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Abstract
We describe a new region descriptor and apply it to two problems, object detection and
texture classification. The covariance of d-features, e.g., the three-dimensional color vector,
the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes
a region of interest. We describe a fast method for computation of covariances based on
integral images. The idea presented here is more general than the image sums or histograms,
which were already published before, and with a series of integral images the covariances are
obtained by a few arithmetic operations. Covariance matrices do not lie on Euclidean space,
therefore,we use a distance metric involving generalized eigenvalues which also follows from
the Lie group structure of positive definite matrices. Feature matching is a simple nearest
neighbor search under the distance metric and performed extremely rapidly using the integral
images. The performance of the covariance fetures is superior to other methods, as it is shown,
and large rotations and illumination changes are also absorbed by the covariance matrix.
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Abstract. We describe a new region descriptor and apply it to two
problems, object detection and texture classification. The covariance of
d-features, e.g., the three-dimensional color vector, the norm of first and
second derivatives of intensity with respect to x and y, etc., characterizes
a region of interest. We describe a fast method for computation of covari-
ances based on integral images. The idea presented here is more general
than the image sums or histograms, which were already published before,
and with a series of integral images the covariances are obtained by a
few arithmetic operations. Covariance matrices do not lie on Euclidean
space, therefore we use a distance metric involving generalized eigenval-
ues which also follows from the Lie group structure of positive definite
matrices. Feature matching is a simple nearest neighbor search under
the distance metric and performed extremely rapidly using the integral
images. The performance of the covariance features is superior to other
methods, as it is shown, and large rotations and illumination changes are
also absorbed by the covariance matrix.

1 Introduction

Feature selection is one of the most important steps for detection and classifica-
tion problems. Good features should be discriminative, robust, easy to compute
and efficient algorithms are needed for a variety of tasks such as recognition and
tracking.

The raw pixel values of several image statistics such as color, gradient and
filter responses are the simplest choice for image features, and were used for
many years in computer vision, e.g., [1–3]. However, these features are not ro-
bust in the presence of illumination changes and nonrigid motion, and efficient
matching algorithms are limited by the high dimensional representation. Lower
dimensional projections were also used for classification [4] and tracking [5].

A natural extension of raw pixel values are via histograms where a region
is represented with its nonparametric estimation of joint distribution. Follow-
ing [6], histograms were widely used for nonrigid object tracking. In a recent



study [7], fast histogram construction methods were explored to find a global
match. Besides tracking, histograms were also used for texture representation [8,
9], matching [10] and other problems in the field of computer vision. However,
the joint representation of several different features through histograms is expo-
nential with the number features.

The integral image idea is first introduced in [11] for fast computation of
Haar-like features. Combined with cascaded AdaBoost classifier, superior per-
formances were reported for face detection problem, but the algorithm requires
long training time to learn the object classifiers. In [12] scale space extremas
are detected for keypoint localization and arrays of orientation histograms were
used as keypoint descriptors. The descriptors are very effective in matching local
neighborhoods but do not have global context information.

There are two main contributions within this paper. First, we propose to use
the covariance of several image statistics computed inside a region of interest,
as the region descriptor. Instead of the joint distribution of the image statistics,
we use the covariance as our feature, so the dimensionality is much smaller.
We provide a fast way of calculating covariances using the integral images and
the computational cost is independent of the size of the region. Secondly, we
introduce new algorithms for object detection and texture classification using the
covariance features. The covariance matrices are not elements of the Euclidean
space, therefore we can not use most of the classical machine learning algorithms.
We propose a nearest neighbor search algorithm using a distance metric defined
on the positive definite symmetric matrices for feature matching.

In Section 2 we describe the covariance features and explain the fast com-
putation of the region covariances using integral image idea. Object detection
problem is described in Section 3 and texture classification problem is described
in Section 4. We demonstrate the superior performance of the algorithms based
on the covariance features with detailed comparisons to previous methods and
features.

2 Covariance as a Region Descriptor

Let I be a one dimensional intensity or three dimensional color image. The
method also generalizes to other type of images, e.g., infrared. Let F be the
W ×H × d dimensional feature image extracted from I

F (x, y) = φ(I, x, y) (1)

where the function φ can be any mapping such as intensity, color, gradients,
filter responses, etc. For a given rectangular region R ⊂ F , let {zk}k=1..n be the
d-dimensional feature points inside R. We represent the region R with the d× d
covariance matrix of the feature points

CR =
1

n− 1

n∑
k=1

(zk − µ)(zk − µ)T (2)



where µ is the mean of the points.
There are several advantages of using covariance matrices as region descrip-

tors. A single covariance matrix extracted from a region is usually enough to
match the region in different views and poses. In fact we assume that the co-
variance of a distribution is enough to discriminate it from other distributions.
If two distributions only vary with their mean, our matching result produces
perfect match but in real examples these cases almost never occur.

The covariance matrix proposes a natural way of fusing multiple features
which might be correlated. The diagonal entries of the covariance matrix rep-
resent the variance of each feature and the nondiagonal entries represent the
correlations. The noise corrupting individual samples are largely filtered out
with an average filter during covariance computation.

The covariance matrices are low-dimensional compared to other region de-
scriptors and due to symmetry CR has only (d2 +d)/2 different values. Whereas
if we represent the same region with raw values we need n× d dimensions, and
if we use joint feature histograms we need bd dimensions, where b is the number
of histogram bins used for each feature.

Given a region R, its covariance CR does not have any information regarding
the ordering and the number of points. This implies a certain scale and rota-
tion invariance over the regions in different images. Nevertheless, if information
regarding the orientation of the points are represented, such as the norm of gra-
dient with respect to x and y, the covariance descriptor is no longer rotationally
invariant. The same argument is also correct for scale and illumination. Rotation
and illumination dependent statistics are important for recognition/classification
purposes and we use them in Sections 3 and 4.

2.1 Distance Calculation on Covariance Matrices

The covariance matrices do not lie on Euclidean space. For example, the space
is not closed under multiplication with negative scalers. Most of the common
machine learning methods work on Euclidean spaces and therefore they are not
suitable for our features. The nearest neighbor algorithm which will be used
in the following sections, only requires a way of computing distances between
feature points. We use the distance measure proposed in [13] to measure the
dissimilarity of two covariance matrices

ρ(C1,C2) =

√√√√ n∑
i=1

ln2λi(C1,C2) (3)

where {λi(C1,C2)}i=1...n are the generalized eigenvalues of C1 and C2, com-
puted from

λiC1xi −C2xi = 0 i = 1...d (4)

and xi 6= 0 are the generalized eigenvectors. The distance measure ρ satisfies the
metric axioms for positive definite symmetric matrices C1 and C2



Fig. 1. Integral Image. The rectangle R(x′, y′; x′′, y′′) is defined by its upper left (x′, y′)
and lower right (x′′, y′′) corners in the image, and each point is a d dimensional vector.

1. ρ(C1,C2) ≥ 0 and ρ(C1,C2) = 0 only if C1 = C2,
2. ρ(C1,C2) = ρ(C2,C1),
3. ρ(C1,C2) + ρ(C1,C3) ≥ ρ(C2,C3).

The distance measure also follows from the Lie group structure of positive
definite matrices and an equivalent form can be derived from the Lie algebra
of positive definite matrices. The generalized eigenvalues can be computed with
O(d3) arithmetic operations using numerical methods and an additional d loga-
rithm operations are required for distance computation, which is usually faster
than comparing two histograms that grow exponentially with d. We refer the
readers to [13] for a detailed discussion on the distance metric.

2.2 Integral Images for Fast Covariance Computation

Integral images are intermediate image representations used for fast calculation
of region sums [11]. Each pixel of the integral image is the sum of all the pixels
inside the rectangle bounded by the upper left corner of the image and the pixel
of interest. For an intensity image I its integral image is defined as

Integral Image (x′, y′) =
∑

x<x′,y<y′

I(x, y). (5)

Using this representation, any rectangular region sum can be computed in con-
stant time. In [7], the integral images were extended to higher dimensions for fast
calculation of region histograms. Here we follow a similar idea for fast calculation
of region covariances.

We can write the (i, j)-th element of the covariance matrix defined in (2) as

CR(i, j) =
1

n− 1

n∑
k=1

(zk(i)− µ(i))(zk(j)− µ(j)). (6)

Expanding the mean and rearranging the terms we can write

CR(i, j) =
1

n− 1

[
n∑

k=1

zk(i)zk(j)− 1
n

n∑
k=1

zk(i)
n∑

k=1

zk(j)

]
. (7)



To find the covariance in a given rectangular region R, we have to compute the
sum of each feature dimension, z(i)i=1...n, as well as the sum of the multiplication
of any two feature dimensions, z(i)z(j)i,j=1...n. We construct d + d2 integral
images for each feature dimension z(i) and multiplication of any two feature
dimensions z(i)z(j).

Let P be the W ×H × d tensor of the integral images

P (x′, y′, i) =
∑

x<x′,y<y′

F (x, y, i) i = 1...d (8)

and Q be the W ×H × d× d tensor of the second order integral images

Q(x′, y′, i, j) =
∑

x<x′,y<y′

F (x, y, i)F (x, y, j) i, j = 1...d. (9)

In [11], it is shown that integral image can be computed in one pass over the
image. In our notation, px,y is the d dimensional vector and Qx,y is the d × d
dimensional matrix

px,y = [P (x, y, 1) . . . P (x, y, d)]T

Qx,y =

Q(x, y, 1, 1) . . . Q(x, y, 1, d)
...

Q(x, y, d, 1) . . . Q(x, y, d, d)

 . (10)

Note that Qx,y is a symmetric matrix and d + (d2 + d)/2 passes are enough
to compute both P and Q. The computational complexity of constructing the
integral images is O(d2WH).

Let R(x′, y′;x′′, y′′) be the rectangular region, where (x′, y′) is the upper left
coordinate and (x′′, y′′) is the lower right coordinate, as shown in Figure 1. The
covariance of the region bounded by (1, 1) and (x′, y′) is

CR(1,1;x′,y′) =
1

n− 1

[
Qx′,y′ − 1

n
px′,y′pT

x′,y′

]
(11)

where n = x′ · y′. Similarly, after a few manipulations, the covariance of the
region R(x′, y′;x′′, y′′) can be computed as

CR(x′,y′;x′′,y′′) =
1

n− 1

[
Qx′′,y′′ + Qx′,y′ −Qx′′,y′ −Qx′,y′′ (12)

− 1
n

(
px′′,y′′ + px′,y′ − px′,y′′ − px′′,y′

)(
px′′,y′′ + px′,y′ − px′,y′′ − px′′,y′

)T
]

where n = (x′′ − x′) · (y′′ − y′). Therefore, after constructing integral images the
covariance of any rectangular region can be computed in O(d2) time.



Fig. 2. Object representation. We construct five covariance matrices from overlapping
regions of an object feature image. The covariances are used as the object descriptors.

3 Object Detection

In object detection, given an object image, the aim is to locate the object in an
arbitrary image and pose after a nonrigid transformation. We use pixel locations
(x,y), color (RGB) values and the norm of the first and second order derivatives
of the intensities with respect to x and y. Each pixel of the image is converted
to a nine-dimensional feature vector

F (x, y) =

[
x y R(x, y) G(x, y) B(x, y)

∣∣∣∣∂I(x, y)
∂x

∣∣∣∣ ∣∣∣∣∂I(x, y)
∂y

∣∣∣∣ ∣∣∣∣∂2I(x, y)
∂x2

∣∣∣∣ ∣∣∣∣∂2I(x, y)
∂y2

∣∣∣∣
]T

(13)

where R, G, B are the RGB color values, and I is the intensity. The image
derivatives are calculated through the filters [−1 0 1]T and [−1 2 − 1]T . The
covariance of a region is a 9× 9 matrix. Although the variance of pixel locations
(x,y) is same for all the regions of the same size, they are still important since
their correlation with the other features are used at the nondiagonal entries of
the covariance matrix.

We represent an object with five covariance matrices of the image features
computed inside the object region, as shown in Figure 2. Initially we compute
only the covariance of the whole region, C1, from the source image. We search the
target image for a region having similar covariance matrix and the dissimilarity is
measured through (3). At all the locations in the target image we analyze at nine
different scales (four smaller, four larger) to find matching regions. We perform
a brute force search, since we can compute the covariance of an arbitrary region
very quickly. Instead of scaling the target image, we just change the size of our
search window. There is a 15% scaling factor between two consecutive scales. The
variance of the x and y components are not the same for regions with different
sizes and we normalize the rows and columns corresponding to these features. At
the smallest size of the window we jump three pixels horizontally or vertically
between two search locations. For larger windows we jump 15% more and round
to the next integer at each scale.



We keep the best matching 1000 locations and scales. At the second phase
we repeat the search for 1000 detected locations, using the covariance matrices
Ci=1...5. The dissimilarity of the object model and a target region is computed

ρ(O, T ) = min
j

[
5∑

i=1

ρ(CO
i ,CT

i )− ρ(CO
j ,CT

j )

]
(14)

where CO
i and CT

i are the object and target covariances respectively, and we
ignore the least matching region covariance of the five. This increases robustness
towards possible occlusions and large illumination changes. The region with the
smallest dissimilarity is selected as the matching region.

We present the matching results for a variety of examples in Figure 3 and
compare our results with histogram features. We tested histogram features both
with the RGB and HSV color spaces. With the RGB color space the results
were much worse in all of the cases, therefore we did not present these results.
We construct three separate 64 bin histograms for hue, saturation and value
since it is not practical to construct a joint histogram. We search the target
image for the same locations and sizes, and fast construction of histograms are
performed through integral histograms [7]. We measure the distance between
two histograms through Bhattacharyya distance [6] and sum over three color
channels.

Covariance features can match all the target regions accurately whereas most
of the regions found by histogram are erroneous. Even among the correctly de-
tected regions with both methods we see that covariance features better localize
the target. The examples are challenging since there are large scale, orienta-
tion and illumination changes, and some of the targets are occluded and have
nonrigid motion. Almost perfect results indicate the robustness of the proposed
approach. We also conclude that the covariances are very discriminative since
they can match the correct target in the presence of similar objects, as seen in
the face matching examples.

Covariance features are faster than the integral histograms since the dimen-
sionality of the space is smaller. The search time of an object in a color image
with size 320× 240 is 6.5 seconds with a MATLAB 7 implementation. The per-
formance can be improved by a factor of 20-30 with a C++ implementation
which would yield to near real time performance.

4 Texture Classification

Currently, the most successful methods for texture classification are through
textons which are cluster centers in a feature space derived from the input. The
feature space is built from the output of a filter bank applied at every pixel and
the methods differ only in the employed filter bank.

– LM: A combination of 48 anisotropic and isotropic filters were used by Leung
and Malik [8]. The feature space is 48 dimensional.



(a) (b) (c)

Fig. 3. Object detection. (a) Input regions. (b) Regions found via covariance features.
(c) Regions found via histogram features.



Fig. 4. Texture representation. There are u images for each texture class and we sample
s regions from each image and compute covariance matrices C.

– S: A set of 13 circular symmetric filters was used by Schmid [14]. The feature
space is 13 dimensional.

– M4, M8: Both representations were proposed by Varma and Zissermann
[9]. Original filters include both rotationally symmetric and oriented filters
but only maximum response oriented filters are included to feature vector.
The feature space is 4 and 8 dimensional respectively.

To find the textons, usually the k-means clustering algorithm is used, al-
though it was shown that it might not be the best choice [15]. The most signif-
icant textons are aggregated into the texton library and the texton histograms
are used as texture representation. The χ2 distance [8] is used to measure the
similarity of two histograms and the training image with the smallest distance
from the test image determines the class of the latter. The process is computa-
tionally expensive since the images are convolved with large filter banks and in
most cases requires clustering in high dimensional space.

4.1 Random Covariances for Texture Classification

We present a new approach to texture classification problem without using tex-
tons. We start with extracting several features from each pixel. For texture clas-
sification problem we use image intensities and norms of first and second order
derivatives of intensities in both x and y direction. Each pixel is mapped to a
d = 5 dimensional feature space

F (x, y) =
[
I(x, y)

∣∣∣∣∂I(x, y)
∂x

∣∣∣∣ ∣∣∣∣∂I(x, y)
∂y

∣∣∣∣ ∣∣∣∣∂2I(x, y)
∂x2

∣∣∣∣ ∣∣∣∣∂2I(x, y)
∂y2

∣∣∣∣]T

. (15)

We sample s random square regions from each image with random sizes between
16×16 and 128×128. Using integral images we compute the covariance matrix of



each region. Each texture image is then represented with s covariance matrices
and we have u training texture images from each texture class, a total of s · u
covariance matrices. Texture representation process is illustrated in Figure 4.
We repeat the process for the c texture classes and construct the representation
for each texture class in the same way.

Given a test image, we again extract s covariance matrices from randomly
selected regions. For each covariance matrix we measure the distance (3) from
all the matrices of the training set and the label is predicted according to the
majority voting among the k nearest ones (kNN algorithm). This classifier per-
forms as a weak classifier and the class of the texture is determined according
to the maximum votes among the s weak classifiers.

4.2 Texture Classification Experiments

We perform our tests on the Brodatz texture database which consists of 112
textures. Because of the nonhomogeneous textures inside the database, classi-
fication is a challenging task. We duplicate the test environment of [15]. Each
640× 640 texture image is divided into four 320× 320 subimages and half of the
images are used for training and half for testing.

We compare our results with the results reported in [15] in Table 1. Here we
present the results for k-means based clustering algorithm. The texture repre-
sentation through texton histograms has 560 bins. The results vary from 85.71%
to 97.32% depending on the filter bank used.

In our tests we sample s = 100 random covariances from each image, both
for testing and training, and we used k = 5 for the kNN algorithm. For d = 5
dimensional features, the covariance matrix is 5 × 5 and has only 15 different
values compared to 560 bins before. Our result, 97.77%, is better than all of the
previous results and faster. Only 5 images out of 224 is misclassified which is
close to the upper limit of the problem. We show two of the misclassified images
in Figure 5 and the misclassification is usually in nonhomogeneous textures.

To make the method rotationally invariant, we used only three rotationally
invariant features: intensity and the magnitude of the gradient and Laplacian.
The covariance matrices are 3 × 3 and have only 6 different values. Even with
this very simple features the classification performance is 94.20%, which is as
good as or even better than other rotationally invariant methods (M4, M8, S)
listed in Table 1. Due to random sized window selection our method is scale
invariant. Although the approach is not completely illumination invariant, it is
more robust than using features (intensity and gradients) directly. The variances
of intensity and gradients inside regions change less than intensity and gradients
themselves in illumination variations.

M4 M8 S LM Random Covariance

Performance 85.71 94.64 93.30 97.32 97.77

Table 1. Classification results for the Brodatz database.



(a) (b) (c)

Fig. 5. Misclassified samples. (a) Test examples. (b) Samples from the same class. (c)
Samples from the predicted texture class.

Raw Inten. Inten. Hist. Inten./Deriv. Hist. Covariance

Performance 26.79 83.35 96.88 97.77

Table 2. Classification results for different features.

In the second experiment we compare the covariance features with other
possible choices. We run the proposed texture classification algorithm with the
raw intensity values and histograms extracted from random regions.

For raw intensities we normalize each random region to 16×16 square region
and use Euclidean distance to compute distances for kNN classification, which
is similar to [3]. The feature space is 256 dimensional. The raw intensity values
are very noisy therefore only in this case we sample s = 500 regions from each
image.

We perform two tests using histogram features: intensity only, and inten-
sity and norms of first and second order derivatives together. In both cases the
dissimilarity is measured with Bhattacharyya distance [6]. We use 256 bins for
intensity only and 5 · 64 = 320 bins for intensity and norm of derivatives to-
gether. It is not practical to construct the joint intensity and norm of derivatives
histograms, due to computational and memory requirement.

We sample s = 100 regions from each texture image. The results are shown
in Table 2. The only result close to covariance is the 320 dimensional intensity
and derivative histograms together. This is not surprising because our covari-
ance features are the covariances of the joint distribution of the intensity and
derivatives. But with covariance features we achieve a better performance in a
much faster way.

5 Conclusion

In this paper we presented the covariance features and related algorithms for ob-
ject detection and texture classification. Superior performance of the covariance



features and algorithms were demonstrated on several examples with detailed
comparisons to previous techniques and features. The method can be extended
in several ways. For example, following automatical detection of an object in
a video, it can be tracked in the following frames using this approach. As the
object leaves the scene, the distance score will increase significantly which ends
the tracking. Currently we are working on classification algorithms which use
the Lie group structure of covariance matrices.
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