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Abstract

This paper presents an experimental comparison of several statistical machine learning
methods for short-term prediction of travel times on road segments. The comparison
includes linear regression, neural networks, regression trees, k-nearest neighbors, and
locally-weighted regression, tested on the same historical data. In spite of the expected
superiority of non-linear methods over linear regression, the only non-linear method
that could consistently outperform linear regression was locally-weighted regression.
This suggests that novel iterative linear regression algorithms should be a preferred
prediction methods for large-scale travel time prediction.
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Univariate Short-Term Prediction of Road Travel Times

D. Nikovski, N. Nishiuma, Y. Goto and H. Kumazawa

Abstract— This paper presents an experimental comparison
of several statistical machine learning methods for short-term
prediction of travel times on road segments. The comparison
includes linear regression, neural networks, regression trees,
k-nearest neighbors, and locally-weighted regression, tested on
the same historical data. In spite of the expected superiority of
non-linear methods over linear regression, the only non-linear
method that could consistently outperform linear regression was
locally-weighted regression. This suggests that novel iterative
linear regression algorithms should be a preferred prediction
methods for large-scale travel time prediction.

I. INTRODUCTION

Prediction of highway and urban traffic is becoming a
major application area within the field of intelligent trans-
portation systems (ITS), and is considered to be one of the
most important components of advanced travelers informa-
tion systems (ATIS). Currently existing travel information
systems, such as the popular MapQuest service, provide
travel times only under free-flow conditions, i.e. in the
absence of any congestion within the transportation network.
Since most major urban areas experience heavy congestion
precisely when commuters need accurate travel information
the most, free-flow travel times are of little or no value to
them. Although most cities already have or are currently
introducing information services that inform drivers of the
most up-date travel conditions, this information is of limited
value either — what drivers actually need is information
on the conditions along a particular stretch of road at the
moment when they plan to be there. Such information is
possible to obtain only by means of prediction into the future.

Travel times at a future moment are determined by the
state of the network at that moment, as represented by the
flows and densities of vehicles on all of its segments. In its
turn, the state of the network is determined by three factors:

1) Future demand for the network, as measured by the
number of vehicles in it, their intended trips, and the
preferred routes these vehicles would take.

2) Future capacity of the network, as measured by the
throughput of its segments, and any traffic accidents
and/or road work that might reduce this capacity. Since
specific future traffic accidents cannot be predicted,
only currently existing accidents can be taken into ac-
count, if they are expected to persist until the prediction
horizon.
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3) The current state of the network, as measured by the
number of vehicles currently in it, and their routes
until the completion of their respective trips. Even
if future demand could normally be handled by the
available capacity without causing congestion, if such
congestion already exists at the current moment, it
would take some time for it to dissipate.

Any successful prediction method should take all of these
factors into consideration. Furthermore, these factors suggest
two trivial prediction methods for future travel times that can
be used for comparison purposes:

1) Current travel times. This prediction would be exact
if future demand and capacity were equal to the current
ones, and were also at an equilibrium, i.e. the state of
the network would remain the same.

2) Long-term average travel times for the specific time
of day of the prediction. This prediction would be
exact if future demand and capacity were equal to
their historic averages, and furthermore, the current and
past states of the network had no impact on its future
state. Long-term average values can be obtained easily
from a database of historical data, by averaging the
travel times over all days at this specific hour. A more
detailed prediction can use averages over the same day
of the week, if enough data are available.

II. TRAFFIC PREDICTION METHODS

Traffic prediction methods generally fall into two broad
classes: those based on dynamic traffic assignment (DTA),
and those based on statistical machine learning (ML). Dy-
namic traffic assignment methods attempt to model exactly
the physical process that governs the evolution of the state
of the network. These methods rely on detailed simulations
of the traffic process, which is both their biggest advantage
and their biggest disadvantage. DTA methods can provide
a solution for any number of scenarios and combinations
of events, such as multiple accidents, lane closures, etc.
However, these methods are only reliable when they can
be calibrated precisely, which is typically a very hard and
labor-intensive task.

In contrast to the DTA approach, ML methods largely
ignore the exact nature of the physical process that governs
the evolution of the network state. Instead, ML methods treat
the prediction task as a supervised machine learning problem,
where the current and past states of the network are used as
model input, and the future state of the network is used as
model output. Any available information about the physical
system that generates the input-output pairs is only used as a
guide to the type of parametric model that is likely to result in



good prediction. Still, the knowledge of how DTA solutions
operate can be very instructive about the complexity of the
ML predictive models to be used.

From the point of view of statistical machine learning,
the data observed at network road segments constitute a
multivariate time series generated by an unknown dynamical
system. Consequently, the prediction problem is amenable
to the whole arsenal of machine learning methods. The ML
approach to short-term traffic prediction has been researched
extensively, and most major predictive algorithms have been
tried at this problem, including linear regression, univari-
ate and multivariate state-space methods (ARIMA), neural
networks, k-nearest neighbors, locally-weighted regression,
Kalman filtering, knowledge-based methods, etc.

However, there is a major difference between typical
time series prediction problems, and the task of predicting
travel times throughout the day. Most time series prediction
problems assume that the exogenous factors acting upon the
dynamical system either remain constant, or can be measured
and accounted for in the model, if they vary in time. Under
such assumptions, a single ARMA/ARIMA/ARMAX model
can be fit to the entire time series.

This is not the case with predicting travel times: the
demand on the transportation network, which acts as the
main exogenous factor, varies widely throughout the day,
and is typically hard to quantify. Consequently, it is not
reasonable to expect that a single predictive model would
model equally well travel times in peak periods, such as
morning peak hour, and off-peak periods. This means that
for the purposes of travel time prediction, separate models
should be fit to different periods during the day. Since travel
times are usually reported at regular intervals, e.g. 5 or 15

minutes, a separate model can be fit for each such interval.
In predictive applications, the most important modeling

choice — that of predictive model — depends on the type
of dependency that is believed to exist between model inputs
and outputs. Traditionally, the simplest possible statistical
prediction method is linear regression, where predicted val-
ues are regressed upon time-lagged past observations of the
time series via linear coefficients. These models are also
known as auto-regressive (AR) models. A more general case
is that of ARIMA, or state-space approaches [1].

When the time series is multivariate, the modeler has the
choice of splitting it into multiple independent AR models
for each predicted variable, or fitting a single multivariate AR
model, also known as a vector autoregressive (VAR) model.
Since there are significant interactions between different road
segments, it is likely to be expected that VAR models would
be applicable to the traffic prediction problem. Another name
for these models is space-time ARIMA (STARIMA), under-
lining the fact that the individual components of the time
series are related spatially and temporally to each other. It can
be expected that their use would result in increased accuracy,
because the state of neighboring links would be taken into
consideration when determining future travel times.

Moving beyond linear models, a natural modeling choice
is neural networks (NN). There are numerous applications of

both feed-forward and recurrent NN to the problem of short-
term traffic prediction [2]. These applications hope to exploit
the well known ability of neural nets to model complex non-
linear relationships. However, one significant disadvantage of
NN is their slow training rate, which makes them an unlikely
candidate for large-scale traffic prediction.

Space-partitioning methods, such as regression trees and
advanced variants such as CART and MARS, recursively
split input space with the objective of reducing the inhomo-
geneity of training samples left in each partition [3]. These
methods have the advantage of producing results that are
easily interpretable by humans. However, they are designed
to work mainly in batch mode, and although some algorithms
allow iterative updates in real-time, the order of presenting
training data has a significant impact on the shape of the
final tree.

Another large group of prediction methods is that of
non-parametric regression, also known as memory-based
learning, instance-based learning, etc. Some example of non-
parametric regression models are k-nearest neighbors, kernel
averaging, and locally-linear regression. The main idea of
non-parametric regression models is to delay the building of
a predictive model until the actual time when a prediction
must be made. At that time, a set of relevant data points is
selected, and a local model is built for this specific prediction.
One of the most promising methods for short-term traffic
prediction is locally-weighted regression, and one of its
variants, a linear-model with time-varying coefficients [4]. A
comparison between parametric (ARIMA) models and non-
parametric ones is given in [5].

III. EXPERIMENTAL COMPARISON

In our experiments, we used data collected from the
Vehicle Information and Communication System (VICS) in
Japan, collected over a main road of length 15km over 14

months. The first 12 months were used as training data, and
the remaining 2 months were used as testing data. Since we
used data from a single road segment, all experiments used
univariate time series models. Under free-flow conditions, the
usual travel time along this segment is around 16 minutes,
but under heavy congestion, it can exceed an hour and a half.

Current travel times were reported by VICS every 5

minutes, or 288 times throughout the day. In these exper-
iments, we were interested in the accuracy of the predictive
algorithms over different prediction horizons, aggregated
over all prediction times during the day. Consequently, for
each predictive method described below, we fit 262 differ-
ent models for each 5-minute interval between 2am and
11:55pm, using the training data, and measured the root
mean squared error (RMSE) (in minutes) on the testing data.
This error was averaged over all 262 prediction points, i.e.,
over all predictive models. A total of 24 different prediction
horizons were considered, ranging from 5 minutes to 2

hours into the future, at 5-minute intervals. All experiments
were performed in the statistical environment R, using the
additional packages nnet, rpart, class, and locfit [3].
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Fig. 1. Comparison between linear regression, neural networks, and regression trees. All three methods are significantly better than the trivial predictors,
but still linear regression is better and more stable than the non-linear methods. The neural net does not generalize reliably, while regression trees cannot
achieve better accuracy than linear regression at any prediction horizon, and are systematically inferior for short prediction horizons (less than one hour).

As described above, machine learning methods treat the
prediction task as a supervised machine learning problem,
where the current state of the network is used as model input,
and the future state of the network is used as model output.
The main modeling questions then are which variables
should be used as predictors, how long in the past should
the predictors go, and what kind of predictive model should
be fit to the data.

The available data, collected from the VICS network, de-
termined to a large extent the answer to the first question - the
predictor variables used in prediction were the travel times
on the same road segment, collected at 5-minute intervals in
the past. While consistent with many other predictive mod-
els, this approach omits the information contained in other
variables, such as the vehicle density along the segment, as
well as the travel times on connected segments. (Reliable
connectivity information was not available, in general.)

A. Dimensionality of the dynamical system

The answer to the second question, how far in the past
should the predictors go, depends on the intrinsic dimension-

ality of the dynamical system that generates the data. From
the point of view of statistical machine learning, the data
observed at network road segments constitute a multivariate
time series generated by an unknown dynamical system. A
theorem due to Takens states that a system of dimension d

needs at most 2d + 1 past readings for successful prediction
[6]. (For example, a two-dimensional dynamical system such
as a linear harmonic oscillator needs at most five past
readings for successful prediction.)

We were surprised to discover that the dynamical system
corresponding to road traffic seemed to have a very low
dimension. Experiments with linear regression suggested
that only the two most recent readings were statistically
significant predictors to future travel times. (And in some
cases, even only the most recent reading was sufficient.) For
example, in order to predict the travel time at 8:00am, it was
sufficient to know only the travel times at 7:55 and 7:50,
while travel times at earlier moments (7:45 and earlier) were
not statistically significant predictors, as long as those at 7:55
and 7:50 were included in the model. This was true regardless
of how recent the most recent reading was — if the most



20 40 60 80 100 120

1
2

3
4

5
6

7
8

prediction horizon [min]

R
M

S
E

 [m
in

]

current
long−term
linear regression
1 nearest neighbor
2 nearest neighbors
10 nearest neighbors
50 nearest neighbors

Fig. 2. Comparison between k-nearest neighbors and linear regression. There is a strong dependency on the number of nearest neighbors considered
— in general, more neighbors result in higher accuracy at longer prediction horizons, while fewer neighbors are better for shorter horizons. In summary,
although kNN is sometimes better than linear regression for some horizons, no single value of k can consistently outperform linear regression.

recent reading was at 7:30, then that reading and the reading
at 7:25 were the only significant predictors.

This effect is illustrated in Table 1. The goal was to predict
the travel time at 8am (variable T0800) from the travel times
between 7:30 and 7:55, by means of linear regression. The
only really statistically significant predictor was that at 7:55
(T0755), where statistical significance is beyond doubt (t-
value=16.316). All of the earlier travel times are quite useless
for improving the prediction, as long as T0755 is included in
the model. (Of course, this is only true for linear regression
— non-linear models might still pick up other significant
predictors.)

In order to test this hypothesis, we varied the number
of input variables of linear regression from one to three.
Since statistical significance of past travel times as linear
predictors decreases rapidly as they become less recent, only
the three most recent travel times (at moments t, t − 5, and
t− 10 minutes) were considered in the predictive model for
time t. After averaging over all 262 prediction points t, we
discovered that although the accuracy of the models on the
training error increased slightly with the number of input

variables, as expected for a model with more degrees of
freedom, no such increase in accuracy could be observed
on the testing set. This suggests once again that the most
current travel time is the only input variable necessary for
linear prediction. This result is consistent with the approach
chosen in [4].

This effect has a perfectly rational explanation. Road
traffic is a pretty inert and slowly evolving system, appar-
ently without any harmonic components that would require
high-dimensional models. The most recent reading provides
information about the current level of congestion on the
road, while the reading before it provides information on the
direction of change in congestion (increasing or decreasing),
and the rate of change. Apparently, these are the only two
variables that have an effect on the future level of congestion
for a specific moment in time, and sometimes even the
direction of change is not important. In other words, the
current level of congestion has a major effect on the future
level of congestion, but most often it is not important how the
current level of congestion was reached. This observation has
a very positive effect on the complexity of predictive models,
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Fig. 3. Comparison between locally-weighted regression and linear regression. Locally weighted regression clearly outperforms linear regression, but not
by much.

because it suggests that a real-time predictive system would
have to keep in memory only the few most recent readings
for the purpose of model updating, and can safely discard
those from earlier times. Based on this discovery, all of our
remaining experiments included only the three most recent
travel times as predictors.

B. Neural networks

As possible candidates for other predictive models, we
considered various non-linear machine learning methods.
Moving beyond linear regression, a natural modeling choice
is neural networks (NN). There are numerous applications of
both feed-forward and recurrent NN to the problem of short-
term traffic prediction [2]. One significant disadvantage of
NN is their slow training rate, which makes them an unlikely
candidate for large-scale traffic prediction. Furthermore, one
has to choose carefully the complexity of the model, ex-
pressed by the number of units in the hidden layer. After
several experiments, we obtained acceptable performance by
a neural net with 5 units in the hidden layer, plus direct
connections between the input and output layers, bypassing
the hidden layer. The performance of the neural net in

comparison to linear regression and the baseline predictors
(current travel time and its long-term average) is shown in
Fig.1. Both predictive methods are significantly better than
the simple baseline predictors, but still linear regression is
better and more stable than the neural network. This can
be attributed to the unreliable manner in which neural nets
generalize — although the training algorithm managed to
train the neural net well on the training set in all cases,
its performance on the training set was often systematically
wrong. The graph also shows that the difference between the
accuracy of the first baseline predictor (current travel time)
and that of the learning methods increases with the prediction
horizon, as expected.

C. Regression trees

The second non-linear machine learning method we ex-
plored was regression trees [3]. Regression trees are similar
to decision trees in their operation, but differ in their appli-
cation to predict continuous variables, rather than discrete
ones. Fig.1 demonstrates a surprising behavior — although
the regression tree can predict travel times at longer predic-
tion horizons (more than one hour) equally well as linear



Lin. Coeff. Std. Error t value Pr(> |t|)

(Intercept) 0.919035 0.400073 2.297 0.0223
T0755 0.931041 0.057063 16.316 < 2E − 16
T0750 0.108272 0.074738 1.449 0.1484
T0745 -0.024510 0.085604 -0.286 0.7748
T0740 0.007005 0.096753 0.072 0.9423
T0735 -0.077798 0.087802 -0.886 0.3763
T0730 0.003608 0.070759 0.051 0.9594

TABLE I
TABLE 1. STATISTICAL SIGNIFICANCE OF LINEAR COEFFICIENTS FOR

SEVERAL PREDICTORS. TRAVEL TIMES BETWEEN 7:30AM (VARIABLE

T0730) AND 7:55 (VARIABLE T0755) ARE USED TO PREDICT THE

TRAVEL TIME AT 8:00AM IN A LINEAR MODEL. ESTIMATES FOR THE

LINEAR COEFFICIENTS OF THE REGRESSION MODEL ARE SHOWN IN

COLUMN LIN. COEFF. COLUMN t-VALUE IS THE t-STATISTIC FOR THE

COMPUTED STANDARD ERROR OF THE LINEAR COEFFICIENT, AND

Pr(> |t|) IS THE PROBABILITY THAT SUCH A LARGE VALUE OF t

WOULD BE OBSERVED PURELY BY CHANCE WHEN THE REGRESSION

COEFFICIENT IS IN FACT ZERO. ONLY THE MOST RECENT TRAVEL TIME

(T0755) HAS MAJOR STATISTICAL SIGNIFICANCE AS A LINEAR

PREDICTOR; THE CONSTANT TERM (INTERCEPT) IS ALSO SIGNIFICANT

AT THE 2.23% CONFIDENCE LEVEL, WHICH SIMPLY MEANS THAT

TRAVEL TIME BETWEEN 7:55AM AND 8:00AM IS INCREASING.

regression, its accuracy at short horizons is quite poor, and
much worse than that of linear regression. Given that fitting
a linear tree is much slower than fitting a linear regression, it
seems that linear regression is a surprisingly good prediction
method.

D. Non-Parametric Regression

Our last prediction models were k-nearest neighbors
(kNN) and locally-weighted regression (LWR), both of
which are non-parametric regression models. These types of
models are also known as memory-based learning, instance-
based learning, etc. [7]. The main idea of non-parametric
regression models is to delay the building of a predictive
model until the actual time when a prediction must be made.
At that time, a set of relevant data points is selected, and a
local model is built for this specific prediction. For the case
of kNN, the output values of the selected data points are
simply averaged, while for LWR, a local regression model is
fitted to the selected points. Moreover, the prediction residual
of each data point is weighted proportionally to its proximity
to the novel input.

A comparison between parametric (ARIMA) models and
non-parametric ones is given in [5]. We explored kNN and
LWR on the same data set, and the results are shown in Fig.2
and Fig.3. The simpler of the two methods, kNN, exhibits
a strong dependency on the size of the local likelihood, as
expressed by the number of local neighbors k. In general,
more neighbors result in higher accuracy at longer predic-
tion horizons, while fewer neighbors are better for shorter
horizons. The consequence of this behavior is that no single
value of k could consistently outperform linear regression.

Locally weighted regression methods can vary in the
degree of the local model to be fit, and some common choices
are locally-constant (similar to kNN, but using proximity
weights for all data points, rather than only those in the local
neighborhood), locally-linear, and locally-quadratic. Interest-
ingly, the best results were achieved for a local model of
degree one (locally linear), rather than for the more flexible
locally-quadratic model. Locally weighted linear regression
was also the only predictive method among all presented in
this paper that systematically outperformed linear regression.

IV. CONCLUSION

The paper presented experiments comparing the predictive
accuracy of five statistical machine learning methods: lin-
ear regression, neural networks, regression trees, k-nearest
neighbors, and locally-weighted regression. The surprising
result is that linear regression is very competitive in terms
of accuracy, and given its significant advantage in terms of
computational time and memory resources, it is a very strong
candidate for deployment in practical systems, especially if
fast iterative updating schemes are employed [8]. However,
it is still possible that more complicated non-linear relation-
ships exist between different road segments, and non-linear
methods could still turn out to be better in multivariate short-
term traffic prediction.
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