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Abstract

We consider tracking as a binary classification problem,
where an ensemble of weak classifiers is trained on-line to
distinguish between the object and the background. The
ensemble of weak classifiers is combined into a strong clas-
sifier using AdaBoost. The strong classifier is then used to
label pixels in the next frame as either belonging to the ob-
ject or the background, giving a confidence map. The peak
of the map, and hence the new position of the object, is
found using mean shift. Temporal coherence is maintained
by updating the ensemble with new weak classifiers that are
trained on-line during tracking. We show a realization of
this method and demonstrate it on several video sequences.

1 Introduction

Visual tracking is a critical step in many machine vision ap-
plications such as surveillance [15], driver assistance sys-
tems [1] or human-computer interactions [3]. Tracking
works by finding a region in the current image that matches
the given object. But if the matching function takes into ac-
count only the object, and not the background, then it might
not be able to correctly distinguish the object from the back-
ground and the tracking might fail.

We treat tracking as a classification problem and train
a classifier to distinguish the object from the background.
This is done by constructing a feature vector for every pixel
in the reference image and training a classifier to separate
pixels that belong to the object from pixels that belong to the
background. Given a new video frame we use the classifier
to test the pixels and form a confidence map. The peak of
the map is where we believe the object moved to and we use
mean shift [5] to find it.

If the object and background do not change over time
then training a classifier when the tracker is initialized
would suffice, but when the object and background change
their appearance then the tracker must adapt accordingly.
Temporal integration is maintained by constantly training
new weak classifiers and adding them to the ensemble of

weak classifiers. The ensemble thus achieves two goals.
Each weak classifier is tuned to separate the object from
the background in a particular frame and the ensemble as a
whole ensures temporal coherence.

The overall algorithm proceeds as follows. We main-
tain an ensemble of weak classifiers that is used to create a
confidence map of the pixels in the current frame and run
mean-shift to find its peak, and hence the new position of
the object. Then we update the ensemble by training a new
weak classifier on the current frame and adding it to the en-
semble.

The proposed method offers several advantages. It
breaks the time consuming training phase into a sequence
of simple and easy to compute learning tasks that can be
performed on-line. It can automatically adjust the weights
of different classifiers, trained on different feature spaces. It
can also integrate off-line and on-line learning seamlessly.
For example, if the object class to be tracked is known then
one can train several weak classifiers off-line on large data
sets and use these classifiers in addition to the classifiers
learned on-line. Finally, integrating classifiers over time
improves the stability of the tracker in cases of partial oc-
clusions or illumination changes.

2 Background

Ensemble learning techniques combine a collection of weak
classifiers into a single strong classifier. AdaBoost [9], for
example, trains a weak classifier on increasingly more dif-
ficult examples and combine the result to produce a strong
classifier that is better than any of the weak classifiers.

Treating tracking as a binary classification problem was
also addressed by [5] in their mean-shift algorithm, where
colors that appear on the object are down-weighted by col-
ors that appear in the background. This was further ex-
tended by [4] that use on-line feature selection to switch to
the most discriminative color space from a set of different
color spaces.

Temporal integration methods include particle filtering
[12] to properly integrate measurements over time, the
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WSL tracker [13] that maintains short-term and long-
term object descriptors that are constantly updated and re-
weighted using on-line-EM, and the incremental sub-space
approach [11] in which an adaptive sub-space is constantly
updated to maintain a robust and stable object descriptor.

The work most closely related to ours is that of [4] that
use on-line feature selection to find the best feature space
to work in. We extend their work in several aspects. First,
our classification framework automatically weights the dif-
ferent features, as opposed to the discrete nature of feature
selection. We depart from histograms as means for gener-
ating the confidence map for mean-shift, meaning we can
work with high-dimensional feature spaces, as opposed to
the low-dimensional feature spaces often used in the mean-
shift literature. Finally, by integrating multiple weak clas-
sifiers over time we offer a principled manner for temporal
fusion.

3 Ensemble Tracking

Ensemble tracking works by constantly updating a collec-
tion of weak classifiers to separate the foreground object
from the background. The weak classifiers can be added or
removed at any time to reflect changes in the object appear-
ance or incorporate new information about the background.
Hence, we do not represent an object explicitly, instead we
use an ensemble of classifiers to determine if a pixel belongs
to the object or not.

Each weak classifier is trained on positive and negative
examples where, by convention, we term examples coming
from the object as positive examples and examples com-
ing from the background as negative examples. The strong
classifier, calculated using AdaBoost, is then used to clas-
sify the pixels in the next frame, producing a confidence
map of the pixels, where the classification margin is used as
the confidence measure. The peak of the map is where we
believe the object is, and we use mean shift to find it. Once
the detection for the current frame is completed we train a
new weak classifier on the new frame, add it to the ensem-
ble, and repeat the process all over again. Figure 1 gives
an overview of the system, a general algorithm is given in
Algorithm 1.

3.1 The weak classifier

The ensemble tracking framework is a general framework
that can be implemented in different ways. We report the
particular decisions we made in our system.

Let each pixel be represented as a d-dimensional fea-
ture vector that consists of some local information and let
{xi, yi}N

i=1 denote N examples and their labels, respec-
tively, where xi ∈ Rd and yi ∈ {−1, +1}. The weak clas-
sifier is given by h(x) : Rd → {−1, +1}, where h(x) is the

Algorithm 1 General Ensemble Tracking
Input: n video frames I1, ..., In

Rectangle r1 of object in first frame
Output: Rectangles r2, ..., rn

Initialization (for frame I1):

• Train several weak classifiers and add them to the en-
semble

For each new frame Ij do:

• Test all pixels in frame Ij using the current strong clas-
sifier and create a confidence map Lj

• Run mean shift on the confidence map Lj and report
new object rectangle rj

• Label pixels inside rectangle rj as object and all those
outside it as background

• Remove old weak classifiers

• Train new weak classifiers on frame Ij and add them
to the ensemble

sign of a linear classifier trained in a least-squares manner.
In particular, we use a 11D feature vector that is formed
by the combination of local orientation histogram and pixel
colors. These features are easy to compute and convey rich
information for detection purposes as well [14]. Other fea-
tures, such as the response to filter banks, can be used as
well.

Least-squares solutions are slower to compute than
color-histograms that are often used in mean shift tracking,
however they scale to high dimensions. By using an ensem-
ble of classifiers and running mean shift on their output we
indirectly apply mean shift to high-dimensional data. This
can be viewed as an alternative to the recently suggested
locality-sensitive hashing [10] that maps high dimensional
data to a low dimensional space where mean shift is carried
out.

Of course, other classifiers, such as stumps (single node
decision trees) or perceptrons can be used instead of the
least-squares based classifier presented here.

The temporal coherence of video is exploited by main-
taining a list of T classifiers that are trained over time. In
each frame we discard the oldest weak classifier, train a new
weak classifier on the newly available data, and reconstruct
the strong weak classifier.

Prior knowledge about the object to be tracked can be
incorporated into the tracker as one or more weak classi-
fiers that participate in the strong classifier, but can not be
removed in the update stage.



(a) (b)

Figure 1: Ensemble update and test. (a) The pixels of image at time t − 1 are mapped to a feature space (circles for positive
examples, crosses for negative examples). Pixels within the solid rectangle are assumed to belong to the object, pixels outside
the solid rectangle and within the dashed rectangle are assumed to belong to the background. The examples are classified
by the current ensemble of weak classifiers (denoted by the two separating hyper-planes). The ensemble output is used to
produce a confidence map that is fed to the mean shift algorithm. (b) Now we train a new weak classifier (the dashed line)
on the pixels of the image at time t and add it to the ensemble.

Here we use the same feature space across all classifiers,
but this does not have to be the case. Fusing various cues
[6, 7] was proved to improve tracking results and ensemble
tracking provides a flexible framework to do so.

The margin of the weak classifier h(x) is mapped to a
confidence measure c(x) by clipping negative margins to
zero and re-scaling the positive margins to the range [0, 1].
The confidence value is then used in the confidence map that
is fed to the mean shift algorithm. The specific algorithm we
use is given in Algorithm 2.

3.2 Ensemble update

In the update state, the algorithm removes K old weak clas-
sifiers to make room for K new weak classifiers. However,
before adding new weak classifiers one needs to update
the weight of the remaining weak classifiers. This can be
done either by forming a least-squares problem in which the
weights are unknown and the weak classifiers are known, or
by running AdaBoost. We chose the latter. Step (7) of Al-
gorithm 2 in the update state updates the weights of the re-
maining weak classifier. This is done by changing the role
of the weak learner. Instead of training a new weak clas-
sifier, the weak learner simply hands AdaBoost one weak
classifier (from the existing set of weak classifiers) at a time.
This saves training time and creates a strong classifier as
well as a sample distribution that can be used for training
the new weak classifier, as is done in step (8).

Care must be taken when adding or re-weighting a weak
classifier that do not perform much better than chance. If,
during weight re-calculation, the weak classifier performs
worse than chance then we set its weight to zero. During
step (8), we require the new weak classifier to perform sig-
nificantly better than chance. Specifically, we abort the loop

(a) (b) (c)

Figure 2: Outlier rejection. (a) The input image. The solid
rectangle marks the object, the dashed one marks the back-
ground. (b) The confidence map with outlier rejection. (c)
confidence map without outlier rejection. The outlier rejec-
tion process produces cleaner confidence maps that lead to
a more stable tracking process. The confidence maps corre-
spond to the dashed rectangle.

in step (8) of the steady state in Algorithm 2 if err, cal-
culated in step (8c), is above some threshold, which is set
to 0.4 in our case. This is especially important in case of
occlusions or severe illumination artifacts where the weak
classifier might learn data that does not belong to the object
but rather to the occluding object or to the illumination.

3.3 Outlier rejection

If the object to be tracked is not a pure rectangle then the
bounding box that we use for tracking will include some
pixels that are labeled as positive, while in fact they should
be labeled negative. It was shown that AdaBoost is sensi-
tive to outliers [8] and hence an outlier rejection scheme is
needed. A simple approach is to treat too “difficult” exam-
ples as outliers and change their label.

Specifically, step (4) of the steady state in Algorithm 2
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(d) (e) (f)
Figure 4: Adapting the weak classifiers. Top row shows frames 10, 40 and 70 from a 100-long video sequence. Bottom row
shows the ensemble classifiers used in each frame. There are five weak classifiers for each frame, shown in reverse temporal
order (i.e. top classifier was trained on the current frame, the one below it was trained on the previous frame and so on). The
first 8 bins of each classifier are of a 5 × 5 local orientation histogram calculated around each pixel, the last three bins are of
the pixel color. The magnitude of the bars indicate the weight of the feature. As can be seen, the color (right-most three bars)
plays an important role in the tracking, but when the pedestrian stands in front the of the car, the weight of the oriented edges
increase to provide better object/background separation.

(a) (b)

(c) (d) (e)

Figure 3: Integrating multi-scale confidence maps. Com-
bining features across multiple scales improves the ob-
ject/background separation. (a) input image with the solid
rectangle defining the object and dashed rectangle defining
the background region. (b) The confidence map computed
as a weighted average of the confidence maps (c-e). (c-e)
are confidence maps that are computed on different levels of
the image pyramid. (c) confidence map of original image.
(d) confidence map of half-size image. (e) confidence map
of quarter-size image. The confidence maps correspond to
the dashed rectangle.

can be written as follows:

yi =
{

+1 inside(rj, pi)
−1 otherwise

where rj is the current rectangle, pi is the pixel position of
example i and inside(r, p) is a predicate that is true if pixel
p is inside rectangle r. The outlier rejection version will
look as follows:

yi =




+1 inside(rj, pi) ∧ (wi < Θ)

−1 otherwise

where wi is the weight of the pixel pi after running the
strong classifier and Θ is some predefined threshold which,
in our case, is set to Θ = 3

N , where N is the number of
examples. That is, pixels inside the rectangle are assumed
to be positive examples, unless they are too “difficult” to
classify and then their label is changed to negative.

Figure 2 show the contribution of the outlier rejection
process. The confidence maps are much cleaner, leading to
a better and more stable tracking.

3.4 Multi-resolution tracking

We run ensemble tracking in a multi-scale framework. This
enables the tracker to capture feature at multiple scales. For
each level of the pyramid we run an independent ensemble



Algorithm 2 Specific Ensemble Tracking
Input: n video frames I1, ..., In

Rectangle r1 of object in first frame
Output: Rectangles r2, ..., rn

Initialization (for frame I1):

1. Extract {xi}N
i=1 examples with labels {yi}N

i=1

2. Initialize weights {wi}N
i=1 to be 1

N

3. For t = 1...T ,

(a) Make {wi}N
i=1 a distribution

(b) Train weak classifier ht

(c) Set err =
∑N

i=1 wi|ht(xi) − yi|
(d) Set weak classifier weight αt = 1

2 log 1−err
err

(e) Update example weights wi = wie
(αt|ht(xi)−yi|)

4. The strong classifier is given by sign(H(x)) where
H(x) =

∑T
t=1 αtht(x)

For each new frame Ij do:

1. Extract {xi}N
i=1 examples

2. Test the examples using the strong classifier H(x) and
create confidence image Lj

3. Run mean-shift on Lj with rj−1 as the initial guess.
Let rj be the result of the mean shift algorithm

4. Define labels {yi}N
i=1 with respect to the new rectangle

rj

5. Remove K oldest weak classifiers

6. Initialize weights {wi}N
i=1 to be 1

N

7. For l = K + 1...T , (Update weights)

(a) Make {wi}N
i=1 a distribution

(b) Choose ht(x), with minimal error err, from
{hK+1(x), ..., hT (x)}

(c) update αt and {wi}N
i=1

(d) Remove ht(x) from {hK+1(x), ..., hT (x)}
8. For t = 1...K , (Add new weak classifiers)

(a) Make {wi}N
i=1 a distribution

(b) Train weak classifier ht

(c) Compute err and αt

(d) Update example weights {wi}N
i=1

9. The updated strong classifier is given by sign(H(x))
where H(x) =

∑T
t=1 αtht(x)

tracking that outputs a confidence map. The maps are then
combined to form a single confidence map that is used in
the mean shift step.

Specifically, in each frame we train a weak classifier for
each pyramid level, and maintain one strong classifier for
each such level. Each strong classifier generates a confi-
dence map and all the confidence maps are resized to the
size of the original image and averaged to form the confi-
dence map that is used by the mean shift algorithm.

Figure 3 shows a typical confidence map, accumulated
across multiple scales. We computed a confidence for the
original, half-size and quarter-size images, then we rescaled
all confidence maps to the same size and combined them
based on the classification score of the classifier at each
level.

4 Experiments

We implemented the proposed method in Matlab and tested
it on several video sequences. No parameters were changed
from one experiment to the next and in all cases the ini-
tial rectangle was supplied manually. In all cases we use a
11D feature vector per pixel that consists of an 8-bin local
orientation histogram calculated on 5 × 5 window as well
as the pixel R, G and B values. To improve robustness we
only count edges that are above some predefined threshold,
which in our case was set to 10 intensity values. A similar
approach was taken in [14] for the problem of face detec-
tion. We run the tracker, in parallel, on three levels of the
pyramid, combine the confidence maps and run mean-shift
on the resultant confidence map. In each frame we train one
weak classifier (i.e. K = 1). The algorithm runs at a few
frames per second. In all cases we never use a static back-
ground assumption and allow the camera to move freely.

The first experiment is on a video sequence of a pedes-
trian crossing the street. Halfway through the sequence the
pedestrian is standing in front of a car that has the same
color as he does. The tracker manages to track the pedes-
trian through the entire sequence. Figure 4 shows several
frames from the sequence. The top row shows the actual
images, while the bottom row shows the weak classifier be-
havior (for the bottom level of the pyramid only). Recall
that the feature vector consists of an 8-bin local orienta-
tion histogram, followed by the R, G and B colors of each
pixel. As can be seen, at first the color features are promi-
nent in the classification, but as the background changes, so
are the classifiers and the role of the orientation histogram
increases.

In the second experiment we track a couple walking with
a hand-held camera. Figure 5 show several frames from this
80-frame long sequence.

In the third experiment we track a face exhibiting out-
of-plane rotations. Figure 6 show several frames from this



(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5: Ensemble Tracking with a moving camera. (a-d) Frames 0,40,68 and 80 from a 80-frame long sequence. (e-h) The
confidence map for each frame. The confidence maps correspond to the dashed rectangle.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 6: Ensemble Tracking. (a-d) Frames 0,20,40 and 70 from a 90-frame long sequence. (e-h) The confidence map for
each frame. The confidence maps correspond to the dashed rectangle.
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(e) (f) (g) (h)
Figure 7: Ensemble Tracking with and without update. Tracking with weak classifier update (a-d). Tracking without weak
classifier update (e-h). In the latter case, we train 5 weak classifiers on the first frame and never update them. In the former
case, we update the weak classifier according to the scheme presented in this paper.

90-frame long sequence.
Next, we compared the importance of the update scheme

for tracking. Figure 7 show the results of two trackers on
the same sequence. In the first case we use an “adaptive”
tracker based on the framework presented in this paper. In
the second case we use a “static” tracker that trains five
weak classifiers on the first frame of the sequence and fix
it for the entire length of the sequence. At frame 30 the
“static” tracker locks on the background while the “adap-
tive” tracker keeps tracking successfully.

Finally, the last sequence is a gray scale sequence 1, not
color, and we track a car over 225 frames. The feature
space, accordingly, is 9D feature space (the 8-bin local ori-
entation histogram and the gray scale intensity value). Gray
scale images are usually difficult to track using traditional
mean-shift algorithms because a single color channel does
not provide enough information for tracking. However this
did not prove a problem for our system. Some of the frames
can be seen in figure 8.

5 Conclusions

We treat tracking as a binary classification problem. An en-
semble of weak classifiers is trained on-line to distinguish
between features of the object and features of the back-
ground. We form a strong classifier from the ensemble us-
ing AdaBoost. The strong classifier is then used to com-
pute a confidence map of the next frame. The peak of the

1Downloaded from the Karlsruhe university site at:
http://i21www.ira.uka.de/image sequences

map, and hence the new position of the object, is found us-
ing mean shift algorithm. The tracker adjusts to appearance
changes by training a new weak classifier per frame and up-
dating the strong classifier, giving robustness to the tracker
at a low computational cost.
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