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Abstract
The nonrigid structure-from-motion (NSFM) problem seeks
to recover a sequence of 3D shapes, shape articulation pa-
rameters, and camera view matrices from 2D correspon-
dence data. Factorization approaches relate the princi-
pal subspaces of the data matrix to the desired parame-
ters through a linear corrective transform. Current meth-
ods for finding this transform are heuristic or depend on
strong assumptions about the data. We show how to solve
for this transform by directly minimizing deviation from the
required orthogonal structure of the projection/articulation
matrix. The solution is exact for noiseless data and an order
of magnitude more accurate than state-of-the-art methods
for noisy data.

1 Nonrigid structure from motion
Nonrigid SFM is the well-known problem of reconstructing
3D shape and deformations of a nonrigid surface from a set
of correspondences across 2D views. Typically the solu-
tion is expressed as a linear basis for 3D shape, articulation
weights for the observed shape in each frame, and projec-
tive parameters for each 2D camera. The basis, often called
a morphable model, is particularly useful for the analysis
and synthesis of organic shapes such as faces, internal or-
gans, and patches of skin. Demand for a factorization solu-
tion is driven by rapid progress toward robust monocular 2D
trackers. There is also applicability to the analysis of stereo
views and 3D motion capture data.

Parke [6] and Terzopoulos [8] and Forchheimer [5] pi-
oneered the use of morphable models graphics, vision,
and video coding, respectively. After the landmark rigid-
structure-from-motion factorization of Tomasi and Kanade
[9], it was conjectured that morphable models could be au-
tomatically acquired by factorization. Bregler et alia [2]
led community interest in the problem with a proposed non-
rigid generalization of the Tomasi-Kanade method. Brand
[1] presented a counter-example and pointed out that the
problem of upgrading an algebraic factorization to geomet-
ric orthogonality was underconstrained. Papers by Brand
[1], Torresani, Hertzmann, & Bregler [12, 11, 10], and Del
Bue & Agapito [3] suggested various additional constraints
and heuristics for regularizing the problem, and began to
show substantial empirical results. A second landmark pa-

per from Xiao, Chai, and Kanade [13] (hereafter XCK) an-
alyzed the problem’s main degeneracy and introduced a set
of additional constraints that enables a closed-form solution
that is exact for noiseless data.

This paper shows how the problem can be solved with-
out any such additional constraints. Like the XCK method,
our solution is exact for noiseless data. However, the error
surface contemplated by all methods is quartic in the un-
knowns, and nested least-squares solutions such as XCK’s
essentially ignore some of the terms. With noisy data or
clean data with a long-tailed singular value spectrum, these
terms can make a substantial contribution to the error, lead-
ing to suboptimal factorizations. We recast nonrigid SFM
as a constrained optimization problem and show how to ef-
ficiently and directly minimize the error, thereby obtaining
substantially better factorizations of both synthetic and real-
world data.

2 Formal problem statement
Let matrix P ∈ R2F×N record the 2D image locations of N
3D points observed in F frames from a single deforming
surface having K linear degrees of freedom. W.l.o.g., as-
sume that P is row-centered, such that P1 = 0. Submatrix
P f ∈ R2×N records the observed 2D locations of N features
in a single frame. Under weak perspective projection, the
data-generation model is P f = R f ∑

K
k=1 ck f Sk, where trun-

cated row-orthonormal rotation matrix R f ∈R2×3 is applied
to weighted sum of basis shapes, each shape Sk ∈ R3×N

scaled by a scalar weight ck f . We seek to factor the ob-
servation data P into motion and shape parameters

P = MS =

 cT
1 ⊗R1

...
cT

F ⊗RF


 S1

...
SK

 (1)

with shape basis S ∈ R3K×N , and motion matrix M ∈
R2F×3K consisting of frame-specific weight vectors cT

f =
[c1 f , · · · ,cK f ] ∈ RK and projective rotations R f satisfying
R f RT

f = I ∈ R2. The Kronecker (outer) product ⊗ and re-
lated operators are reviewed in appendix B.

Bregler et alia [2] proposed to solve the problem by gen-
eralizing the Tomasi-Kanade rigid structure-from-motion
factorization: Factor P via singular value decomposition
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(SVD): P → M̃S̃, where proto-motion matrix M̃ and proto-
shape matrix S̃ are related to M,S through an unknown cor-
rective transform G ∈R3K×3K , with M = M̃G restoring the
orthogonal structure of the rotations (such that R f RT

f = I2)
and S = G−1S̃ restoring the shape basis. Solving for G
when K > 1 has turned out to be a thorny problem.

Let us review how G is obtained in the rigid K = 1 case.
Denote the pair of rows in M giving the projection for frame
f by xT

f and yT
f . These are rows of a scaled rotation matrix

and thus must be orthogonal (xT
f y f = 0) and of equal norm

(xT
f x f = yT

f y f ; equivalently (x f −y f )T (x f + y f ) = xT
f x f −

yT
f y f = 0). These equalities can be expressed as linear con-

straints on the elements of the gram matrix GGT using the
following notation: Let vech(X) to be a vector that serial-
izes the elements on the lower triangle of symmetric matrix
X and define vc(x,y) .= vech(xyT +yxT −diag(x◦y)), with
◦ denoting Hadamard (elementwise) product. Then we can
write the constraints on G as

∀ f [vc(x̃ f , ỹ f ),vc(x̃ f − ỹ f , x̃ f + ỹ f )]T vech(GGT ) = 0 (2)

with M̃ f = [x̃ f , ỹ f ]T a row-pair in M̃.
In the case of rigid motion, the resulting homogeneous

system of linear constraints suffices to fully determine the
g(K) .=

(3K
2

)
unknowns of the symmetric gram matrix GGT .

The (possibly approximate) nullspace of this system is a
single vector n ∈ Rg(1) containing these g(1) = 6 values.
One way to do this calculation is to collect all [·]-forms
from equation 2 as the columns of a matrix L ∈ Rg(K)×2F ,
solve for the minimizing eigenvector n of gram matrix QA

.=
LLT , form the symmetric matrix QB

.= vech−1n = GGT ∈
R3×3, and factor QB via SVD to obtain an estimate of G (up
to an arbitrary scaling and rotation of its row-space). Be-
cause n spans the (possibly approximate) nullspace of L,
this minimizes the sum-squared deviation from orthogonal-
ity in the final motion matrix,

OrthErrorQA(G) .= vech(GGT )T QAvech(GGT ), (3)

and thereby restores the physical constraint that the 3D ge-
ometry of the scene is independent of the camera posi-
tion. Minimizing this error is the sine qua non of a correct
structure-from-motion algorithm. If it is not minimized,
then some of the motion observed in 2D can be falsely
attributed to camera motion rather to 3D shape (and vice
versa), resulting in degraded estimates of both M and S.

2.1 Underdetermined variables for K > 1

In the nonrigid case, motion matrix M grows to 3K
columns, organized in K triads. Attempts to generalize the
Tomasi-Kanade solution for G to nonrigidity typically focus
on just one triad of columns in M, which would be obtained
from proto-motion matrix M̃ by the corresponding column-
triad in G. We will write this as M1:3 = M̃G1:3 ∈ R2F×3,

with the subscripts denoting a range of columns. The or-
thogonality constraints on M1:3 are the same as in the rigid
case, but are expressed here by writing equation 2 with the
vc(·) operator applied to entire rows of M̃. Then G is re-
placed with G1:3 in equations 2–3 to yield a system of linear
constraints on the elements of gram matrix QB = G1:3GT

1:3 ∈
R3K×3K . Unfortunately, the linear system does not suffi-
ciently determine QB: In the case of nonrigid nonconstant
motion (K > 1 and rank(C) > 1), XCK showed that there ex-
ist many possible values of QB that satisfy the orthogonal-
ity constraints without admitting a real-valued factorization
QB →G1:3GT

1:3.
This is partly because the system of linear constraints on

the elements QB can be have a multidimensional nullspace,
making n = vech QB = null QA underdetermined. In gen-
eral, the solution matrices M and S (and therefore G) are
determinable up to the Kronecker product of an arbitrary
K×K nonsingular transform F ∈ GLK(R) of the collected
weights matrix C .= [c1, · · · ,cF ]∈RK×F and an arbitrary 3D
rotation E∈ SO3(R) of the basis shapes S1,S2, · · · ,SK . This
implies that there is an (RK\0)× S2 manifold of equally
correct values for G1:3 (or SK−1 × S2 if we ignore global
scalings). As in the rigid case, it is not necessary to fix the
rotational (S2) component of this invariance, but in the non-
rigid case it is necessary to specify which of M’s column-
triads (or combinations thereof) we wish G1:3 to extract
from M̃.

One way to do this is by choosing a set of K frames and
specifying a priori the deformation weights that G1:3 should
assign to them. I.e., we fix the first element of modified
weight vector c′i in each of K frames and thus determine
the column of F that generates G1:3 (assuming c′i,c′j, · · · are
linearly independent). XCK showed how to do this in the
factorization setting by proposing that we assume that the
matrix of all deformation weights C has been transformed
such that K of its columns form the identity matrix IK . I.e.,
[c′f ,c

′
g, · · ·]

.= F[c f ,cg, · · ·] = IK for some subset of weight
vectors [c f ,cg, · · ·] ⊂ C. This zeros out a large swath of M
and adds the constraints

∀b vc(m̃a,m̃b)T vech(G1:3GT
1:3) = 0 (4)

for each row m̃T
a in M̃ corresponding to a zeroed basis

weight cka = 0, and any other row m̃T
b ⊂ M̃. One basis

weight in each column of C is also set to ck f = 1; yielding
the unit constraint

vc(x̃ f , ỹ f )T vech(G1:3GT
1:3) = 1 (5)

for one frame. XCK showed that if the data has the ex-
pected algebraic structure, the collected set of constraints
from equations (2,4,5) will have a unique solution n ∈
Rg(K) that parameterizes a symmetric rank-3 matrix QB

.=
vech−1n = G1:3GT

1:3. Then G1:3 can be factored from



QB via truncated SVD. Repeating this procedure for each
row of F[c f ,cg, · · ·] = IK yields K successive column-triads
G4:6,G7:9, · · ·, each determined up to a 3D rotation.

The XCK solution, which we will call the basis method
because it employs assumptions about the basis, is correct
when (A) the data generated noiselessly via the forward
model from a full-rank basis (rank(S(3)) = K), (B) the ex-
act number of deformational modes K can be deduced from
the rank of the data matrix (rank(P) = 3K), and (C) the 3D
shapes in the selected K basis frames are linearly indepen-
dent (after rotational alignment). It begins to break down in
other circumstances, particularly when the data is noisy or
the wrong value of K is used. In these cases, the estimated
n almost certainly does not parameterize a rank-3 positive
semidefinite gram matrix QB, and therefore some informa-
tion about the orthogonality constraints will be lost when
G1:3 is obtained from QB by truncated SVD. This is prob-
lematic because the resulting estimate of G1:3GT

1:3 is not the
rank-3 approximation of QB that minimizes the orthogonal-
ity error OrthErrorQA(G1:3); it is just the minimum squared
error rank-3 approximation of QB.

The culprit is a change of error norm: QA specifies the
correct problem-specific Mahalanobis (elliptic) error met-
ric in Rg(K) but the rank-3 factorization (SVD) of QB op-
timizes a problem-independent spherical error measure in
R3K , ignoring impact on the orthogonality error. In short,
barring perfect data, the XCK estimate of G1:3 is a subopti-
mal approximation of an approximation, each made under
different and inconsistent error norms. This problem is well
known in eigenvalue methods for fitting higher-order alge-
braic surfaces to data [4]: Nested EVD’s optimize algebraic
error (here, distance from G1:3GT

1:3 to QB) rather than the
geometric objective objective (here, orthogonal structure of
the scene).

3 Directly minimizing error
We now introduce a direct method that solves for the el-
ements of G1:3 rather than for the elements of its gram
matrix QB = G1:3GT

1:3. In avoiding QB, we sidestep all
the pathological indeterminacies discussed above in sec-
tion 2.1, and thus can rely purely on the original orthogonal-
ity constraints. (The nonpathological invariances are fixed
by initial conditions.)

We will solve for a single column-triad G1:3 ⊂ G; sec-
tion 4 below will show that this suffices to determine the
entire solution. Thus we have only 9K unknowns for G1:3,
as opposed to

(3K
2

)
= O(K2) unknowns for indirect methods

that first solve for QB. Since the factorization is ultimately
invariant to scalings of G1:3, we begin with a constrained
optimization problem: Minimize OrthErrorQA(G1:3) sub-
ject to ‖G1:3‖F = 1. The optimization domain is therefore
the surface of the unit sphere S9K−1 embedded in R9K .

To optimize, we will take maximal-gradient slices
through this sphere and solve for the subspace optimum in
closed form. Because the sphere is “laced” with an em-
bedded submanifold SK−1 ⊗ S2 ⊂ S9K−1 of zero-error so-
lutions (noiseless case), the error surface is akin to a bal-
loon bulging through a net; one merely needs to descend
to one of the “strings” where the error is globally (but not
uniquely) minimized.

For the remainder of this section we will simplify the
notation OrthErrorQA(G1:3) to E(Z) with Z .= G1:3. The
partial gradient of E(Z) w.r.t. any element of Z is

∂Zi j E(Z) = 2vech(ZZT )T QAvech(ZJT
i j +Ji jZT ) (6)

where Ji j ∈ {0,1}3K×3 is all zeros except for element Ji j =
1. An optimization on a sphere is easily converted to an
unconstrained optimization problem by modifying the error
to be invariant to the norm of the optimization variable. The
norm-invariant error is E ′(Z) .= E(Z) · ‖Z‖−4

F with gradient

∂Zi j E
′(Z) = ((∂Zi j E(Z)) · ‖Z‖2

F −4Zi jE(Z)) · ‖Z‖−6
F . (7)

This allows us to construct a variable-metric quasi-Newton
method akin to BFGS (see [7, section 10.7]), which is re-
puted to be remarkably effective for multidimensional low-
degree polynomial problems such as ours. Like BFGS, we
will perform line searches for minima along the gradient.
However, our problem affords a much more efficient and
accurate strategy: An explicit non-local solution for the line
minimum

x∗ = min
x

E ′(Z+ x ·D) (8)

where D ∝ ∇E ′(Z) is a unit vector in the direction of the
gradient. Appendix A gives the optimal x∗ in closed form;
because E ′(·) is norm-invariant one can then project by scal-
ing from the line minimum Z+ x∗ ·D back onto the surface
‖Z‖F = 1 without changing the error. Furthermore, because
the error has 180◦ symmetry (E(Z) = E(−Z)) and the line
projects to a half great-circle, the minimum is global over
the entire subspace, not just the immediate valley, and that
gradient D will never need to be explored again. In short, in
each step we compute in closed form the globally optimal
hop in the direction of maximal error reduction.

Because the XCK algorithm gives a different result for
each subset of K linearly independent frames, some better,
some worse, we have reason to expect that the error surface
has local optima in the noisy case. The empirical ques-
tion of whether we find high-quality optima is answered
in the experimental section. We are studying the question
of whether there are local optima given noiseless “perfect”
data. We suspect that the question is mooted in practice by
the nonlocality of the line search. The XCK result implies
that the error surface of perfect data is convex in the vicin-
ity of a solution, and indeed, all 105 Monte Carlo trials with
perfect data produced global optima.



4 The full correction matrix
In the noiseless case, only one estimate of G1:3 is needed
to solve the problem, because one can obtain all rotation
information from the first three columns of the motion ma-
trix M1:3 = M̃G1:3, and from these rotations solve for the
rest of G, as follows: Let zT

f be the “missing” third row
of the truncated rotation matrix R f ∝ M̃ f G1:3 ∈ R2×3. zT

f
gives the projection in z (depth), and is thus the cross-
product of the two rows in M̃ f G1:3. Because R f z f = 0. we
have c1 f R f z f = M̃ f G1:3z f = 0, c2 f R f z f = M̃ f G4:6z f = 0,
etc. These constraints can be collectively expressed as
∀ f (zT

f ⊗M̃ f )N = 0 with N .= [vec G1:3,vec G4:6, · · ·]. Thus
the (possibly approximate) row-nullspace

N .= null


 zT

1 ⊗M̃1
...

zT
F ⊗M̃F


 ∈ R9K×K (9)

specifies the corrective transform, with G = vec3KN for any
rotation and rescaling of the columns of N. (Note that since
N is semi-orthogonal, G has spectral radius ρ(G)≤ 1.) The
orthogonalized motion matrix M̃G can then be factored into
rotations and weights.

5 Combining multiple estimates
When the data is noisy, we can improve the final result by
combining information from diverse optimal of the error
surface. We make multiple estimates of column-triads of
G, rotate them to a common coordinate frame, and com-
bine their corrections to get an improved estimate of the
rotations by factoring the matrix M̃[G1:3,G′

1:3,G
′′
1:3, · · ·].

To get diverse estimates of G1:3, one can either begin
the optimization with different random initial conditions,
or add the constraint that the deformation weights in K
frames are orthogonal, i.e., [c f ,cg, · · ·] ∈ RK×K has orthog-
onal rows. (This is a weaker assumption that the XCK
method, which sets [c f ,cg, · · ·] = IK , but has the same ef-
fect of producing successive column-triads of G.) This
constraint can be expressed in terms of proto-motion ma-
trix M̃, an already estimated G1:3, and a new estimate Z
of an alternate column-triad in G, as follows: Let M̃′

x ⊂ M̃
and M̃′

y ⊂ M̃ be row-subsets of M̃ corresponding to the x
and y projections observed in K frames. Then from the
orthogonality structure of M, trace((M̃′

xG1:3)T (M̃′
xZ)) =

trace((M̃′
yG1:3)T (M̃′

yZ)) = 0. Rearranging, we obtain the
constraint 0 = HT vec(Z) with

H .= [vec(GT
1:3M̃′T

x M̃′
x),vec(GT

1:3M̃′T
y M̃′

y)] ∈ R9K×2, (10)

which is trivially incorporated into the optimization of sec-
tion 3 by projecting Z and D into the nullspace of H.

5.1 Rotating to a common frame

Each estimate of G1:3 is determined up to a global 3D rota-
tion. We make them all rotationally consistent by enforcing
orthogonality constraints: Let G1:3 and G′

1:3 be two esti-
mates of the first three columns of the correction matrix.
Taking row-vector x f ∈ M̃G1:3 and y′f ∈ M̃G′

1:3 the rota-
tion E ∈ R3×3 that aligns the two estimates should satisfy
0 = x f Ey′Tf = y f Ex′Tf = x f E(x′f × y′f )

T in a least-squares
sense. Rewriting x f Ey′Tf = (x f ⊗ y′f )(vec E), we see that
vec E is orthogonal to all the vectors formed by these Kro-
necker products. If the data were noiseless we could collect
all such constraint vectors into a matrix L ∈ R6F×9, com-
pute its 1-dimensional row-nullspace, and reshape to a 3×3
matrix to obtain E (up to scale).

With noise, the matrix of accumulated orthogonality
constraints L most likely will not have a nullspace; even
if it does, it is not likely to form an orthonormal ma-
trix. The gram matrix QC

.= LT L gives us the error met-
ric EQC(E) = (vec E)T QC(vec E) in the space of orthonor-
mal matrices. Projecting the approximate 1D nullspace (the
minimizing eigenvector of QC) to the nearest orthonormal
matrix does not minimize the error, because the result has
nonzero projection onto the remaining eigenvectors of QC.
In some cases it is not even a good approximation.

Again, this is a constrained optimization problem:
minE∈SOn(R) EQC(E). This turns out to be solvable in closed
form for SO2 rotations and the solution can be leveraged
into a fast numerical method for SO3 rotation matrices
(where there probably is no closed form solution). We
make an initial estimate of E by projecting the approxi-
mate nullspace of QC to the nearest orthonormal matrix.
We then refine this estimate by solving for a series of
plane rotations of E that each minimize the error. Let

E′ .= E

 c s 0
−s c 0
0 0 1

 with circle constraint c2 + s2 = 1.

The derivatives of EQC(E′) with respect to c,s are lin-
ear; setting these to zero we obtain constraints of the form[

a b
d e

][
c
s

]
=

[
d
f

]
. Solving this in a least-squares

sense under the circle constraint yields a quartic polyno-
mial in c. At the real roots of this polynomial the Laplacian
52EQC(E′) is zero; we select the root minimizing the er-
ror and apply the corresponding plane rotation to E. This
converges after just a few iterations through the three or-
thogonal planes of E (and could be applied to any plane in
E by rotating the coordinate system).

6 Experiments
We implemented the XCK basis method and, with some trial
and error, devised “cube-and-points” data that qualitatively
reproduces the error curves reported in [13]. The direct
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Figure 1: Reconstruction error of direct solution (solid
lines) and basis solution (dashed lines) on F = 32 frames
of N = 40 point synthetic K = 2 mode data, plotted as a
function of surface stiffness (horizontal axis) and data noise
(each curve). Each point averages 100 trials. Graph shows
3D shape reconstruction error as a fraction of the data norm.

method produces slightly lower error curves, however, we
will use the space here to detail results using ∼ 104 ran-
domly generated shapes, in order to more broadly stress-test
the algorithms. In these experiments the direct method com-
bines estimates of G1:3, each obtained from random initial
conditions. For fairness, we also took the best of K differ-
ent outputs from the basis method. XCK do not say how
their estimates are rotated to a common coordinate frame;
we tried several methods and kept the one that gave best
results.

As in [13], we generated synthetic 2-mode data that var-
ied by stiffness and noise content (figure 1). Stiffness is
measured as the ratio of the singular values of the shape
variation matrix S(3)C ∈ R3N×F —in this experiment a rank
K = 2 matrix containing full noiseless 3D information for
N points in F frames. White gaussian noise Y added to
the observations P is measured as ‖Y‖F/‖P‖F . Recon-
struction error is reported as ‖X̂−X‖F/‖X‖F , where X̂,X
are the estimated and true 3D locations of all points in all
frames. Both methods give exact solutions for noiseless
data, modulo some floating-point error; the direct solution
is more susceptible to floating-point error due to the evalu-
ation of quartics but this can be remediated using extended-
precision floats. The situation reverses even with a tiny
amount of data noise: The direct method strongly outper-
forms the basis method for all noise settings, as shown in
all figures. Both algorithms used double-precision floating
point numbers. The average performance gaps are statisti-
cally significant at p < 10−3 levels.
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Figure 2: Reconstruction error of direct solution (solid
lines) and basis solution (dashed lines) on F = 256 frames
of synthetic K-mode data, plotted as a function of the num-
ber of modes (horizontal axis) and data noise (each curve).
Graph shows 3D shape reconstruction error as a fraction of
the data norm. Each point averages 100 trials.

The algorithms share a failure mode, shown at the right
side of the graphs, where error trends up sharply: When
the data contains a very minor deformation mode that is
polluted by noise, both algorithms can produce garbage.
Because the noisy mode has such small magnitude, it can
have smallest residual w.r.t. any combination of orthogo-
nality and basis constraints, thereby polluting all estimated
column-triads of G and defeating either factorization. At
present the only remedy is to further truncate the initial data
SVD in hopes of dropping the noisy mode.

With K = 2 modes the direct solution can be seen to be
slightly more robust to noise; this gap widens dramatically
in figure 2, where the direct solution proves to be substan-
tially more robust to noisy high-DOF problems. Increasing
the number of points and frames will lower the error of both
methods; with sufficient frames we can coax correct solu-
tions from the basis method.

One thing that distinguishes real-world problems from
the experiments above is that real faces have many, many
degrees of freedom, and the singular value spectrum of
facial tracking data does not often suggest a clear cutoff
value for the number of deformation modes K. Arguably,
this case was not explored in the XCK experiments because
their tracking was done with an active appearance model—a
subspace-constraint tracker that guarantees a clear and early
cutoff in the singular value spectrum. To compare factor-
ization methods on more realistic data, we tested them on
unconstrained visual tracking data and motion capture data.

Figure 3 depicts a model obtained from 1000 frames of
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Figure 3: K = 5 mode model factored from
F = 1000 frames of N = 46 points 2D tracking
data. Eyebrows, jawline, and mouth are out-
lined. Lines also connect the bridge, nose tip,
and two points directly above the upper lip.
At the left are four views of the first mode, the
average 3D shape. At right the four remaining
modes are applied at (considerably exagger-
ated) ±3 standard deviation magnitudes.

2D point data by the direct method. In order to have ground
truth, we took 1000 frames of noisy 3D motion-capture data
and made random 2D projections with up to 22.5◦ horizon-
tal rotation and 11.25◦ vertical rotation—small enough to
guarantee no occlusions. The resulting tracking data ma-
trix masses 99% of its variance in the first 13 singular val-
ues, suggesting a K ≥ 5 mode basis in which two defor-
mations might be rank-deficient (planar). Consequently, we
were unable to coax a nondegenerate result from the basis
method, which depends on all deformations having full rank
(being 3D). In contrast, the direct method succeeded in find-
ing estimates of G1:3 based on the nondegenerate modes,
and produced a solution that reconstructed the ground-truth
3D data with less than 0.2% relative error.

Figure 4 compares the base shapes factored from F =
790 frames of visually tracked features. To obtain this data,
a student’s face was marked so that optical flow succeeded
without introducing any constraints that might artificially
reduce the rank or otherwise alter the singular value spec-
trum of the tracking data. Although imperfect, most tracks
were quite good. An SVD suggested K ≥ 21 modes of de-
formation (at 99% variance); we got best results from both
methods factoring at K = 6 to retain 93% of the data vari-
ance. The base shapes were obtained via principal compo-
nents analysis of the output shape bases, weighted by the
norms of their associated deformation coefficient vectors.
As figure 4 shows, the direct method produced a reasonable
profile, while the basis method output has several depth-
inverted facial features.

7 Comments

We have presented a solution to the nonrigid structure-from-
motion problem. By addressing the orthogonal structure of
the problem in a constrained optimization setting, we can
solve directly for the key variable of interest, sidestepping
the degeneracies that arise in attempts to generalize the or-
thogonalizing step of the Tomasi-Kanade rigid SFM factor-
ization. By replacing the “search” component of this opti-
mization with a closed-form solution, we obtain a fast and
efficient algorithm. Numerical experiments confirm that

it produces exact solutions from perfect (i.e., algebraically
conforming) data and superior solutions from real and/or
noisy data.

This approach has two limitations: Computing quartic
roots reduces numerical precision, and attempting to model
deformations whose magnitudes are near noise levels can
contaminate all estimates. We are investigating the pos-
sibility that the latter problem can be fixed by modifying
the constrained optimization to avoid solutions near the
nullspace of the proto-motion matrix M̃.
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A Line minimization
See section 3 for preliminaries. We seek a line opti-
mum of E ′(Z′) at point Z′ .= Z + x · D, indexed by x.
Define scale-invariant error E ′(Z′) = vT QAv with v .=
vech(Z′Z′T )/‖Z′‖2

F . Differentiating,

dE ′(Z′)
dx

=
d
dx

vT QAv = 2vT QA
dv
dx

(11)

with

‖Z′‖4
F

dv
dx

=
dvech(Z′Z′T )

dx
‖Z′‖2

F −vech(Z′Z′T )
d‖Z′‖2

F
dx

We drop the denominators of v and dv
dx because they do not

affect the zeros of the derivative dE ′(Z′)
dx . After copious al-

gebra, we obtain scaled vectors

‖Z′‖2
F · v = vech(DDT )x2 +vech(B)x+vech(ZZT ),

‖Z′‖4
F

dv
dx

= −vech(‖D‖2
F B−2trace(B)DDT )x2

+vech(‖Z‖2
F A−2trace(A)ZZT )x

+vech(‖Z‖2
F B−2trace(B)ZZT ) ,

with A = 2 ·DDT and B = DZT +ZDT .

Since both vectors are quadratic in x, the scaled derivative
dE ′(Z′)

dx ∝ vT QA
dv
dx ·‖Z′‖6

F is quartic in x and thus solvable in
closed form, with the negative real root(s) indexing the ex-
trema of E ′(Z′) along the line. Since the error is invariant to
rescalings of Z, the line minimization is effectively a con-
strained optimization on a sphere (having 180◦ symmetry,

because because E(Z) = E(−Z).). Geometrically, the op-
timization line projects to a half great-circle oriented with
the gradient on the sphere; x indexes the error on that arc.
W.l.o.g. we may exploit this spherical geometry by forcing
‖Z‖F = ‖D‖F = 1 and trace(DT Z) = (vecD)T (vecZ) = 0
at each step; the results are identical but several terms in
the gradient formulæ vanish, improving numerical preci-
sion. The gradient D can be further constrained with re-
gard to previous gradients or an estimated Hessian, yielding
a highly efficient procedure similar to conjugate gradient
search and BFGS. Typically the number of iterations to con-
vergence is a small multiple of the number of unknowns.

B Symbols and operators
In the following, N=#points, F=#frames, K=#modes,
SOn=special orthogonal group, GLn=general linear group.

variable & dimension meaning & discussion
C = [c1, · · · ,cF ], K×F deformation weights, §2
D, 3K×3 error gradient, §3
E, 3×3 SO3 nuisance DOF, §2.1, 5.1
F, K×K GLK nuisance DOF, §2.1
G = [G1:3, · · ·], 3K×3K corrective transform, §2
H, 3K×2 diversity constraint, §5
In, n×n identity matrix, §2
L, varies orthogonality constraints, §2
M = M̃G, 2F×3K motion matrix, §2
N = vec9KG, 9K×K nullspace estimate, §4
P = MS, 2F×N observation data, §2
QA,QB,QC, varies error metrics, §2, 2.1, 5.1
R, 2×3 projective rotation, §2
S = G−1S̃, 3K×N shape basis, §2
Z = G1:3, 9K×3 optimization variable, §3, A

operator Matlab & octave equivalents for A ∈ Rr×c

A⊗B kron(A,B)
vec A A(:)
vecnA reshape(A,n,r*c/n)
vech A vec(triu(A))
vc(a,b) vech(a*b’+b*a’-diag(a.*b))

A(n) vecn*c(permute(reshape(A,n,r/n,c),[1,3,2]))
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