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A random walks perspective on maximizing satisfaction and profit

Matthew Brand∗

Abstract
We model consumer behavior such as web browsing, shop-
ping, and entertainment choices as random walks on a
weighted association graph. The graph is derived from a
relational database that links products, consumers, and at-
tributes such as product categories, consumer demograph-
ics, market segments, etc. The Markov chain that describes
this walk amalgamates consumer behavior over the whole
population; individuals are distinguished by their current
state in the chain. We develop a geometrization of the
chain that furnishes a key similarity measure for informa-
tion retrieval—the cosine (correlation) angle between two
states. Empirically, this proves to be highly predictive of
future choices made by individuals, and is useful for recom-
mending and semi-supervised classification. This statistic
is obtained through a sparse matrix inversion, and we de-
velop approximation strategies that make this practical for
very large Markov chains. These methods also make it prac-
tical to compute recommendations to maximize long-term
profit.

Keywords: collaborative filtering; random
walks; Markov chain; cosine correlations;
semi-supervised classification.

1 Introduction
Collaborative filtering seeks to make recommendations to
individuals based on the choices made by a population. An
extensive literature treats this as a missing value problem,
wherein an individual’s history of choices is a fragment of
a hypothetical vector containing that individual’s ratings or
rankings of all possible consumables. The goal is to fill in
that vector (imputation) or identify the relative ranking of
the of the unknown elements. A rich literature has grown
up around this problem, with successful demonstrations of
Bayesian, nonparametric, and even linear methods; see [1]
for a broad survey. All methods essentially match the
individual to others who have made similar choices, and
use some combination of their experiences to predict future
choices.

In this paper we explore the idea of making recommen-
dations on the basis of associations in a relational database.
The database may connect categories to products to pur-
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Figure 1: A fragment of an association graph representing
a relational database. Affinities between pairs or groups of
vertices can be computed from statistics of a random walk
on the entire graph.

chasers to demographics, etc., and we may be interested
in finding out what products a customer is likely to buy
next, what product categories are preferred by specific de-
mographic groups, or even how to sequence sales pitches
to maximize likely profits. We answer these questions by
looking at the expected behavior of a random walk on the
database’s association graph (e.g., see figure 1). The ex-
pected travel time between states gives us a distance met-
ric that has a natural transformation into a similarity mea-
sure. The random walks view has been highly successful
in social networks analysis (e.g., [10, 13]) and web search
(e.g., [4, 11, 3]) and in many respects is formally identical
to the analysis of electrical resistive networks [5]. We de-
velop a novel measure of similarity based on random walk
behavior—the cosine correlation between states—and show
that it is much more predictive of an individual’s future
choices than classic graph-based dissimilarity measures. A
particularly nice feature of the random walks view is that
it can naturally incorporate large amounts of contextual in-
formation beyond the usual who-liked-what of collaborative
filtering, including categorical information. All this comes
at a heavy computational price, but we outline approxima-
tion strategies that make these computations practical for
very large graphs. These also make it practical to compute
a classically useful statistic—the expected discounted profit
of states, and make recommendations that optimize vendor
profit.

2 Markov chain statistics
Let W ∈ RN×N be a sparse nonnegative matrix that specifies
the edges of a graph. W may count events, e.g., Wi j is the
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number of times event j followed event i, or more generally,
we may view W as an arbitrarily weighted association matrix
with Wi j > 0 iff person i has viewed movie j, or if web page i
contains keyword j, etc. We are interested in a random walk
on the directed graph specified by W. (If W is symmetric the
graph is undirected.) The row-normalized stochastic matrix
T = diag(W1)−1W contains the transition probabilities of
the associated Markov chain (1 is a vector of 1’s). We
assume that the chain is irreducible and has no unreachable
or absorbing states; it may be asymmetric and self-transitions
are allowed to model repeat purchases. If the statistics in W
are a fair sample of the collective behavior of a population,
then a random walk on this Markov chain will mimic, over
the short term, the behavior of individuals randomly drawn
from this population.

Various statistics of this walk are useful for prediction
tasks. The stationary distribution s ∈ RN describes the
relative frequencies of visiting each state in an infinitely
long random walk, and can be used to flag the most popular
products. Formally, s> .= 1>T∞ satisfies s> = s>T and
s>1 = 1. If W is symmetric then s = 1>W

1>W1 ; otherwise it
may be computed from the recurrence s>i+1 ← s>i T, s0 =
1/N. The recurrence times r ∈ RN : ri = s−1

i describes the
expected time between two visits to the same state (and
should not be confused with the self-commute time Cii = 0
described below). The expected hitting time Hi j for a random
walk starting at state i to hit state j can be computed from

A .= (I−T−1f>)−1(2.1)

for any vector f > 0 satisfying f>s 6= 0 as

Hi j = (A j j−Ai j)/s j(2.2)

and the expected round-trip commute time is

Ci j = C ji = Hi j +H ji.(2.3)

For the special case of f = s, A is the inverse of the funda-
mental matrix and we recover the classic formula for hitting
times [2]. The two dissimilarity measures Ci j and Hi j have
been proposed as a basis for making recommendations [6]
but they can be dominated by the stationary distribution, of-
ten causing the same popular items to be recommended to ev-
ery consumer, regardless of individual consumer tastes. Ad-
hoc normalizations have been proposed, but none are clearly
advantageous. In this regard, it will prove useful to develop
an understanding of how the chain embeds in normed spaces.

2.1 Random walk correlations Here we establish a con-
nection to one of most useful statistics of information re-
trieval: the cosine correlation. In information retrieval, items
are often represented by vectors that count various attributes.
For example, if we view a document as a sample from a pro-
cess that generates a particular distribution of words, its at-
tribute vector counts (or log-counts) how many times each

(stemmed) word appears. Similar documents employ similar
vocabulary, thus the inner product of their attribute vectors
is large. However, longer documents sample this distribution
more, resulting in more words and larger inner products. In
order to be invariant to this sampling artifact, one normalizes
the vectors, so that the inner product measures the empirical
correlation between any two word distributions. This mea-
sure is called the cosine correlation because the normalized
inner product is the cosine of the angle between two vectors.

To extend this idea to random walks, we will take two
states to be similar if their relations to all other states are
similar, just as similar documents have similar relationships
to words.

The key idea for formalizing this intuition is a ge-
ometrization of the chain’s long-term behavior: The square-
root commute times are metric, satisfying the triangle in-
equality

√
Ci j +

√
C jk ≥

√
Cik, symmetry

√
Ci j =

√
C ji,

and identity
√

Cii = 0 [7]. Identifying commute times with
squared distances Ci j ∼ ‖xi− x j‖2 sets the stage for a geo-
metric embedding of a Markov chain in a Euclidean space1,
with each state assigned to a point xi ∈RN , and similar states
located near to each other. Because raw commute times re-
flect the stationary distribution, popular states will crowd
near the origin regardless of dissimilarity, so raw Euclidean
distance is unsuitable for most applications. However, the
angle θi j

.= ∠(xi,x j) between the embedding vectors xi,x j
of states i and j factors out the centrality of popular states.
More importantly, its cosine measures the correlation be-
tween these two state’s travel times to the rest of the graph—
how similar their roles are in a random walk. E.g., if two
states are perfectly correlated (cosθi j = 1), then jumping in-
stantaneously from one to the other would not change the
statistics of the random walk over the remaining states.

We need not actually compute the embedding to obtain
the cosines. We can convert the matrix of squared distances
C to a matrix of inner products P by observing that

Ci j = ‖xi−x j‖2(2.4)

= x>i xi−x>i x j−x>j xi +x>j x j(2.5)

1Both
√

Ci j and Ci j are metrics; why prefer
√

Ci j? Consider square
lattice graphs of varying dimension and uniform transition probabilities.
The identification Ci j ∼ ‖xi−x j‖ leads to embeddings of 1D lattice graphs
with uniform distances between adjoining states, but higher dimensional
lattices are embedded with a pin-cushion radial distortion (corners are pulled
away from the origin). Concentrating the graph in the corner spikes makes
near-corner vertices have larger distances but smaller angles to central
vertices than other non-corner vertices—undesirable because they are not
similar to central vertices. The identification Ci j ∼ ‖xi − x j‖2 leads to
embeddings with a lattice-axis-parallel barrelling distortion (straight lines
in the lattice are preserved, but the spacing of lattice lines is compressed
according to the sigmoid x → sinx on (−π,π); angles properly increase
with distance in the graph. Proof: Embedding uses the (nonconstant)
eigenvectors of the graph Laplacian which comprise the lowest frequencies
of a Fourier basis on the domain of grid spacings.



= Pii−Pi j−Pji +Pj j .(2.6)

Thus, removing the row- and column-averages Pii = x>i xi
and Pj j = x>j x j from C by a double-centering

−2 ·P = (I− 1
N

11>)C(I− 1
N

11>)(2.7)

yields Pi j = x>i x j [12]. The cosine correlation is then

cosθi j =
x>i x j

‖xi‖ · ‖x j‖
=

x>i x j√
x>i xi ·

√
x>j x j

=
Pi j√
PiiPj j

.(2.8)

In appendix A we will show efficient ways to compute P
directly from sparse T or W without computing dense C.
One result established there is that for the special case of
symmetric, zero-diagonal W, P simplifies to the pseudo-
inverse of the graph Laplacian diag(W1)−W.

For an alternate geometric interpretation of the cosine
correlations, consider projecting all embedded points onto
a unit hypersphere (thereby removing the effect of generic
popularity) and denoting the resulting pairwise Euclidean
distances as

◦
di j. Then

cosθi j = 1− (
◦
di j)2/2.(2.9)

In this embedding the correlation between two states is
negatively proportional to their squared Euclidean distance.
Thus summing and averaging correlations is a geometrically
meaningful way to measure similarity between two groups
of states.

In large chains the norm ‖xi‖ =
√

Pii is usually a close
approximation (up to a constant factor) of the recurrence
time ri = s−1

i , roughly the inverse “popularity” of a state,
so the cosine correlations may be interpreted as a measure
of similarity that factors out artifacts of uneven sampling.
For example, if two web pages are very popular the expected
time to hit either from any page will be low, thus they will
have a small mutual commute time. But if they are usually
accessed by different groups of people or are connected to
different sets of attributes, the angle between them may be
large, implying decorrelation or anticorrelation. Similarly,
with a movie database described below we find that the
horror thriller “Silence of the Lambs” to the children’s film
“Free Willy” have a smaller than average mutual commute
time because both were box-office successes, yet the angle
between them is larger than average because there was little
overlap in their audiences.

As presented, these calculations require the construction
and inversion of a dense N×N matrix, an O(N3) proposition
that is clearly impractical for large chains. It is also wasteful
because most queries will involve submatrices of P and
the cosine matrix. Section A will show how to efficiently
estimate the submatrices directly from the sparse Markov
chain parameters.

3 Recommending as semi-supervised classification
To make recommendations, we select one or more query
states and then rank other states by their summed (or aver-
aged) correlation to the query states. The query states may
represent customers, recent purchases, demographic cate-
gories, etc.

Recommending in this model is strongly related to
the semi-supervised classification problem: The states are
embedded in a space as points, one or more points are
given class labels, and we seek to compute an affinity
(similarity measure) between each unlabelled point and each
class. Unlike fully supervised classification, the affinity
between a point and the labelled examples is mediated by the
distribution of other unlabelled points in the space, because
they influence the (locally varying) distance metric over the
entire space. Similarly, in a random walk on a graph, the
similarity between two states depends on the distribution of
all possible paths in the graph.

To make this visually intuitive, we revisit a classification
problem recently proposed by Zhou & Schölkopf [14] in
the machine learning literature (see figure 2): 80 points
are arranged in two normally distributed clusters in the 2D
plane, surrounded by an arc of 20 points. An undirected
graph is made by connecting every point to its k nearest
neighbors (figure 2 left), giving a sparse graph, or to all
neighbors within some distance ε (figure 2 right), giving a
denser graph. Edge weights are chosen to be a fast-decaying
function of Euclidean distance, e.g., Wi j ∝ exp(−d2

i j/2).
Although connectivity and edge weights are loosely related
to Euclidean distance, similarity is mediated entirely by the
graph, not its layout on the page. Given three labelled
points (one on the arc and one on each cluster) representing
two classes, Zhou & Schölkopf ask how the rest should be
classified, and propose the similarity measure ((1−α)I +
αN)−1, with N = I − diag(W1)−1/2Wdiag(W1)−1/2 the
normalized combinatorial Laplacian, and 0 < α < 1 a user-
specified regularization parameter. This is similar to our
framework in the special case of an undirected graph with
no self-arcs, but whereas we normalize the pseudo-inverted
Laplacian to obtain cosines, they normalize the Laplacian,
then regularize to make ordinary inversion feasible2.

The similarity measure should be relatively insensitive
to perturbations of the graph, especially those inflicted by a
user varying the graph parameter k or ε. Since these mainly
affect the density of edges and thus the stationary distribu-
tion, we may expect some classification robustness from co-
sine correlations. Figure 2 shows two such labellings. Clas-

2Zhou & Schölkopf suggest their measure is the cosine associated with
commute time norms on a “lazy” random walk, but equations 3.4, 3.8 and
3.9 in their analysis only hold for α = 1 (where their inverse is undefined),
and neither the inverse nor the pseudo-inverse will yield true cosines unless
α = 0 (i.e., the graph is ignored). A secondary motivation from calculus on
graphs is much more satisfying.
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Figure 2: TOP: Classification of graph vertices according to random walk cosine correlations with labelled (boxed) vertices.
Size and color of each vertex dot indicates the magnitude and sign of its classification score. BOTTOM: Point-by-point
classification scores using various graph-based similarity and dissimilarity matrices. Each horizontal ordinate represents a
point; the vertical ordinate is its classification score. Points scoring > 0 are classified as belonging to the arc. Classification
scores are connected into lines only for the purpose of visual grouping. The cosine matrix offers the widest classification
margin and most stability to small changes in the graph.

sification scores, depicted by the size and color of the graph
vertices, are simply the difference between the recommen-
dation score for two classes. The left and right panels il-
lustrate how the classification varies when the criteria for
adding edges to the graph changes. We experimented with
different values for k and ε, and found that cosine correla-
tions and commute times both perform well, in the sense of
giving an intuitively correct classification that is relatively
stable as the density of edges in the graph is varied . How-
ever, cosines offer a considerably wider classification margin
and thus more robustness to graph perturbations. Normal-
ized commute times, the Zhou & Schölkopf measure, hit-
ting times, reverse hitting times, and their normalized vari-
ants (not shown) classify poorly to well on denser graphs but
quite poorly on sparser graphs. The Zhou & Schölkopf mea-
sure in particular has a small margin because it is designed

to vary smoothly over the graph. From this small informal
experiment we may expect cosine correlations to give consis-
tent recommendations under small variations in the associa-
tion graph; this is borne out below in large cross-validation
experiments.

4 Expected profit
While the consumer is interested in finding the next most
interesting product, the vendor wants to recommend prod-
ucts that are also profitable. Assuming that most customers
will make more than one purchase in the future and that cus-
tomers’ purchase decisions are independent of vendor profit
margins, decision theory tells us that the optimal strategy is
to recommend the product (state) with the greatest expected
profit, discounted over time. That is, the vendor wants to
nudge a consumer into a state from which a random walk



will pass through highly profitable states (hence retail strate-
gies such as “loss leaders”). Moreover, these states should
be traversed early in the walk, because money is worth more
now than it is in the indefinite future.

Let p ∈ RN be a vector of profit (or loss) for each state,
and e−β,β > 0 be a discount factor that determines the time
value of future profits. The expected discounted profit vi of
the ith state is the averaged profit of every state reachable
from it, discounted for the time of arrival. In vector form:

v = p+ e−βTp+ e−2βT2p+ · · · .(4.10)

Using the identity ∑
∞
i=0 Xi = (I−X)−1 for matrices of less

than unit spectral radius (λmax(X) < 1), we rearrange the
series into a sparse linear system:

v = (
∞

∑
t=0

e−βtTt)p = (I− e−βT)−1p.(4.11)

The most profitable recommendation for a consumer in state
i is thus the state j in the neighborhood of i that has the
largest expected discounted profit: j = argmax j∈N (i) Ti jv j.
If the chain is structured so that states representing saleable
products are k steps away from the current state, then the
appropriate term is argmax j∈N (i) T k

i jv j.

5 Experiments
The MovieLens database [8] contains ratings on a scale of 1-
5 for 1682 movies by 943 individuals. The data is a snapshot
of what movies the university community considered worth
seeing in 1997. Viewers rated 20-737 movies (average=106);
movies received 1-583 ratings (average=60). The ratings
table is 93.7% empty, which we interpret to mean that
most viewers have not seen most movies. Movies are
also tagged with nonexclusive memberships in 19 genres;
individuals have 2 possible genders, 21 possible vocations,
and 8 overlapping age groups. We constructed an N =
2675 state Markov chain with Wi j = 1 for each of these
connections, except for movie ratings, which were copied
directly into W on the principle that more highly rated
movies are more likely choices. W is very sparse with less
than 3% nonzero values. To evaluate the many measures of
similarity and dissimilarity described above, we compared
their performance in the following tasks.

5.1 Recommendation to maximize satisfaction We per-
formed extensive cross-validation experiments to determine
which statistic can best predict one part of the data from the
rest. In each trial we randomly partitioned the data into a test
set containing 10 ratings from each viewer, and a training set
containing the remainder of the data. The goal is to “predict”
each viewer’s held-out movies. A Markov chain was con-
structed from the training set and a variety of similarity (e.g.,
cosine correlation) and dissimilarity (e.g., commute times)
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Cumulative rating of top 10 recommendations, averaged over users & trials

Figure 3: Cosine correlation is almost twice as effective as
all other measures for predicting what movies a viewer will
see and like.

matrices were computed. Sorting the rows of these matrices
gives a predicted per-viewer ranking of all movies. To score
each measure’s prediction quality, we took as recommenda-
tions the 10 top-ranked movies that were not in the training
set, and summed the viewer’s held-out ratings of each rec-
ommended movie. A cumulative score of zero means that
the viewer did not elect to rate (or presumably, see) any of
the recommendations. A cumulative score of 50 would mean
that the viewer did indeed see all 10 recommendations and
gave all the highest possible rating. When the data’s average
rating and sparsity is considered, an omniscient oracle could
score no better than 35.3 on average; random guessing will
score 2.2 on average. We performed 2500 trials with differ-
ent random partitions and averaged scores over all viewers
and trials. Figure 3 shows that cosine correlation is almost
twice as successful as any other measure, with an average
score slightly over 7. We also looked at how the predictors
ranked the held-out movies: If a viewer had three held-out
movies that the predictor ranked 5th, 17th, and 205th in her
personalized recommendation list, then that predictor would
be assessed a penalty of 5 + 17 + 205 = 227. Cosine corre-
lation had the smallest average penalty, roughly 1/4 the aver-
age penalty of commute times, the next best predictor.

Both sets of experiments were repeated with all ratings
flattened to 1 (Wi j ∈ {0,1}), yielding almost identical com-
parative results. When ratings are not flattened, all methods
show a bias for highly rated movies.

Consistent with results reported in [6], we found that
commute times are slightly more informative than hitting
times. That paper advocated commute times and demon-
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Figure 4: Making recommendations that maximize long-
term profit is a much more successful strategy than recom-
mending strictly profitable films, and profit-blind recommen-
dations make no profit at all.

strated that they outperform k-nearest neighbors, Katz’ in-
fluence measure [10], Djikstra shortest-path distances, and
cosine coefficient computed from attribute vectors (not to
be confused with cosine correlations of the random walk).
However, we found that recommending from commute times
is only slightly better than simply recommending the most
popular movies identified by the stationary distribution, most
likely because the commute and hitting times are both domi-
nated by the stationary distribution. We tried several ways of
pre-normalizing the data matrix W or post-normalizing the
hitting/commute times to ameliorate this problem but failed
to improve their predictions substantially and usually wors-
ened performance, presumably because most normalizations
are not consistent with the geometry of these statistics. For
example, because commute times are small where station-
ary probabilities are large, [14, eq. (3.6-7)] proposed post-
normalizing the commute times by the recurrence time (i.e.,
Ci j/
√rir j = Ci j ·

√sis j); we found this promoted unpopu-
lar movies so strongly that recommendation scores averaged
worse than chance. The most successful normalization, after
cosine correlations, was obtained by projecting the transi-
tion matrix to the closest doubly stochastic matrix prior to
computing commute times, which makes the stationary dis-
tribution uniform (when such a projection exists).

5.2 Recommendations to maximize profit We repeated
the experiments above with a slightly different scoring pro-
tocol: Before trials, each movie was randomly assigned a
unique profit (or loss) p j from a unit normal distribution.

stationary distribution correlated to ‘male’ correlated to ‘female’

Star Wars Star Wars The English Patient

Fargo Contact Contact

Return of the Jedi Fargo Titanic

Contact Return of the Jedi Jerry Maguire

Raiders of the Lost Ark Air Force One Conspiracy Theory

The Godfather Scream Sense and Sensibility

Toy Story Toy Story The Full Monty

Silence of the Lambs Liar Liar L.A. Confidential

Scream The Godfather Good Will Hunting

Table 1: Top recommendations made from the stationary
distribution and by correlation to ‘male’ and ‘female’ states.

During trials, ten recommendations are given to the viewer
in sequence; if the ith recommendation is in the viewer’s
held-out list, the viewer accepts the movie and we receive
a time-discounted profit of e−iβ p j, with e−β = 0.9. The goal
is to maximize the profit over the entire sequence. In addition
to the profit-blind predictors evaluated above, we considered
a short-term profit maximizer—a cosine correlation predic-
tor that only recommends movies with positive profits—and
the long-term profit maximizer of section 4. This works by
first suggesting the movie in a local graph neighborhood of
the viewer’s state that has maximum expected discounted
profit. If the user declines, it suggests the next most prof-
itable movie in the same neighborhood. If the user accepts,
the state shifts to that of the accepted movie and the next
suggestion comes from the graph neighborhood of that state.
(This is one of many ways in which the state could be up-
dated.) Figure 4 shows that the expected discounted profit
maximizer strongly outperforms the greedy short-term max-
imizer, and that profit-blind recommenders effectively make
no profit at all. (They show slight losses only because the
random pricing happened to make some of the more popular
movies unprofitable.)

5.3 Market analysis Recommendations can be made
from any state in the chain, making it possible to identify
products that are particularly successful with a consumer de-
mographic, or customers that are particularly loyal to spe-
cific product categories. For example, the MovieLens data
has male and female attributes that are indirectly linked to
all movies through the viewers, and thus we may ask which
movies are preferentially watched by men or women. Rank-
ing movies by their commute times or expected hitting times
from these states turns out to be uninformative, as the rank-
ing is almost identical to the stationary distribution rank-
ing. (This is understandable for men because the database
is mostly male.) However, ranking by cosine correlation
produces two very different lists, with males preferring ac-
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tion and sci-fi movies and females preferring romances and
dramas. Table 1 lists the top ten recommendations for each
gender.

By the same method, we can ask which genres are
preferentially watched by people of particular occupations
and/or age groups. Figure 5 shows that age is indeed weakly
predictive of genre preferences.

6 Conclusion
The random walks view of association graphs is a very nat-
ural way to study affinity relations in a relational database,
providing a way to make use of extensive contextual infor-
mation such as demographics and product categories in col-
laborative filtering tasks. We derived a novel measure of
similarity—the cosine correlation of two states in a random
walk—and showed that it is highly predictive for recom-
mendation and semi-supervised classification tasks. Cross-
validation experiments indicate that correlation-based rank-
ings are more predictive and robust to perturbations of the
graph’s edge set than rankings based on commute times, hit-
ting times, normalized Laplacians, and related graph-based
dissimilarity measures. This is very encouraging because
recommendations ought to be stable with respect to random
omissions in the database, a challenge presented by most
data-collection scenarios. We also sketched some efficient
approximation methods for very large graphs; a forthcoming
paper will detail very fast exact methods based on a modified
sparse L-U decomposition.
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A Computational strategies
For chains with N� 103 states, it is currently impractical to
compute the full matrix of commute times or even a large
matrix inversion of the form (I−X)−1 ∈ RN×N . To get
around O(N2) memory and O(N3) time costs, we exploit
the fact that most computations have the form (I−X)−1G
where X is sparse and G has only a few columns. For
many queries, only a subset of states are being compared
(G is sparse as well), making only a subset of columns of
the inverse necessary. These can be computed via the series
expansions

(I−X)−1 =
∞

∑
i=0

Xi =
∞

∏
i=0

(I+X2i
),(1.12)



which can be truncated to yield good approximations for
fast-mixing sparse chains. In particular, an n-term sum of the
additive series (middle) can be evaluated via 2 log2 n sparse
matrix multiplies via the multiplicative expansion (right).
For any one column of the inverse this reduces to sparse
matrix-vector products.

One problem is that these series only converge for ma-
trices of less than unit spectral radius (λmax(X) < 1). For
inverses that do not conform, the associated series expan-
sions will have a divergent component that can be incremen-
tally removed to obtain the numerically correct result. For
example, in the case of hitting times, we have X = T + 1s>
which has spectral radius 2. By expanding the additive series
one can see that unwanted multiples of 1s> accumulate very
quickly in the sum. Instead, we construct an iteration that
removes them as they arise:

A0 ← I−1s>(1.13)
B0 ← T(1.14)

Ai+1 ← Ai +Bi−1s>(1.15)
Bi+1 ← TBi ,(1.16)

which converges to

Ai→∞→ (I−T−1s>)−1 +1s>.(1.17)

Note that this is easily adapted to compute an arbitrary sub-
set of the columns of Ai and Bi, making it economical to
compute submatrices of H. Because sparse chains tend to
mix quickly, Bi rapidly converges to the stationary distribu-
tion 1s>, and we often find that Ai is a good approximation
even for i < N. We can construct a much faster converging
recursion for the multiplicative series:

A0 ← I−1s>(1.18)
B0 ← T(1.19)

Ai+1 ← Ai +AiBi(1.20)
Bi+1 ← B2

i .(1.21)

This converges exponentially faster but requires computation
of the entire Bi. In both iterations, one can substitute 1/N for
s; this merely shifts the column averages, which are removed
in the final calculation

H← (1diag(Ai)>−Ai)diag(r).(1.22)

The recurrence times ri = s−1
i can be obtained from the

converged Bi = 1s>.
It is possible to compute the inner product matrix P

directly from the Markov chain parameters. The identity

P = (Q+Q>)/2(1.23)

with

Q− 1
iN

11> = (I−T− i
N

r1>)−1diag(r)

= (diag(s)−diag(s)T− i
N

11>)−1, 0 < i≤ N(1.24)

can be verified by expansion and substitution. For a subma-
trix of P, one need only compute the corresponding columns
of Q using appropriate variants of the iterations above.

Once again, if s (and thus r) are unknown prior to the
iterations, one can make the substitution s→ 1/N; at conver-
gence the resulting A′= Ai− 1

N 11>, s = 1>Bi/cols(Bi), ri =
s−1

i satisfy

A′− 1
N

(A′r−1)s> = (I−T− 1
N

r1>)−1(1.25)

and
Q = A′diag(r)(I− 1

N
11>).(1.26)

However, one pays a price for not pre-computing the station-
ary distribution s: The last two equalities require full rows of
Ai, which defeats our goal of economically computing sub-
matrices P.

Such partial computations are quite feasible for undi-
rected graphs with no self-loops: When W is symmetric and
zero-diagonal, Q (equation 1.24) simplifies to the Laplacian
kernel

Q = P = (1>W1) · (diag(W1)−W)+,(1.27)

a pseudo-inverse because the Laplacian diag(W1)−W has
a null eigenvalue. In our setting, the Laplacian has a sparse
block structure that allows the pseudo-inverse to computed
via smaller singular value decompositions of the blocks
[9], but even this can be prohibitive. We avoid expensive
pseudo-inversion entirely by shifting the null eigenvalue
to 1, inverting via series expansion, and then shifting the
eigenvalue back to zero. These operations are collected
together in the equality

1
1>W1

P = D((I−{D(W− i
N

11>)D})−1D

− 1
iN

11>,(1.28)

where D .= diag(W1)−1/2 and i > 0. By construction, the
term in braces {·} has spectral radius < 1 for i≤ 1, thus any
subset of columns of the inverse (and of P) can be computed
via straightforward additive iteration.

One advantage of couching these calculations in terms
of sparse matrix inversion is that new data, such as a series of
purchases by a customer, can be incorporated into the model
via lightweight computations using the Sherman-Woodbury-
Morrison formula for low-rank updates of the inverse.
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