones without
known optimal solutions, referred to by Hopper as D1 and D3. [11, 24, 25]. The
best solutions for D1 and D3 in the literature appear to have height 47 and 114.
We were able to find a solution with height 46 (or width 46 in our interface) in
about 15 minutes, as shown in Figure 3. We were able to match the 114 for D3 in
about 20 minutes.

6 Conclusion

We have developed several new approaches for 2D rectangular strip packing prob-
lems, improving the state of the art and providing new insights into the problem.
Specifically, we have shown that our BLD* algorithm outperforms previous auto-
matic methods such as those described by Iori, Martello, and Monaci [14].

Equally significant is the demonstration of the utility of interaction for pack-
ing problems. On the larger Hopper benchmark problems, we come within 1.6%-
3.3% of optimal in about 15 minutes of interactive use: this is a significant improve-
ment over all previously reported results. We believe that for many similar prob-
lems, humans have significant geometric insight that is currently difficult to cap-
ture in a computer algorithm. Interactive systems can tap into that insight while
still taking advantage of the computer’s superior computational power.

There are two clear broad directions that could be pursued based on results for
interactive systems. One tack would be to attempt to classify how human users
obtain improved results for this problem, and design an algorithm that encodes
this approach well enough to match or exceed human performance. We believe
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that this could be a difficult task; indeed, our two users seemed to pursue very
different strategies in their use of the system. This approach highlights the utility
in developing interactive systems to inspire and refine new algorithms. A second
tack would be to design interactive systems for other geometric problems, in order
to gain insight into how to best design systems that allow beneficial interaction to
occur. This is in the spirit of the ongoing HuGS project.
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Köln, preprint key zpr97-290.

21



[10] S. P. Fekete and J. Schepers. A New Exact Algorithm for General Orthog-
onal D-Dimensional Knapsack Problems. In Proceedings of the 5th Annual
European Symposium on Algorithms, pp. 144-156, 1997.

[11] E. Hopper. Two-Dimensional Packing Utilising Evolutionary Algorithms
and other Meta-Heuristic Methods, PhD Thesis, Cardiff University, UK.
2000.

[12] E. Hopper and B. C. H. Turton. An Empirical Investigation of Meta-heuristic
and Heuristic Algorithms for a 2D Packing Problem. European Journal of
Operational Research, 128(1):34-57,2000.

[13] Hwang S.M., Cheng Y.K., and Horng J. T., On solving rectangle bin packing
problems using genetic algorithms. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, Part 2 (of 3), pp. 1583-1590.

[14] M. Iori, S. Martello, and M. Monaci. Metaheuristic Algorithms for the Strip
Packing Problem, in P. M. Pardalos, V. Korotkikh, Eds., Optimization and
Industry: New Frontiers, Kluwer Academic Publishers, pp. 159-179, 2003.

[15] C. Kenyon and E. Remilia. Approximate Strip-Packing. In Proceedings of
the 37th Annual Symposium on Foundations of Computer Science, pages 31-
36, 1996.

[16] G. Klau, N. Lesh, J. Marks, and M. Mitzenmacher. Human-Guided Tabu
Search. In Proceedings of the 18th National Conference on Artificial Intelli-
gence, pp. 41-47, 2002.

[17] G. Klau, N. Lesh, J. Marks, M. Mitzenmacher, and G.T. Schafer. The HuGS
platform: A toolkit for interactive optimization. In Proceedings of Advanced
Visual Interfaces, pp. 324-330, 2002.

[18] Korf, R. E. Optimal rectangle packing: Initial results. In Proceedings of the
International Conference on Automated Planning and Scheduling (ICAPS-
03), Trento, Italy, 2003.

[19] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. New Exhaus-
tive, Heuristic, and Interactive Approaches to 2D Rectangular Strip Packing.
MERL Technical Report TR2003-05, 2003.

22



[20] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. Exhaustive
approaches to 2D rectangular perfect packings. Information Processing Let-
ters, 90, pp. 7-14, 2004.

[21] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing prob-
lems: A survey. European Journal of Operational Research, 141(2);241-
252, 2003.

[22] J. I. Marden. Analyzing and Modeling Rank Data, Chapman & Hall, New
York, New York, 1995.

[23] S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip packing
problem. INFORMS Journal on Computing, 15(3):310-319, 2003.

[24] K. Ratanapan and C. H. Dagli. An object-based evolutionary algorithm for
solving rectangular piece nesting problems. In Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, pp. 989-994,
1997.

[25] K. Ratanapan and C. H. Dagli. An object-based evolutionary algorithm: the
nesting solution. In Proceedings of the International Conference on Evolu-
tionary Computation, pp. 581-586, 1998.

[26] D. Sleator. A 2.5 times optimal algorithm for packing in two dimensions.
Information Processing Letters, 10:37-40, 1980.

[27] A. Steinberg. A Strip-Packing Algorithm with Absolute Performance Bound
2. SIAM Journal on Computing, vol 26, number 2, pp. 401-409, 1997.

23


	Title Page
	Title Page
	page 2


	New Heuristic and Interactive Approaches to 2D Rectangular Strip Packing
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23


