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Abstract

We propose a content-adaptive analysis and representation framework to discover events using
audio features from̈unscripted̈multimedia such as sports and surveillance for summarization.
The proposed analysis framework performs an inlier/outlier based temporal segmentation of the
content. It is motivated by the observation thatı̈nteresting̈events in unscripted multimedia occur
sparsely in a background of usual orüninteresting̈events. We treat the sequence of low / mid
level features extracted from the audio as a time series and identify subsequences that are out-
liers. The outlier detection is based on eigenvector analysis of the affinity matrix constructed
from statistical models estimated from the subsequences of the time series. We define the confi-
dence measure on each of the detected outliers as the probability that it is an outlier. Then, we
establish a relationship between the parameters of the proposed framework and the confidence
measure. Furthermore, we use the confidence measure to rank the detected outliers in terms
of their departures from the background process. Our experimental results with sequences of
low and mid level audio features extracted from sports video show thatḧighlighẗevents can be
extracted effectively as outliers from a background process using the proposed framework. We
proceed to show the effectiveness of the proposed framework in bringing out suspicious events
from surveillance videos without any a priori knowledge. We show that such temporal seg-
mentation into background and outliers, along with the ranking based on the departure from the
background, can be used to generate content summaries of any desired length. Finally, we also
show that the proposed framework can be used to systematically selectk̈ey audio classesẗhat are
indicative of events of interest in the chosen domain.
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Abstract. We propose a content-adaptive analysis and representation frame-
work to discover events using audio features from “unscripted” multimedia
such as sports and surveillance for summarization. The proposed analysis
framework performs an inlier/outlier based temporal segmentation of the con-
tent. It is motivated by the observation that “interesting” events in unscripted
multimedia occur sparsely in a background of usual or “uninteresting” events.
We treat the sequence of low/mid level features extracted from the audio as a
time series and identify subsequences that are outliers. The outlier detection
is based on eigenvector analysis of the affinity matrix constructed from sta-
tistical models estimated from the subsequences of the time series. We define
the confidence measure on each of the detected outliers as the probability that
it is an outlier. Then, we establish a relationship between the parameters of
the proposed framework and the confidence measure. Furthermore, we use the
confidence measure to rank the detected outliers in terms of their departures
from the background process. Our experimental results with sequences of low
and mid level audio features extracted from sports video show that “highlight”
events can be extracted effectively as outliers from a background process using
the proposed framework. We proceed to show the effectiveness of the proposed
framework in bringing out suspicious events from surveillance videos without
any a priori knowledge. We show that such temporal segmentation into back-
ground and outliers, along with the ranking based on the departure from the
background, can be used to generate content summaries of any desired length.
Finally, we also show that the proposed framework can be used to systemati-
cally select “key audio classes” that are indicative of events of interest in the
chosen domain.

1. Introduction

The goals of multimedia content summarization are two-fold. One is to capture
the essence of the content in a succinct manner and the other is to provide a top-
down access into the content for browsing. Towards achieving these goals, signal
processing and statistical learning tools are used to generate a suitable represen-
tation for the content using which summaries can be created. For content that is
carefully produced and edited (scripted content) such as news, movie, drama, ., a
representation that captures the sequence of semantic units that constitute the con-
tent has been shown to be useful. Hence, past work on summarization of scripted

1



�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

shot boundary detection

key frame extraction

temporal features

video

scene

shot

key frame

group

grouping

scene construction

spatial features

Figure 1. A hierarchical video representation for scripted content

content has mainly focussed on coming up with a Table of Contents (ToC) represen-
tation as shown in Figure 1. With such a representation of the detected semantic
units, a summary can be constructed using abstractions (e.g skims, keyframes) from
each of the detected semantic units.

The following is a list of approaches towards constructing a hierarchical ToC-like
representation for summarization of scripted content.

• News video
– Detection of News story boundaries through closed caption or speech

transcript analysis[1][2][3].
– Detection of News story boundaries using speaker segmentation and

face information[4][5].
• Situation Comedies

– Detection of “physical setting” using mosaic representation of a scene[6].
– Detection of major cast using audio-visual cues[7].

• Movie content
– Detection of syntactic structures like two-speaker dialogs [8].
– Detection of some specific events like explosions[7]

In unscripted content such as sports and surveillance, interesting events happen
sparsely in a background of usual events. Hence, past work on summarization of
unscripted content has mainly focussed on detecting these specific events of interest.

The following is a list of approaches from literature that detect specific events
for summarization of unscripted content.

• Sports video
– Detection of domain-specific events and objects that are correlated

with highlights using audio visual cues [9][10][11][12].
– Unsupervised extraction of play-break segments from sports video [13]
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Figure 2. A hierarchical video representation for unscripted content

• Surveillance video
– Detection of “unusual” events using object segmentation and tracking

from video[14].

Based on the detection of such domain specific key audio-visual objects (audio-
visual markers) that are indicative of the “highlight” or “interesting” events, we
proposed a hierarchical representation for unscripted content as shown in Figure
2[15]. The detected events can also be ranked according to a chosen measure which
would allow generation of summaries of desired length [16]. In this representation,
for each domain the audio-visual markers are chosen manually based on intuition.

For scripted content, the representation framework is based on the detection of
the semantic units. Past work has shown that the representation units starting from
the “keyframes” up to the “groups” can be detected using unsupervised analysis.
However, the highest level representation unit requires content-specific rules to
bridge the gap between semantics and the low/mid level analysis.

For unscripted content, the representation framework is based on the detection of
specific events. Past work has shown that the play/break representation for sports
can be achieved by an unsupervised analysis by bringing out repetitive temporal
patterns. However, the rest of the representation units require the use of domain
knowledge in the form of supervised audio-visual object detectors that are corre-
lated with events of interest. This necessitates a separate analysis framework for
each domain in which the key audio visual objects are chosen based on intuition.
However, what is more desirable is a content-adaptive analysis and representation
framework that postpones content specific processing to as late a stage as possible.
Then, some challenging questions towards achieving such a framework are:
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• Can we come up with a representation framework for unscripted content
which requires the use of the domain knowledge only at the last stage as
for the representation framework for scripted content?

• Discovery of what kind of patterns would support such a representation
framework?

• Can such a framework help in the systematic choice of the key audio-visual
objects for events of interest?

In this paper, the above questions motivate us to propose a content adaptive
analysis framework aimed towards a representation framework for event discovery
from unscripted multimedia. We are motivated towards an inlier/outlier based rep-
resentation for unscripted multimedia based on the observation that “interesting”
events are outliers in a background of usual events. In this paper, we focus on
the analysis of audio features for such a representation. We treat the sequence
of low-level/ mid-level features extracted from the input audio as a time series.
Then, we discover subsequences from the input time series that are outliers. The
outlier detection is based on eigenvector analysis of the affinity matrix constructed
from statistical models estimated from the subsequences of the time series. The
detected outliers are ranked based on the deviation from the usual. This results in
a temporal segmentation of the input time series, that will henceforth be referred
to as “inlier/outlier based segmentation”, with observations during inliers corre-
sponding to the usual process and observations during outliers corresponding to
the unusual events. The analysis thus far is content-adaptive (in the sense that the
framework adapts to content statistics to discover the usual and unusual for a given
set of parameter choices) and genre-independent, enabling us to come up with a
representation for summarization without a priori knowledge. However, since the
meaning of “interesting” is dependent on the genre, in order to present an “inter-
esting” summary to the end user, a genre dependent post-processing incorporating
the domain knowledge can be performed on the discovered outlier subsequences.

The rest of the paper is organized as follows. In the next section, we propose
our framework for event discovery using audio features in unscripted content. In
sections 3-5, we describe each of the components in the proposed framework in
detail. In section 6, we present the results of the proposed framework on sports
audio content and surveillance audio content. In section 7, we present our discussion
on systematic choice of key audio classes for a chosen domain before presenting our
conclusions.

2. Proposed Framework

With the knowledge of the domain of the unscripted content, one can come up
with an analysis framework with supervised learning tools for the generation of the
hierarchical representation of events in unscripted content for summarization as
shown in Figure 2. We propose a content adaptive analysis framework which does
not require any a priori knowledge of domain of the unscripted content. It is aimed
towards an inlier/outlier based representation of the content for event discovery
and summarization as shown in Figure 3.

We briefly describe the role of each component in the proposed framework as
follows.

• Feature extraction: In this step, low-level features are extracted from the
input content in order to generate a time series from which events are to
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Figure 3. Proposed event discovery framework for analysis and
representation of unscripted content for summarization

be discovered. For example, the extracted features from the audio stream,
could be Mel Frequency Cepstral Coefficients (MFCC).

• Classification/Clustering: In this step, the low-level features are clas-
sified using supervised models for classes that span the whole domain to
generate a discrete time series of mid-level classification/clustering labels.
One could also discover events from this sequence of discrete labels. For
example, Gaussian Mixture Models (GMMs) can be used to classify every
frame of audio into one of the following five audio classes which span most
of the sounds in sports audio: Applause, Cheering, Music, Speech, Speech
with Music. At this level, the input unscripted content is represented by a
time series of mid-level classification/cluster labels.

• Detection of subsequences that are outliers in a time series: In
this step, we detect outlier subsequence from the time series of low-level
features or mid-level classification labels motivated by the observation that
“interesting” events are unusual events in a background of “uninteresting”
happenings. At this level, the input content is represented by a temporal
segmentation of the time series into inlier and outlier subsequences. The
detected outlier subsequences are illustrated in the Figure 3 as Oi, 1 ≤ i ≤
n.

• Ranking outlier subsequences: In order to generate summaries of de-
sired length, we rank the detected outliers with respect to a measure of
statistical deviation from the inliers. At this level, the input content is
represented by a temporal segmentation of the time series into inlier and

5



ranked outlier subsequences. The ranks of detected outlier subsequences
are illustrated in the Figure 3 as ri, 1 ≤ i ≤ n.

• Summarization: Detected outlier subsequences are statistically unusual.
All unusual events need not be interesting to the end-user. Therefore,
with the help of domain knowledge, we prune the outliers to keep only
the interesting ones and modify their rank. For example, commercials and
highlight events are both unusual events and hence using domain knowledge
in the form of a supervised model for audience reaction sound class will
help in getting rid of commercials from the summary. At this level, the
input content is represented by a temporal segmentation of the time series
into inlier and ranked “interesting” outlier subsequences. The “interesting”
outlier subsequences are illustrated in the Figure 3 as Si, 1 ≤ i ≤ m with
ranks ki. The set of “interesting” subsequences (S

′
i)s is a subset of outlier

subsequences (O
′
is).

In the following sections, we describe each of these components in detail.

3. Classification/Clustering framework for mid-level
representation

We extract low-level features and model the distribution of features for classi-
fication into one of the several classes that span the whole domain of unscripted
content. We take sports content as an example of unscripted content to explain the
classification framework. The following sound classes span almost all of the sounds
in sports domain: Applause, Cheering, Music, Speech and Speech with Music. We
have collected 679 audio clips from TV broadcasts of golf, baseball, and soccer
games. This database is a subset of that in [17]. Each clip is hand-labeled into one
of the five classes as ground truth: applause, cheering, music, speech, and “speech
with music.” The corresponding numbers of clips are 105, 82, 185, 168, and 139.
The duration of the clips differs from around 1 s to more than 10 s. The total
duration is approximately 1 h and 12 min. The audio signals are all monochannel
with a sampling rate of 16 kHz. We extract 12 Mel Frequency Cepstral Coefficients
(MFCC) for every 8ms frame and logarithm of energy, from all the clips in the train-
ing data. We performed classification experiments with varying number of MFCC
coefficients and chose 12 as a tradeoff between computational complexity and per-
formance. We trained Gaussian Mixture Models (GMMs) to model the distribution
of features for each of the sound classes. The number of mixture components were
found using the minimum description length principle[16]. Then, given a test clip,
we extract the features for every frame and assign a class label corresponding to the
sound class model for which the likelihood of the observed features is maximum.
For all the experiments to be described in the following sections, we use one of the
following time series to discover “interesting” events at different scales:

• The time series of 12 MFCC features and logarithm of energy extracted for
every frame of 8ms.

• The time series of classification labels for every frame.
• The time series of classification labels for every second of audio. The most

frequent frame label in one second is assigned as the label for that second.

In the following section, we describe the outlier subsequence detection from one
of the three time series defined in this section.
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4. Outlier subsequence detection in time series

Outlier subsequence detection is at the heart of the proposed framework and is
motivated by the observation that “interesting” events in unscripted multimedia
occur sparsely in a background of usual or “uninteresting” events. Some examples
of such events are:

• sports: A burst of overwhelming audience reaction in the vicinity of a
highlight event in a background of commentator’s speech.

• surveillance: A burst of motion and screaming in the vicinity of a suspi-
cious event in a silent or static background.

This motivates us to formulate the problem of discovering “interesting” events
in multimedia as that of detecting outlier subsequences or “unusual” events by
statistical modelling of a stationary background process in terms of low/mid-level
audio-visual features. Note that the background process may be stationary only
for small period of time and can change over time. This implies that background
modelling has to be performed adaptively throughout the content. It also implies
that it may be sufficient to deal with one background process at a time and detect
outliers. In the following subsection, we elaborate on this more formally.

4.1. Problem formulation. Let p1 represent a realization of the “usual” class
(P1) which can be thought of as the background process. Let p2 represent a real-
ization of the “unusual” class P2 which can be thought of as the foreground process.
Given any time sequence of observations or low-level audio-visual features from the
two the classes of events (P1 and P2), such as

...p1p1p1p1p1p2p2p1p1p1...

then the problem of outlier subsequence detection is that of finding the times of
occurrences of realizations of P2.

To begin with, the statistics of the class P1 are assumed to be stationary. How-
ever, there is no assumption about the class P2. The class P2 can even be a
collection of a diverse set of random processes. The only requirement is that the
number of occurrences of P2 is relatively rare compared to the number of occur-
rences of the dominant class. Note that this formulation is a special case of a
more general problem namely clustering of a time series in which a single highly
dominant process does not necessarily exist. We treat the sequence of low/mid
level audio-visual features extracted from the video as a time series and perform a
temporal segmentation to detect transition points and outliers from a sequence of
observations.

Before we present our framework for detection of outlier subsequences, we review
the related theoretical background on the graph theoretical approach to clustering.

4.2. Segmentation using eigenvector analysis of affinity matrices. Segmen-
tation using eigenvector analysis has been proposed in [18] for images. This ap-
proach to segmentation is related to graph theoretic formulation of grouping. The
set of points in an arbitrary feature space are represented as a weighted undirected
graph where the nodes of the graph are points in the feature space and an edge
is formed between every pair of nodes. The weight on each edge is the similarity
between nodes. Let us denote the similarity between nodes i and j, as w(i, j).
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In order to understand the partitioning criterion for the graph, let us consider
partitioning it into two groups A and B and A

⋃
B = V .

(1) Ncut(A, B) =
cut(A,B)
asso(A, V )

+
cut(A,B)
asso(B, V )

where

(2) cut(A,B) =
∑

iεA,jεB

w(i, j)

(3) asso(A, V ) =
∑

iεA,jεV

w(i, j)

Note that cut(A,B) measures the total connection from nodes in A to all the
nodes in B whereas asso(A, V ) measures the total connection from nodes in A to all
the nodes in the graph. It has been shown in [18] that minimizing Ncut, minimizes
similarity between groups while maximizing association within individual groups.
Shi and Malik show that

(4) minxNcut(x) = miny
yT (D −W )y

yT Dy

with the condition yiε{−1, b}. Here W is a symmetric affinity matrix of size
N ×N (consisting of the similarity between nodes i and j, w(i, j) as entries ) and
D is a diagonal matrix with d(i, i) =

∑
j w(i, j). x and y are cluster indicator

vectors i.e. if y(i) equals -1, then feature point ‘i’ belongs to cluster A else cluster
B. It has also been shown that the solution to the above equation is same as the
solution to the following generalized eigenvalue system if y is relaxed to take on
real values.

(5) (D −W )y = λDy

This generalized eigenvalue system is solved by first transforming it into the
standard eigenvalue system by substituting z = D

1
2 y to get

(6) D− 1
2 (D −W )D− 1

2 z = λz

It can be verified that z0 = D
1
2
−→
1 is a trivial solution with eigenvalue equal to

0. The second generalized eigenvector ( the smallest non-trivial solution) of this
eigenvalue system provides the segmentation that optimizes Ncut for two clusters.
In this paper, we use the term “the cluster indicator vector” interchangeably with
“the second generalized eigenvector of the affinity matrix”.

Also, note that although this method of segmentation using eigenvector analysis
has been introduced by Shi and Malik, in the context of image segmentation, it also
can be used to segment a time series of audio features as we shall later. The key is
to compute an affinity from the input times series of audio features in a meaningful
way. Thereafter, the nature of the source from which the affinity matrix is computed
has no influence on the mathematics.
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Figure 4. Proposed outlier subsequence detection framework

4.3. Proposed outlier subsequence detection in time series. Given the prob-
lem of detecting times of occurrences of P1 and P2 from a time series of observations
from P1 and P2, we propose the following time series clustering framework:

(1) Sample the input time series on a uniform grid. Let each time series sample
at index ’i’ (consisting of a sequence of observations) be referred to as a
context, Ci.

(2) Compute a statistical model Mi from the time series observations within
each Ci.

(3) Compute the affinity matrix for the whole time series using the context
models and a commutative distance metric (d(i, j)) defined between two
context models (Mi and Mj). Each element, A(i,j), in the affinity matrix

is e
−d(i,j)

2σ2 where σ is a parameter that controls how quickly affinity falls off
as distance increases .

(4) The computed affinity matrix represents an undirected graph where each
node is a context model and each edge is weighted by the similarity between
the nodes connected by it. Then, we can use a normalized cut solution to
identify distinct clusters of context models and “outliers context models”
that do not belong to any of the clusters. Note that the second generalized
eigenvector of the computed affinity matrix is an approximation to the
cluster indicator vector, as discussed in section 4.2 .

Figure 4 illustrates the proposed framework. The portion of the figure (b) is a
detailed illustration of the two blocks: (clustering and outlier detection) in figure
(a). In this framework, there are two key issues namely the statistical model for
the context and the choice of the two parameters, the context window size (WL)
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Figure 5. Generative model for synthetic time series with one
background process and one foreground process

and the sliding window size (WS) (see Figure 4(a)). The choice of the statistical
model for the time series sample in a context would depend on the underlying
background process. A simple unconditional Probability Density Function(PDF)
estimate would suffice for a memoryless background process. However, if the process
has some memory, the chosen model would have to account for it. For instance, a
Hidden Markov Model (HMM) would provide a first order approximation.

The choice of the two parameters (WL and WS) would be determined by the
confidence with which a subsequence is declared to be an outlier.The size of the
window WL determines the reliability of the statistical model of a context.The size
of the sliding factor, WS , determines the resolution at which the outlier is detected.

Before we discuss the choice of these parameters, we show some results on syn-
thetic time series data.

4.4. Results with synthetic time series data. In this section, first, we show
the effectiveness of the proposed outlier subsequence detection framework using
synthetic time series data. Second, we compare the normalized cut with other
clustering approaches for outlier subsequence detection from time series.

The synthetic time series generation framework is shown in Figure 5.
In this framework, we have a generative model for both P1 and P2 and the

dominance of one over the other can also be governed by a probability parameter.
It is also possible to control the percentage of observations from P2 in a given
context.

There are four possible scenarios one can consider with the proposed generative
model for label sequences:

• case 1: Sequence completely generated from P1. This case is trivial and
less interesting.

10



• case 2: Sequence dominated by observations from P1 i.e. P (P1) >>
P (P2). An example for this case is a time series of audio class labels for
each second of a news program. Here a burst of music and speech-with-
music audio class labels corresponds to commercial messages (P2) in the
recording. The speech background in the news program corresponds to the
usual background process ,P1.

• case 3: Sequence dominated by observations from P1 i.e. P (P1) >>
P (P2) ≈ P (P3) ≈ P (P4) where P2, P3, P4 are foreground processes. An
example for this case is a time series of audio class labels for each second
from a sports broadcast. In this case, a burst of audience reaction audio
class labels may correspond to P2 and a burst of music audio class labels
may be correspond to P3.

• case 4: Sequence with observations from P1 and P2 with no single domi-
nant class with a number of foreground processes i.e P (P1) ≈ P (P2) and
(P (P1) + P (P2)) >> P (P3) + P (P4)). An example for this case is a time
series of features from a clip that has two different genres, say news and
sports.

4.4.1. Performance of the normalized cut for case 2. In this section, we
show the effectiveness of normalized cut for case 2, i.e. when P (P1) >> P (P2).
Without loss of generality, let us consider an input discrete time series with an
alphabet of three symbols (1, 2, 3) generated from two HMMs (P1 and P2).

The parameters of P1 (the state transition matrix (A), the state observation
symbol probability matrix (B), the initial state probability matrix (Π)) are:

AP1 =




0.3069 0.0353 0.6579
0.0266 0.9449 0.0285
0.5806 0.0620 0.3573




BP1 =




0.6563 0.2127 0.1310
0.0614 0.0670 0.8716
0.6291 0.2407 0.1302




ΠP1 =
(
0.1 0.8 0.1

)

The parameters of P2 are:

AP2 =
(

0.9533 0.0467
0.2030 0.7970

)

BP2 =
(

0.0300 0.8600 0.1100
0.3200 0.5500 0.1300

)

ΠP2 =
(
0.8 0.2

)

Then, using the generative model shown in Figure 5 with P (P1) = 0.8 and
P (P2) = 0.2 we generate a discrete time series of symbols as shown in 6(A).

We sample this series uniformly using a window size of WL = 200 and a step size
of WS = 50. We use the observations within every context to estimate a HMM with
2 states. Using the distance metric defined below for comparing two HMMs, we
compute the distance matrix for the whole time series. Given two context models
(λ1 and λ2 with observation sequences O1 and O2 respectively, we define:

11



(7)
D(λ1, λ2) =

1
WL

(log P (O1|λ1) + log P (O2|λ2)

− log P (O1|λ2)− log P (O2|λ1))

The computed distance matrix, D, is normalized to have values between 0 and
1. Then, using a value of σ = 0.2, we compute the affinity matrix, A, where
A(i, j) = e

−d(i,j)
2σ2 . The affinity matrix is shown in Figure 6(B). We compute the

second generalized eigenvector of this affinity matrix as a solution to cluster indica-
tor vector. Since the cluster indicator vector does not assume two distinct values,
a threshold is applied on the eigenvector values to get the two clusters. In order to
compute the optimal threshold, Normalized Cut value is computed for the partition
resulting from each candidate threshold between the range of eigenvector values.
The optimal threshold is selected as the threshold at which Normalized Cut value
is minimum as shown in Figure 6(C). The corresponding second generalized vector
and its optimal partition is shown in Figure 6(D). The detected outliers are at times
of occurrences of P2. Figure 6(E) marks the detected outlier subsequences in the
original time series based on normalized cut. It can be observed that the outlier
subsequences have been detected successfully without having to set any threshold
manually. Also, note that since all outlier subsequences from the same foreground
process (P2), the normalized cut solution found the outlier subsequences. In gen-
eral, as we shall see later, when the outliers are from more than one foreground
process (case 3), the normalized cut solution may not perform as well. This is
because each outlier can be different in its own way and it is not right to emphasize
association between the outlier cluster members as normalized cut does.

In the following subsection, we show the performance of other competing clus-
tering approaches for the same task of detecting outlier subsequences using the
computed affinity matrix.

4.4.2. Comparison with other clustering approaches for case 2. After con-
structing the affinity matrix in step 3, step 4 finds clusters in model space. Instead
of using normalized cut solution for clustering, one could use one of the following
three methods for clustering.

• Clustering using alphabet constrained K-Means:

Given the pairwise distance matrix and the knowledge of the number
of clusters, one can perform top-down clustering based on alphabet con-
strained k-means as follows. Since the clustering operation is performed
in model space, the centroid model of a particular cluster of models is not
merely the average of the parameters of cluster members. Therefore, the
centroid model is constrained to be one of the models and is that model
which has minimum average distance to the cluster members.

Given that there is one dominant cluster and the distance matrix, we
can use the following algorithm to detect outliers.
(1) Find the row in the distance matrix for which the average distance is

minimum. This is the centroid model.
(2) Find the semi-hausdorff distance between the centroid model and the

cluster members. The semi-hausdorff distance, in this case, is sim-
ply the maximum of all the distances computed between the centroid

12
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Figure 6. Performance of Normalized Cut on Synthetic Time Se-
ries for case 2 (A: X-axis for time, Y-axis for symbol), (C: X-axis for
candidate normalized cut threshold, Y-axis for value of normalized
cut objective function) (D: X-axis for time index of context model,
Y-axis for cluster indicator value),(E: X-axis for time, Y-axis for
symbol)
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Figure 7. Performance of K-means on Synthetic Time Series for
case 2 (outliers in red) (A: X-axis for time index of context model,
Y-axis for cluster indicator value),(B: X-axis for time, Y-axis for
symbol)

model and the cluster members. Hence, semi-hausdorff distance would
be much larger than the average distance if there are any outliers in
the cluster members.

(3) Remove the farthest model and repeat step 2 until the difference be-
tween average distance and Hausdorff distance is less than a chosen
threshold.

(4) The remaining cluster members constitute the inlier models.
For more than one cluster, repeat steps 1-3 on the complementary set

which does not include members of the detected cluster. For more details
on Alphabet constrained k-means, please see [19]. Figure 7(A) shows the
distance matrix values of the row that is corresponding to the centroid
row. By using a threshold on the difference between average distance and
Hausdorff distance, we detect outlier subsequences as shown in Figure 7(B).

• Clustering based on Dendrogram:

Given the pairwise distance matrix one can perform a bottom-up agglom-
erative clustering. At the start, each point is considered to be an individual
cluster. By merging two closest clusters at every level until there is only
one cluster, a dendrogram can be constructed as shown in Figure 8(A).
Then, by partitioning this dendrogram at a particular height one can get
the individual clusters. The criteria for evaluating a partition could be sim-
ilar to what normalized cut tries to optimize. There are several choices for
creating partitions in the dendrogram and one has to exhaustively compute
the objective function value for each partition and choose the one that is
optimal. For more details on dendrogram based agglomerative clustering,
please see [20]. For example, by manually selecting a threshold of 5.5 for
the height, we can detect outlier subsequences as shown in Figure 8(B). As
can be seen from the figure, there are some false alarms and misses in the
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Figure 8. Performance of Dendrogram Cut on Synthetic Time
Series for case 2 (B: X-axis for time, Y-axis for symbol)

detected outlier subsequences as the threshold was chosen manually.

• Clustering based on Factorization of the affinity matrix:

As mentioned earlier, minimizing Ncut, minimizes similarity between
groups while maximizing association within the individual groups. Per-
ona and Freeman modified the objective function of the normalized cut to
discover a “salient” foreground object from an unstructured background.
Since the background is assumed to be unstructured, the objective function
of normalized cut was modified as follows:

(8) N∗
cut(A,B) =

cut(A,B)
asso(A, V )

where cluster A is the foreground and cluster B is the background. Note
that the objective function only emphasizes the compactness of foreground
cluster while minimizing similarity between cluster A and cluster B. Perona
and Freeman solve this optimization problem by setting up the problem in
the same way as in the normalized cut. The steps of the resulting “fore-
ground cut” algorithm is as follows[21]:

– Calculate the left singular matrix, U, of the affinity matrix, A. The
Singular Value Decomposition (SVD) of A can be written as USV
where U is the left singular matrix, S is a diagonal matrix whose
elements are the singular values of A and V is the right singular
matrix;

– Compute the vector u = SU1 where 1 is a column vector of ones.
– Determine the index k of the maximum entry of u.
– Define the foreground vector x as the kth column of U.
– Threshold x, to obtain the foreground and background. x is similar

to the cluster indicator vector in normalized cut.
The threshold in the last step can be obtained in a similar way as it was

obtained for normalized cut.
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For the problem at our hand, the situation is reversed, i.e. the back-
ground is structured while the foreground can be unstructured. Therefore,
the same “foreground cut” solution should apply as the modified objective
function is:

(9) N∗∗
cut(A,B) =

cut(A,B)
asso(B, V )

However, a careful examination of the modified objective function would
reveal that the term in the denominator asso(B, V ) would not be affected
drastically by changing the cluster members of A. This is because the back-
ground cluster is assumed to be dominant. Hence, minimizing this objective
function would be the same as minimizing the value cut(A,B). Minimiz-
ing cut(A, B) alone is notorious for producing isolated small clusters. Our
experiments with the synthetic time series data also support these obser-
vations. Figure 9(A) shows the value of objective function cut(A,B) for
candidate threshold values in the range of values of the vector x. Figure
9(B) shows the value of objective function N∗∗

cut(A, B) for the same can-
didate threshold values. Figure 9(C) and (D) show the detected outlier
subsequences for the optimal threshold. There are some misses because
the modified normalized cut finds isolated small clusters. Note that this
procedure could be repeated recursively on the detected background until
some stopping criterion is met. For example, the stopping criterion could
either be based on percentage of foreground points or based on the radius
of the background cluster.

As shown in this section, all of the competing clustering approaches need a
threshold to be set for detecting outlier subsequences. The alphabet constrained
k-means algorithm needs the knowledge of number of clusters and a threshold on
the difference between the average distance and the semi-hausdorff distance. The
dendrogram based agglomerative clustering algorithm needs a suitable objective
function to evaluate and select the partitions. The foreground cut (modified nor-
malized cut) algorithm finds small isolated clusters and can be recursively repeated
on the background until the radius of the background cluster is smaller than a
chosen threshold. Therefore, for the case of a single dominant process with out-
lier subsequences from a single foreground process, the normalized cut outperforms
other clustering approaches.

In the following section, we consider the next case where there can be multiple
foreground processes generating observations against a single dominant background
process.

4.4.3. Performance of normalized cut for case 3. The input time series for case
3 is generated using a single dominant background process P1 and three different
foreground processes (P2, P3, P4) and P (P1) >> P (P2)+P (P3)+P (P4). P (P1)
was set to be 0.8 as in case 2. Figure 10(A) shows the input time series. As
mentioned earlier, since normalized cut emphasizes the association between the
cluster members for the two clusters resulting from the partition, there are false
alarms from the process P1 in the cluster containing outliers. Figure 10(B) shows
the normalized cut value for candidate threshold values. There are two minima in
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Figure 9. Performance of Modified Normalized Cut on Synthetic
Time Series for case 2(A: X-axis for candidate threshold for cut, Y-
axis for cut value), (B: X-axis for candidate threshold for modified
normalized cut, Y-axis for modified normalized cut value), (C: X-
axis for time index of context model, Y-axis for cluster indicator
value),(D: X-axis for time, Y-axis for symbol)

the objective function but the global minimum corresponds to the threshold that
results in an outlier cluster with false alarms. Figure 10(C) shows the partition
corresponding to the global minimum threshold. On the other hand, when modified
normalized cut (foreground cut) is applied to the same input time series it detects
the outliers without any false alarms as shown in Figure 10(D) as the objective
function does not emphasize association between the foreground processes.

4.4.4. Hierarchical Clustering using normalized cut for case 4. From the experi-
ments on synthetic time series for case 2 and case 3, we can make the following
observations:

• The normalized cut solution is good for detecting distinct time series clus-
ters (backgrounds) as the threshold for partitioning is selected automati-
cally.
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Figure 10. Performance Comparison of Normalized Cut & Mod-
ified Normalized Cut on Synthetic Time Series for case 3 (A: X-
axis for time, Y-axis for symbol), (B: X-axis for candidate thresh-
old for normalized cut, Y-axis for normalized cut value), (C: X-
axis for time index of context model, Y-axis for cluster indicator
value(normalized cut)),(D: X-axis for time index of context model,
Y-axis for cluster indicator value(foreground cut))

• The foreground cut solution is good for detecting outlier subsequences from
different foreground processes that occur against a single background.

Both of these observations, lead us to a hybrid solution which uses both normal-
ized cut and foreground cut for handling the more general situation in case 4. In
case 4, there is no single dominant background process and the outlier subsequences
are from different foreground processes. Figure (A) shows the input time series for
case 4. There are two background processes and three foreground processes.

Given this input time series and the specifications of a single background in terms
of its “compactness” and “size relative to the whole time series” and the maximum
percentage of outlier subsequences, we use the following algorithm to detect outlier
subsequences:

(1) Use normalized cut recursively to first identify all individual background
processes. The decision of whether or not to split a partition further can be
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automatically determined by computing the stability of normalized cut as
suggested in [18] or according to the “compactness” and “size” constraint.

(2) From the detected distinct backgrounds in step 1, use foreground cut re-
cursively to detect the outlier subsequences while making sure that the
detected percentage of outliers does not exceed the specified limit.

The “compactness” of a cluster can be specified by computing its radius using
the pairwise affinity matrix as given below:

(10) r = max
1≤i≤N

(A(i, i)− (
2
N

N∑

j=1

A(i, j)) + (
1

N2

N∑

k=1

N∑

j=1

A(k, j)))

Here N represents the number of cluster members. The first term represents the
self affinity and is equal to 1. The second term represents the average affinity of
ith cluster member with others and the last term is average affinity between all the
members of the cluster. The computed value of r is guaranteed to be between 0
and 1.

For this input time series, we specified the following parameters: compactness
of the background in terms of its radius ≤ 0.5, relative size of background with
respect to the size of whole time series ≥ 0.35, and maximum outlier percentage
was set to 20%. Figure (B) and Figure (C) show the result of normalized cut
and the corresponding temporal segmentation of the input time series. Figure (D)
shows the final detected outlier subsequences using foreground cut on individual
background clusters.

Now that we have shown the effectiveness of outlier subsequence detection on
synthetic time series, we will show its performance on the time series obtained from
audio data of sports and surveillance content in the experimental results section.
In the following section, we analyze how the size of window used for estimating
a context model (WL) determines the confidence on the detected outlier. The
confidence measure is then used to rank the detected outliers.

5. Ranking outliers for summarization

In this section, first, we show that the confidence on the detected outlier subse-
quences is dependent on the size of WL. Second, we use the confidence metric to
rank the outlier subsequences.

Recall that in the proposed outlier subsequence detection framework, we sample
the input time series on a uniform grid of size WL and estimate the parameters
of the background process from the observations within WL. Then, we measure
how different it is from other context models. The difference is caused, either
by the observations from P2 within WL or by the variance of the estimate of
the background model. If the observed difference between two context models is
“significantly higher than allowed” by the variance of the estimate itself, then we
are “somewhat confident” that it was due to the corruption of one of the contexts
with observations from P2.

In the following, before we quantify what is “significantly higher than allowed”
and what is “somewhat confident” in terms WL for two types of background models
that we will be dealing with, we shall review kernel density estimation.
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Figure 11. Performance of Hybrid (Normalized Cut & Fore-
ground Cut) approach on Synthetic Time Series for case 4 (A: X-
axis for time, Y-axis for symbol), (B: (top) X-axis for time index of
context model, Y-axis for cluster indicator (bottom) corresponding
temporal segmentation, X-axis for time, Y-axis for cluster label),
(C: (top) X-axis for time index of context model, Y-axis for cluster
indicator (second normalized cut) (bottom) corresponding tempo-
ral segmentation corresponding temporal segmentation, X-axis for
time, Y-axis for cluster label),(D:final temporal segmentation, X-
axis for time, Y-axis for cluster label)

5.1. Kernel density estimation. Given a random sample x1, x2, ...xn of n obser-
vations of d-dimensional vectors from some unknown density (f) and a kernel (K),
an estimate for the true density can be obtained as:

(11) f̂(x) =
1

nhd

n∑

i=1

K(
x− xi

h
)

where h is the bandwidth parameter. If we use the mean squared error (MSE)
as a measure of efficiency of the density estimate, the tradeoff between bias and
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variance of the estimate can be seen as shown below:

(12) MSE = E[f̂(x)− f(x)]2 = V ar(f̂(x)) + [Bias(f̂(x))]2

It has been shown in [22] that the bias is proportional to h2 and the variance is
proportional to n−1h−d. Thus, for a fixed bandwidth estimator one needs to choose
a value of h that achieves the optimal tradeoff. We use a data driven bandwidth
selection algorithm proposed in [23] for the estimation. The proposed scheme uses
the plug-in rule and has been shown to be superior to other approaches for fixed
bandwidth estimation. For details on the plug-in rule, please see the appendix of
[24].

5.2. Confidence measure for outliers with Binomial and Multinomial
PDF Models for the contexts. For the background process to be modelled
by a binomial or multinomial PDF, the observations have to be discrete. Without
loss of generality, let us represent the set of 5 discrete labels (the alphabet of P1 and
P2) by S = {A, B,C, D, E}. Given a context consisting of WL observations from
S, we can estimate the probability of each of the symbols in S using the relative
frequency definition of probability.

Let us represent the unbiased estimator for probability of the symbol A as p̂A.
p̂A is a binomial random variable but can be approximated by a Gaussian random

variable with mean as pA and variance as
√

pA(1−pA)
WL

when WL ≥ 30.
As mentioned earlier, in the proposed framework we are interested in knowing

the confidence interval of the random variable ,d, which measures the difference
between two estimates of context models. For mathematical tractability, let us
consider the Euclidean distance metric between two PDF’s, even though it is only
a monotonic approximation to a rigorous measure such as the Kullback-Leibler
distance.

(13) d =
∑

iεS

(p̂i,1 − p̂i,2)2

Here p̂i,1 and p̂i,2 represent the estimates for the probability of ith symbol from
two different contexts of size WL. Since p̂i,1 and p̂i,1 are both Gaussian random
variables, d is a χ2 random variable with n degrees of the freedom where n is the
cardinality of the set S.

Now, we can assert with certain probability,

(14) Pc =
∫ U

L

fχ2
n
(x)dx

that any estimate of d (d̂) lies in the interval [L,U]. In other words, we can be
Pc confident that the difference between two context model estimates outside this
interval was caused by the occurrence of P2 in one of the contexts. Also,we can
rank all the outliers using the probability density function of d.

To verify the above analysis, we generated two contexts of size WL from a known
binomial or multinomial PDF (assumed to be the background process). Let us
represent the models estimated from these two contexts by M1 and M2 respectively.
Then, we use Bootstrapping and kernel density estimation to verify the analysis on
PDF of d as shown below:

(1) Generate WL symbols from M1 and M2.
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(2) Re-estimate the model parameters (p̂i,1 and p̂i,2) based on the generated
data and compute the chosen distance metric (d) for comparing two context
models.

(3) Repeat steps 1 and 2, N times.
(4) Use kernel density estimation to get the PDF of d, p̂i,1 and p̂i,2.

Figure 12 (A) shows the estimated PDFs for binomial model parameters for two
contexts of same size (WL). It can be observed that p̂i,1 and p̂i,2 are Gaussian
random variables in accordance with Demoivre-Laplace theorem [25]. Figure 12
(B) estimated PDFs of the defined distance metric for different context sizes. One
can make the following two observations:

• The PDF of the distance metric is χ2 with two degrees of freedom in ac-
cordance with our analysis.

• The variance of the distance metric decreases as the number of observations
within the context increases from 100 to 600.

Figure 12(C) shows the PDF estimates for the case of multinomial PDF as a
context model with different context sizes (WL). Here, the PDF estimate for the
distance metric is χ2 with 4 degrees of freedom which is consistent with the number
of symbols in the used multinomial PDF model.

These experiments show the dependence of the PDF estimate of the distance
metric on the context size, WL. Hence for a chosen WL, one can compute the
PDF of the distance metric and any outlier caused by the occurrence of symbols
from another process (P2) would result in a sample from the tail of this PDF. This
would let us quantify the “unusualness” of an outlier in terms of its Cumulative
Distribution Function(CDF) value.

In the next subsection, we perform a similar analysis for HMMs and GMMs as
context models.

5.3. Confidence measure for outliers with GMM and HMM models for
the contexts. When the observations of the memoryless background process are
not discrete, one would model its PDF using a Gaussian Mixture Model(GMM).
If the process has first order memory, one would model its first-order PDF using a
Hidden Markov Model (HMM). Let λ = (A,B, π) represent the model parameters
for both the HMM and GMM where A is the state transition matrix, B is the
observation symbol probability distribution and π is the initial state distribution.
For a GMM A and π are simply equal to 1 and B represents the mixture model
for the distribution. For a HMM with continuous observations, B is a mixture
model in each of the states. For a HMM with discrete labels as observations,
B is a multinomial PDF in each of the states. Two models (HMMs/GMMs) that
have different parameters can be statistically equivalent [26] and hence the following
distance measure is used to compare two context models (λ1 and λ2 with observation
sequences O1 and O2 respectively).

(15)
D(λ1, λ2) =

1
WL

(log P (O1|λ1) + log P (O2|λ2)

− log P (O1|λ2)− log P (O2|λ1))

The first two terms in the distance metric measure the likelihood of training
data given the estimated models. The last two cross terms measure the likelihood
of observing O2 under λ1 and vice versa. If the two models are different, one would
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Figure 12. PDFs of distance metrics for different background
models (A: pdf of an estimate of a context model parameter), (B:
pdf of distances for a binomial context model), (C: pdf of distances
for a multinomial context model) (D: pdf of distances for a GMM
as a context model)(E: pdf of distances for a HMM as a context
model) X-axis for value of the random variable, Y-axis for proba-
bility density

expect the cross terms to be much smaller than the first two terms. Unlike in section
5.2, the PDF of D(λ1, λ2) does not have a convenient parametric form. Therefore,
we directly apply bootstrapping to get several observations of the distance metric
and use kernel density estimation to get the PDF of the defined distance metric.

Figure 12(D) shows the PDF of the log likelihood differences for GMMs for
different sizes of context. Note that the support of the PDF decreases as WL in-
creases from 100 to 600. The reliability of the two context models for the same
background process increases as the amount of training data increases and hence
the variance of normalized log likelihood difference decreases. Therefore, again it
is possible to quantify the “unusualness” of outliers caused by corruption of obser-
vations from another process (P2). Similar analysis shows the same observations
hold for HMMs as context models as well. Figure 12(E) shows the PDF of the log
likelihood differences for HMMs for different sizes of the context.

5.4. Using confidence measures to rank outliers. In the previous two sections,
we looked at the estimation of the PDF of a specific distance metric for context
models (memoryless models and HMMs) used in the proposed framework. Then,
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for a given time series of observations from the two processes (P1 and P2), we
compute the affinity matrix for a chosen size of WL for the context model. We
use the second generalized eigenvector to detect inliers and outliers. Then, the
confidence metric for an outlier context, Mj is computed as:

(16) p(MjεO) =
1

#I
(
∑

iεI

Pd,i(d ≤ d(Mi,Mj)))

where Pd,i is the density estimate for the distance metric using the observations
in the inlier context i. O and I represent the set of outliers and inliers respectively
and # refers to cardinality operator.

6. Experimental Results

In this section, we present the results of the proposed framework with two dif-
ferent content genres mainly using low-level audio features and semantic audio
classification labels at the ”8 ms frame-level” and ”one-second-level”. The pro-
posed framework has been tested with a total of 12 hours of Soccer, Baseball and
Golf content from Japanese, American and Spanish broadcasts. For surveillance,
we chose 1.5 hours of elevator surveillance data and 2.5 hours of traffic intersection
video. To our knowledge, this is the first time that outlier detection based methods
have been applied for audio event discovery in sports and surveillance.

6.1. Results with Sports Audio Content. As mentioned earlier, there are three
possible choices for time series analysis from which events can be discovered using
the proposed outlier subsequence detection framework. They are:

• Low-level MFCC features.
• Frame-level audio classification labels
• One-second-level audio classification labels

In the following subsections, we show the pros and cons of using each of these
time series for event discovery with some example clips from sports audio. Since the
one-second-level classification label time series is a coarse representation, we can
detect commercials as outliers and extract the program segments from the whole
video using the proposed framework. For discovering highlight events (for which
the time span is only in the order of few seconds), we use a finer scale time series
representation such as the low-level features and frame-level labels.

6.1.1. Outlier subsequence detection using one-second-level labels to ex-
tract program segments. Based on the observation that commercials are out-
liers in the background of the whole program at a coarser time scale, we use the
one-second-level audio classification labels as input time series for the proposed
framework. Figure 14 shows the affinity matrix for a 3 hour long golf game. We
used 2-state HMMs as context models with WL as 120 (WL) classification labels
with a step size of 10 (WS). The affinity matrix was constructed using the com-
puted pairwise likelihood distance metric defined earlier. Note that the affinity
matrix shows dark regions against a single background. The dark regions, with low
affinity values with the rest of the regions, (outliers) were verified to be times of
occurrences of commercial sections. Since we use the time series of the labels at
one second resolution, the detected outliers give a coarse segmentation of the whole
video into two clusters: the segments that represent the program and the segments
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Figure 13. Comparison of outlier subsequence detection with
low-level audio features and frame-level classification labels for
sport and surveillance; (A):Outlier subsequences in frame labels
time series for Golf; (B):Outlier subsequences in low-level features
time series for Golf; (C):Outlier subsequences in frame labels time
series for Soccer; (D):Outlier subsequences in low-level features
time series for Soccer; (E):Outlier subsequences in low-level fea-
tures time series for Elevator surveillance; (F):Outlier subsequences
in low-level features time series for Traffic Intersection Surveillance;
X-Axis for time in minutes, Y-axis for cluster indicator value25
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Figure 14. Affinity matrix for a 3 hour long British Open golf
game using one-second-classification labels

that represent the commercials. Also, such a coarse segmentation is possible only
because we used a time series of classification labels instead of low-level features.
Furthermore, the use of low-level audio features at this stage may bring out some
fine scale changes that are not relevant for distinguishing program segments from
non-program segments. For instance, low-level features may distinguish two differ-
ent speakers in the content while a more general speech label would group them as
one.

6.1.2. Outlier subsequence detection from the extracted program segments.
Highlight events together with audience reaction in sports video last for only a few
seconds. This implies that we cannot look for “interesting” events using the one-
second-level classification labels to extract highlight events. If we use one-second-
level classification labels, the size of WL has to be small enough to detect events at
that resolution. However, our analysis on the confidence measures earlier, indicates
that a small value of WL would lead to a less reliable context model thereby pro-
ducing a lot of false alarms. Therefore, we are left with the following two options:

(1) To detect outlier subsequences from the time series of frame-level classifi-
cation labels instead of second-level labels;

(2) To detect outlier subsequences from the time series of low-level MFCC
features;

Clearly, using the frame-level classification labels is computationally more ef-
ficient. Also, as pointed out earlier, working with labels can suppress irrelevant
changes (e.g speaker changes) in the background process . Figure 13(A) shows the
cluster indicator vector for a section of golf program segment. The size of WL used
was equal to 8s of frame level classification labels with a step size of 4s. The con-
text model used for classification labels was a 2-state HMM. In the case of low-level
features, the size of WL was equal to 8s of low-level features with a step size of
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4s (see Figure Figure 13(B)). The context model was a 2-Component GMM. Note
that there are outliers at times of occurrences of applause segments in both cases.
In the case of outlier detection from low-level features, there were atleast two clus-
ters of speech as indicated by the plot of eigenvector and affinity matrix. Speech
3 (marked in the figure) is an interview section where a particular player is being
interviewed. Speech 1 is the commentator’s speech itself during the game. Since
we used low-level features, these time segments appear as different clusters. How-
ever, the cluster indicator vector from frame-level labels time series affinity matrix
shows a single speech background from the 49th min to the 54th min. However, the
outliers from the 47th min to the 49th min in the framelevel time series were caused
by mis-classification of speech in “windy” background as applause. Note that the
low-level feature time series doesn’t have this false alarm. In summary, low-level
feature analysis is good only when there is a stationary background process in terms
of low-level features. In this example, stationarity is lost due to speaker changes.
Using a frame-level label time series, on the other hand, is susceptible to noisy
classification and can bring out false outliers.

Figure 13(C) and Figure 13(D) show the outliers in the frame labels time series
and the low-level features time series respectively, for 10 min of a soccer game with
the same set of parameters as for the golf game. Note that both of them show the
goal scoring moment as an outlier. However, the background model of the low-level
features time series has a smaller variance than the background model of the frame
labels time series. This is mainly due to the classification errors at the frame levels
for soccer audio.

In the next subsection, we present our result on inlier/outlier based representa-
tion for a variety of sports audio content.

6.2. Inlier/Outlier based representation and ranking of the detected out-
liers. In this section, we show the results of the outlier detection and ranking of
the detected outliers. For all the experiments in this section, we have detected
outliers from the low-level features time series to perform an inlier/outlier based
segmentation of every clip. The parameters of the proposed framework were set
to: Context window size(WL) = 8 sec, Step size(WS) = 4 sec, Frame rate at which
MFCC features are extracted = 125 frames per second, Maximum percentage of
outliers = 20%, compactness constraint on the background = 0.5, relative time
span constraint on the background = 0.35 and the context model is a 2 com-
ponent GMM. and were not changed for each genre or clip of video. The first
three parameters(WL,WS , F ramerate) pertain to the affinity matrix computation
from the time series for a chosen context model. The fourth parameter(Maximum
percentage of outliers) is an input to the system for the inlier/outlier based rep-
resentation. The system then returns a segmentation with at most the specified
maximum percentage of outliers. The fifth and sixth parameters(compact-ness and
relative size) help in defining what a background is.

First, we show an example inlier/outlier based segmentation for a 20 min Japan-
ese baseball clip. In this clip, for the first six minutes of the game the audience were
relatively noisy compared to the later part of the game. There is also a two minute
commercial break between the two parts of the game. Figure 15 shows the tempo-
ral segmentation of this clip during every step of the analysis using the proposed
framework. The top part of Figure 15(A) shows the result of first normalized cut
on the affinity matrix. The bottom part of the same figure (Figure 15(A)) shows
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Type of outlier R1 R2

Speech-with-cheering 0.3648 0.1113
Cheering 0.7641 0.3852

Excited speech-with-cheering 0.5190 0.1966
Speech with Music 0.6794 0.3562

Whistle, Drums-with-cheering 0.6351 0.2064
Announcement 0.5972 0.3115

Table 1. Outlier ranks in baseball audio; R1: Average normalized
rank using pdf estimate; R2: Average normalized distance

the corresponding time segmentation. Since the compactness constraint is not sat-
isfied by these two partitions the normalized cut is recursively applied on these two
partitions. When the normalized cut is applied for the second time, the commercial
segment is detected as an outlier as shown in Figure 15(B). Figure 15(C) shows the
result of normalized cut on the other partition. The final segmentation is shown in
15(D). The outliers were manually verified to be reasonable. As mentioned earlier,
outliers are statistically unusual subsequences and not all of them are interesting.
Commercial segments and lull periods of the game during which the commentator is
silent but the audience are cheering are some example cases which are statistically
unusual and not “interesting”. Therefore, after this stage one needs to use a super-
vised detector such as the excited speech detector to pick out only the “interesting”
parts for the summary.

We repeated this kind of inlier/outlier based segmentation on a total of 4 hours of
baseball audio from 5 different games (2 baseball games from Japanese broadcasts
and 3 from American broadcasts). We listened to every outlier clip and classified
it by hand as one of the types shown in Table 1. Apart from the three types of
outliers mentioned before, we had outliers when there is an announcement in the
stadium and when there was a small percentage of speech in the whole context. In
the Table 1, we also show the average normalized ranking and average normalized
distance from the inliers for each type of the outlier over all the clips analyzed. It
is intuitively satisfying that the Speech-with-cheering class is closest to the inliers
and has the smallest average rank of all the types. Of all the types, the Excited
speech-with-cheering and the Cheering classes are the most indicative of highlight
events.

With the same setting of parameters, we segmented a total of 6 hours of soccer
audio from 7 different soccer games (3 from Japanese broadcasts, 3 from American
broadcasts, 1 from Spanish broadcasts). The types of outliers in the soccer games
were similar to those obtained from baseball games. The results of ranking are also
presented for these types of outliers in the Table 2. Again, Speech-with-cheering
outlier is ranked the lowest.

We also segmented 90 minutes of a golf game using the proposed approach.
Since the audio characteristics of a golf game is different from that of baseball and
soccer, the types of outliers were also different. Applause segments were outliers as
expected. The other new types of outliers in golf were: when the commentator was
silent and when there is new speaker being interviewed by the commentator. The
ranks of the detected outlier types are shown in Table 3.
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Figure 15. Inlier/Outlier based segmentation for a 20 minute clip
of Japanese baseball content (A: First Normalized Cut (top)X-axis
for time, Y-axis for cluster indicator value (bottom) correspond-
ing temporal segmentation, X-axis for time, Y-axis for cluster la-
bel),(B: Second Normalized Cut (top)X-axis for time, Y-axis for
cluster indicator value (bottom) corresponding temporal segmen-
tation, X-axis for time, Y-axis for cluster label), (C: Third Nor-
malized Cut(top)X-axis for time, Y-axis for cluster indicator value
(bottom) corresponding temporal segmentation, X-axis for time,
Y-axis for cluster label), (D: Final Temporal Segmentation after
Foreground cut from each background, X-axis for time, Y-axis for
cluster label)

In the following subsection, we apply the same framework on surveillance audio
data to detect unusual events.

6.3. Results with Surveillance Audio Content. In the case of sports audio
analysis, we used some a priori knowledge about the domain to train sound classes
such as applause, cheering to extract two more time series apart from the time series
of low-level features. In surveillance, often we do not know beforehand what kinds
of sounds can characterize the given data and help us detect unusual events. We
show that the proposed framework provides a systematic methodology to acquire
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Type of outlier R1 R2

Speech-with-cheering 0.3148 0.1606
Cheering 0.7417 0.4671

Excited speech-with-cheering 0.4631 0.2712
Speech with Music 0.5098 0.2225

Whistle, Drums-with-cheering 0.4105 0.2430
Announcement 0.5518 0.3626

Table 2. Outlier ranks in soccer audio; R1: Average normalized
rank using pdf estimate; R2: Average normalized distance

Type of outlier R1 R2

Silence 0.7573 0.5529
Applause 0.7098 0.4513
Interview 0.1894 0.1183
Speech 0.3379 0.3045

Table 3. Outlier ranks in golf audio; R1: Average normalized
rank using pdf estimate; R2: Average normalized distance

domain knowledge to identify “distinguishable” sound classes. We use low-level
features in such scenarios to effectively characterize the domain and detect events
without any a priori knowledge. We will discuss more about this in section 7.

6.3.1. Results with elevator surveillance audio. In this section, we apply the
outlier subsequence detection procedure on a collection of elevator surveillance au-
dio data. The data set contains recordings of suspicious activities in elevators as
well as some event free clips. A 2 component GMM was used to model the PDF
of the low-level audio features in the 8s context. Figure 13(D) shows the second
generalized eigenvector and the affinity matrix for one such clip with a suspicious
activity.

In all the clips with suspicious activity, the outliers turned out to be clips of
banging sound against elevator walls and excited speech. Since the key audio classes
correlated with suspicious activity turned out to be banging and excited speech, one
might argue for the use of audio energy as a feature instead of cepstral features.
However, audio energy is an inadequate feature to represent sound classes and
cannot characterize the domain. For instance, one would not be able to discriminate
between a scream and a loud unsuspicious event. On the other hand, cepstral
features enabled identification of typical audio classes to train supervised models
(GMMs) for each of the following classes: Normal speech, Foot Steps, Bang, Excited
or Non-neutral speech.

Table 4 presents the classification results for these audio classes. The audio
classes of neutral speech and foot steps characterize the background process (C1)
whereas short bursts of excited speech and banging sounds correlate with the un-
usual event in this scenario. After extracting the audio labels, the outlier subse-
quence detection procedure can be repeated with the discrete audio labels as well
to detect events.
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[1] [2] [3] [4]
[1] 1.00 0.00 0.00 0.00
[2] 0.00 0.93 0.00 0.07
[3] 0.00 0.00 0.97 0.03
[4] 0.00 0.00 0.10 0.90

Table 4. Recognition Matrix (Confusion Matrix) on a 70% train-
ing/30% testing split of a data set composed of 4 audio classes [1]:
Neutral speech; [2]: Foot steps; [3]: Banging; [4]: Non-neutral or
Excited speech; Average recognition rate = 95%

6.3.2. Results with traffic intersection surveillance audio. The 2 hr 40 min
long traffic intersection surveillance audio was analyzed using the same framework.
The whole audio data consists of clips where cars cross an intersection without an
event. It also has an accident event and a number of ambulances and police cars
crossing the intersection. The proposed framework was used with the following
parameters to detect outliers: WL = low-level features for 8s with WS = 4s. The
context model used was 2-component GMM. Figure 13(E) shows the second gen-
eralized eigenvector for the first 15 min of this content. It was observed that there
were outliers whenever an ambulance crossed the intersection. The accident that
occurred with a crashing sound was also an outlier.

7. Systematic choice of key audio classes

From all the experiments with sports and surveillance audio content, one can
infer that the proposed framework not only gave an inlier/outlier based temporal
segmentation of the content but also distinguishable sound classes for the chosen
low-level features in terms of distinct backgrounds and outlier sound classes. Then,
by examining individual clusters and outliers one can identify consistent patterns
in the data that correspond to the events of interest and build supervised statistical
learning models.

Thus, the proposed analysis and representation framework can be used for sys-
tematic choice of key audio classes as shown in the Figure 16.

We cite an example in which this framework was useful for acquiring domain
knowledge. In the previous section, we showed that one can also use audio classi-
fication labels as a time series and discover events. However, the choice of audio
classes to be trained for the audio classification framework involves knowledge of
the domain in terms of coming up with representative sound classes that cover most
of the sounds in the domain. For example, we chose the following five classes for the
audio classification framework in sports domain namely applause, cheering, music,
speech and speech-with-music. The intuition was that the first two classes capture
the audience reaction sounds and the rest of the classes represent bulk of sounds in
the “uninteresting” parts of the sports content. However, by using the proposed out-
lier subsequence detection framework on the low-level features, we discover that the
“key” highlight audio class is a mixture of audience cheering and the commentator’s
excited speech and not cheering of the audience alone. We used time series analysis
on the low-level features to come-up with an inlier/outlier based representation of
the content without any apriori knowledge. After examining the detected outliers,
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Figure 16. Systematic acquisition of domain knowledge using the
inlier/outlier based representation framework

we discovered that the “key” highlight class is a mixture of audience cheering and
commentator’s excited speech. We collected several training examples from the
detected outliers for the key highlight audio class and trained a GMM. The learnt
model has been tested for highlights extraction from 27 sports videos including
soccer, baseball, sumo wrestling and horse race. In terms of precision, the high-
lights extraction system based on this discovered highlight class outperforms of the
state-of-the-art highlights extraction system that uses the percentage of cheering
audio class as a measure of interesting-ness as shown in the Figure 17[27]. In other
words, the systematic choice of audio classes led to a distinct improvement in the
highlights extraction even though sports is a very “familiar” or ”well-known” con-
tent genre. Note that with less understood domains such as surveillance, choice of
audio classes based on pure intuition could lead to even worse accuracy of event de-
tection. Furthermore, for surveillance domains especially, the audio classes cannot
all be anticipated since there is no restriction on the kinds of sounds.

As pointed out earlier, we used this framework for selecting the sound classes to
characterize the elevator surveillance audio data and achieved accurate detection of
notable events. In this case, the isolation of the elevator car results in a relatively
noise-free environment, which makes the data set much more amenable to analysis
than is broadcast sports content.

Before we conclude, let us look at the computational complexity of each of the
analysis framework. The computational complexity of the first stage (MFCC fea-
ture extraction) is ≈ N × WL × (O(256 log 256) + O(32 log 32). Here N is the
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Figure 17. Comparison of Precision-Recall performance using
Cheering and applause against using the discovered “highlight”
audio class

number of context windows; WL is the number of MFCC frames per context win-
dow. O(256 log 256) is for the FFT computation for a frame size of 256 at 16kHz.
O(32 log 32) is for the DCT computation from the filter bank outputs. The compu-
tational complexity of the second stage (EM for GMMs) is≈N×O(i×WL×D2)[28].
Here D is the dimensionality of the MFCC features; i is the number of training
iterations . The computational complexity of the third stage (Affinity matrix com-
putation) is ≈ O(N2). The computational complexity of the last stage (Eigenvector
Computation) is ≈ O(O(N

1
2 )×N) + O(O(N

1
2 )×O(N)) [18]. The computational

complexity of the current framework is clearly very high. Our future work will focus
on reducing the computational complexity while allowing for graceful degradation
in performance.

8. Conclusion

We proposed a content-adaptive analysis and representation framework for audio
event discovery from unscripted multimedia. The proposed framework is based on
the observation that “interesting” events happen sparsely in a background of usual
events. We used three time series for audio event discovery namely low-level audio
features, frame-level audio classification labels, one-second-level audio classification.
We performed an inlier/outlier based temporal segmentation of these three time
series. The segmentation was based on eigenvector analysis of the affinity matrix
obtained from statistical models of the subsequences of the input time series. The
detected outliers were also ranked based on deviation from the background process.
Experimental results on a total of 12 hours of sports audio from three different
genres (soccer, baseball and golf) from Japanese, American and Spanish broadcasts
show that unusual events can be effectively extracted from such an inlier/outlier
based segmentation resulting from the proposed framework. It was also observed
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that not all outliers correspond to “highlight” events and one needs to incorporate
domain knowledge in the form of supervised detectors at the last stage to extract
highlights. Then, using the ranking of the outliers a summary of desired length
can be generated. We also discussed the pros and cons of using the aforementioned
three kinds of time series for audio event discovery. We also showed that unusual
events can be detected from surveillance audio without any a priori knowledge using
this framework. Finally, we have shown that such an analysis framework resulting
in an inlier/outlier based temporal segmentation of the content postpones the use
of content-specific processing to as late a stage as possible and can be used to
systematically select the key audio classes that are indicative of events of interest.
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