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Abstract

Due to extremely narrow pulses, an impulse radio signaling has a strong potential for high-precision

positioning. Highly dispersive nature of ultra-wideband (UWB) channels makes time of arrival (TOA)

estimation extremely challenging, where the leading-edgepath is not necessarily the strongest path. Since

the bandwidth of a received UWB signal is very large, the Nyquist rate sampling becomes impractical,

hence motivating lower complexity and yet accurate rangingtechniques at feasible sampling rates. In this

paper, we consider TOA estimation based on symbol rate samples that are obtained after a square-law

device. Signal conditioning techniques based on wavelets and a bank of cascaded multi-scale energy

collection filters are introduced, where correlations across multiple scales are exploited for edge and

peak enhancements towards a more accurate detection. An adaptive threshold selection approach based

on the minimum and maximum values of the energy samples is introduced, and optimal values of the

thresholds for different signal to noise ratios (SNRs) are investigated via simulations. Theoretical closed

form expressions are derived for mean absolute TOA estimation error, and compared with simulations.

The performances of the discussed algorithms are tested on IEEE 802.15.4a residential line-of-sight

(LOS) and non-LOS channels. Simulation results show that the introduced multi-scale energy product

technique supported with a search-back step to detect the leading edge performs better than all the other

techniques, excluding the pure threshold comparison algorithm at very large SNR values.



1

I. I NTRODUCTION

This decade will see a rise in location aware applications in diverse fields from asset management and

home/building automation to environmental monitoring anddisaster management. This wide market need

recently urged emerging IEEE 802.15.4a standards workgroup (WG) to invite proposals for an alternative

PHY to the existing IEEE 802.15.4 standards, requiring a sub-meter precision ranging capability. The

content of this article on multi-scale non-coherent TOA estimation, has been one of the ranging proposals

under consideration in IEEE 802.15.4a.

High time resolution is one of the key benefits of ultra-wideband (UWB) signals for precision ranging.

Due to extremely short duration of transmitted UWB pulses, UWB receivers, as opposed to typical

narrow-band wireless receivers, enjoy being able to observe individual multipath components; and the

accuracy of TOA estimation is characterized by how finely the first arriving signal path is identified,

which may not be the strongest.

UWB receivers typically have to operate at very low samplingrates. This makes it difficult to effectively

capture the energy at each individual multipath component using Rake receivers, as it is extremely difficult

to synchronize to each tap. A chip-spaced sampling of the channel can be used to detect the chip-spaced

observationof the channel impulse response (CIR), which typically carries a fraction of the available

energy of the actual CIR (such as %30 [1]). Note that higher rate samples (such as chip-rate or frame-

rate) can be achieved by using symbol-spaced sampling and multiple training symbols, and shifting the

signal by desired sampling period at each symbol. Another practical concern is the requirement to have

a-priori knowledge of the received pulse shape for match filter implementation, which may change from

an environment to another and even between different multipath components [2]. Therefore, it is difficult

to exactly match to the received pulse-shape, especially when considering the analog implementations of

the template waveforms.

Typical approaches for UWB ranging in the literature are based on matched filtering (MF) of the

received signal. Corresponding the time index that maximizes the MF output to the TOA estimate is

probably the simplest ranging technique [3]-[8]. However,these approaches have limited TOA precision,

as the strongest path is not necessarily the first arriving path. In order to determine the leading edge of

a received signal, Lee and Scholtz proposed to use a generalized maximum-likelihood (GML) approach

to search the paths prior to the strongest path [9]. The delay and ratio statistics between the first arriving

path and strongest path are obtained from extensive IEEE 802.15.3a channel measurements, and early

false-alarm and missed-direct path error probabilities are derived. However, very high sampling rates
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and a large memory space is required to store sample values within a search interval. Furthermore, the

information included in the paths after the strongest path were neglected, which can be used to enhance

strongest path detection. In [10], the leading edge detection problem is taken as a break-point estimation

of the actual signal itself, where also very high sampling rate of the received signal is assumed. Temporal

correlation arising from the transmitted pulse is used to accurately partition the received signal into two

zero-mean Gaussian distributed time-series with different covariance matrices. In another approach, a

two-step ranging algorithm is used, where an energy detection step gives coarse information about the

signal’s whereabouts, and a correlation based approach is applied into the detected energy block(s) for

refinement [11], [12]. Timing acquisition for UWB, which in essence have many analogies with TOA

estimation problem, has been extensively analyzed in the literature. Representative references include [13]-

[15] and the references therein, where dirty templates and generalized likelihood ratio testing approaches

were commonly used.

Due to above practical concerns and limitations, energy detection based ranging becomes more feasible.

Even though it suffers more from noise due to a square-law device, energy detection does not require

accurate timing or pulse shapes. Once collecting the energysamples at the output of a square-law

device (which is also valid for the absolute values of the MF outputs), the TOA estimation can be

considered as a problem of leading edge detection (or change/break-point detection) in noise. In this

paper, we consider TOA estimation of the received signal based on symbol-rate samples, and compare

the performances of maximum energy selection and thresholdbased approaches. New signal conditioning

methods to improve detection performance based on wavelet filters and a bank of cascaded energy

collection filters are introduced and analyzed via theoretical expressions and simulations. The leading

edge problem has analogies with various other areas in the literature, including edge detection in image

processing [16], [17], voice activity detection in speech processing [18]-[20], and spike-detection in

biomedical engineering [21]-[23]. Therefore, before starting the analysis and discussion of various TOA

estimation techniques, first, a brief overview of change detection algorithms will be presented in the next

section.

II. A B RIEF REVIEW OF CHANGE DETECTION ALGORITHMS

Change detection problems have been investigated extensively in the past. When the signal statistics are

known before and after the change-point, the optimal level detection can be achieved by tracking the log-

likelihood ratios of the signals from the two hypothesized distributions. Cumulative sum (CUMSUM)

algorithm is a popular online change detection approach, which uses a threshold on the sum of log-
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likelihood ratios for the detection of the abrupt change [24]. In [25], an adaptive approach was proposed

as a modification to CUMSUM algorithm for the unknown hypothesis case, which estimates the signal

parameters using two sliding windows. The common case of unknown hypothesis testing problems (where

the probability distribution functions (PDFs) of both hypothesis are not known) can be named ascomposite

hypothesis test[26]. Two common approaches for the solution of composite hypothesis testing problems

are 1) Bayesian approach, where the unknown parameters are assumed random variables with a prior

PDF, and 2) Generalized likelihood ratio test (GLRT), where unknown parameters are estimated for use

in a likelihood ratio test. Marginalized likelihood ratio test (MLRT) [27], [28] eliminates certain short-

comings of GLRT, dropping a requirement for a user-chosen threshold, or the knowledge of the noise

statistics.

The change point detection approaches discussed above, which are based on detecting the changes

in statistical distributions, typically require large number of samples [26], [29]. In typical scenarios

considered under the scope of this paper, where we do not haveNyquist rate sampling, and have few

samples for the detection of the leading edge, such algorithms may not be appropriate.

Considering more basic techniques, probably the simplest approach to detection of edges in a signal is

passing the signal through a gradient operator (such as[−1 0 1]). However, this approach is not robust

against noise effects, and filtered derivative techniques are commonly used for smoothing purposes for

improved performance. Witkin in his pioneering work [30] developed the idea of scale-space filtering,

where the signal is smoothed at various scales with Gaussians of different variances. Local minima

and maxima of the derivative of the smoothed signal at various scales (which can also be obtained by

filtering the initial signal with derivatives of Gaussians atvarious scales) then corresponds to the edges

of the signal at different resolutions. Zero-crossings of the convolution of the signal with the second

derivatives of Gaussians at various scales can be also used to identify the edges [31]; however, this does

not give information about the direction (rising-edge vs. falling-edge), or, the sharpness of the edge.

Witkin proposed a coarse-to-fine tracking of these edges in the scale-space image(by exploiting the

correlations across the scales) to identify and localize the major singularities in the signal. Mallatet. al.

analyzed scale-space representation of the signal in the wavelet-theory framework, and used the wavelet

transform modulus maxima (WTMM) for the identification of the major edges in the signal [32], [33].

The non-orthogonal discrete wavelet transform (DWT) proposed by Mallat and Zhang (MZ) is commonly

referred to as MZ-DWT in the literature [29], [34]. They showedthat by analyzing the evolution of the

wavelet transform exponent across scales, local Lipschitz exponent (which is a measure of the local

regularity of the signal) can be estimated. Then, this allowsfor effective denoising of the signal using the
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Lipschitz exponent and othera-priori information. In [35], it was proposed to use the sum of thecone of

influencefor the estimation of the regularity of the signal, which hasa lower computational complexity.

Alternative time-frequency approaches based on the short term Fourier transform (STFT) were considered

in [36]. Stationarity index in this work was defined to be the distance between the STFTs in consecutive

time windows (Kolmogorov distance was selected to be the best distance metric compared to Kullback

and Jensen-like distances), and timing index that maximizes the distance was selected to be the change

point. Stationarity index idea was applied to abrupt change detection of broadband signals in [37].

Before the wavelet theory gaining much popularity, the ideaof using the cross-scale multiplication

of sub-band decomposition of an image was first developed by Rosenfeld in [38], [39], which proved

to be very efficient for locating significant edges. Xuet. al., instead of using the computationally more

complicated and slightly more accurate techniques of [30],[32], [40] for tracking the edges in the scale-

space image (or the WTMM tree), proposed to use the direct multiplication of wavelet transform data

at various scales to enhance the edges and suppress the noise[41]. The approach of using product of

multi-scale wavelet coefficients has been investigated extensively in subsequent work in the literature for

detection of sharp edges in the signals [29], [34], [42]-[48].

Detection of TOA of the UWB signal is equivalent to the detection of the leading-edge of the received

multipath components. Typically, power delay profiles (PDP) ofUWB channels are modeled with a

double exponentially decaying model. On the other hand, individual multipath components are subject to

Nakagami fading. Depending on the environment, the leadingedge that we are trying to detect may or

may not be a sharp edge. Also, considering an energy detection approach, where blocks of some arbitrary

size are used to obtain energy-samples, the first arriving path may appear anywhere within a block (with

a uniform distribution), which may prevent sharp edges in the energy sequence. Therefore, using solely

the multi-resolution edge detection approaches discussedin previous sections may not yield as strong

results.

On the other hand, the multi-resolution approach can still be used to enhance the peak-detection

performance on the energy samples. In this paper, we proposeto use multi-scale analysis of the received

energy samples as a conditioing tool for the purposes of 1) enhancing peaks closer to the leading edge

of the signal, and 2) Suppressing the noise samples. Upon moreaccurate estimation of samples closer to

the leading edge, a search-back algorithm with a threshold detection can be used to estimate the leading

edge of the signal.
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III. SYSTEM MODEL

Let the received UWB multipath signal be represented as

r(t) =
∞∑

j=−∞

djωmp

(
t− jTf − cjTc − τtoa

)
+ n(t) (1)

where frame index and frame duration are denoted byj andTf , Ns represents the number of pulses per

symbol,Tc is the chip duration,Ts is the symbol duration,τtoa is the TOA of the received signal, and

Nh is the possible number of chip positions per frame, given byNh = Tf/Tc. Effective pulse after the

channel impulse response is given byωmp(t) =
√
E
∑L

l=1 αlω(t− τl), whereω(t) is the received UWB

pulse with unit energy,E is the pulse energy,αl and τl are the fading coefficients and delays of the

multipath components, respectively. Additive white Gaussian noise (AWGN) with zero-mean and double-

sided power spectral densityN0/2 and varianceσ2 is denoted byn(t). No modulation is considered for

the ranging process.

In order to avoid catastrophic collisions, and smooth the power spectral density of the transmitted

signal, time-hopping codesc(k)
j ∈ {0, 1, ..., Nh − 1} are assigned to different users. Moreover, random-

polarity codesdj ∈ {±1} are used to introduce additional processing gain for the detection of desired

signal, and smooth the signal spectrum (see Fig. 1).

A. Sampling of the Received Signal After a Square-law Device

In the sequel, we assume that a coarse acquisition on the order of frame-length is acquired in (1), such

τtoa ∼ U(0, Tf ), whereU(.) denotes the uniform distribution. As for the search region,the signal within

time frameTf plus half of the next frame is considered to factor-in inter-frame leakage due to multipath,

and the signal is then input to a bank of square-law devices each with an integration interval ofTb (see

Fig. 2).

The number of samples (or blocks) is denoted byNb = 3
2

Tf

Tb
, and n ∈ {1, 2, ..., Nb} denotes the

sample index with respect to the starting point of the uncertainty region. With a sampling interval ofts

(which is equal to block lengthTb), the sample values at the output of the square-law device are given

by

z[n] =

Ns∑

j=1

∫ (j−1)Tf+(cj+n)Tb

(j−1)Tf+(cj+n−1)Tb

|r(t)|2dt , (2)

and the performance can be further improved by using the energy in NT symbols. The bit energy when

usingNs pulses becomesEb = NsE. Note that there exists a trade-off between using larger blocks

and smaller blocks in energy detection. As the block size gets narrower individual peaks due to noise
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increases the likelihood of leading-energy block misdetection. Besides, there is a trade-off between using

multiple pulses per symbol and a single pulse with an equivalent energy. It is well known that means and

variances of non-energy and energy bearing blocks out of a square law device are given byµ0 = Mσ2,

σ2
0 = 2Mσ4, µe = Mσ2 + En, σ2

e = 2Mσ4 + 4σ2En, respectively, whereM is the degree of freedom

given byM = 2BTb+1, En is the total signal energy within thenth block, andB is the signal bandwidth.

Let us consider two scenarios to see how these statistics willvary; the first one using a processing gain

(Ns pulses per symbol) and the second one using a single pulse with the aggregate energy of allNs

pulses.

1) Single pulse per symbol:The means and variances of the non-energy and energy bearing blocks

are given byµ0 = Mσ2, σ2
0 = 2Mσ4, µe = Mσ2 +NsEn, σ2

e = 2Mσ4 + 4Nsσ
2En, respectively. Note

that the distance between the means of noise-only blocks andenergy blocks isNsEn.

2) Multiple pulses per symbol:The means and variances of the non-energy and energy bearing blocks

are given byµ0 = NsMσ2, σ2
0 = 2NsMσ4, µe = Ns

(
Mσ2 + En

)
, σ2

e = Ns

(
2Mσ4 + 4σ2En

)
,

respectively. When transmitting multiple pulses, even though the means of both blocks are increased due

to collection of noise terms at various branches, the distance between the means of noise-only blocks

and energy blocks is stillNsEn. On the other hand, the variances of both noise-only blocks and energy

blocks are increased. This implies that the performance whenusing multiple pulses per bit will be worse,

and it will be better to use fewer pulses with larger power, aslong as complying with local regulatory

masks.

IV. TOA ESTIMATION ALGORITHMS

Let z[n] denote thenth element of lengthNb energy vector after the square-law device. If multiple

frames are used (Ns > 1), energies from same integrator positions in each frame aresuperposed together

to obtain a single energy vector corresponding to a single frame, assuming that statistics of the channel

would remain the same. In this section, various algorithms that operate onz[n] values for leading edge

detection are presented and formulated. Some of the basic algorithms to be discussed are depicted in

Fig. 3.

A. Maximum Energy Selection (MES)

Choosing the maximum energy output to be the leading edge is the simplistic way of achieving a TOA

estimation. Using MES, the TOA estimate with respect to the beginning of the time frame is evaluated

as t̂MES =
[

argmax
1≤n≤Nb

{
z[n]

}]

Tb = nmaxTb. However, the strongest energy block in many cases may not
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be the leading energy block (Fig. 3), and the MES therefore hitsan error-floor even in high signal to

noise ratio (SNR) region. Also, the performance of it degrades withNb, since it becomes more likely to

identify a noise only block as the maximum energy block.

B. Threshold Comparison (TC)

Received samples can be compared to an appropriate threshold, and the first threshold-exceeding sample

index can be corresponded as the TOA estimate, i.e.t̂TC =
[

min
{
n|z[n] > ξ

}]

Tb, whereξ is a threshold

that must be set based on the received signal statistics. Given the minimum and maximum energy sample

values, the following normalized adaptive threshold can beused (see Fig. 4)

ξnorm =
ξ − min{z[n]}

max{z[n]} − min{z[n]} . (3)

Optimal value ofξnorm changes depending on the SNR as discussed later in the paper.

C. Maximum Energy Selection with Search-Back (MES-SB)

In order to improve the performance of the TC in low SNRs, the energy samples prior to the maximum

should be searched. The TOA estimate with a thresholding and backward search is then given by

t̂MES−SB =
[

min{n|z̃[n] < ξ} + nmax −Wsb − 1
]

Tb, wherez̃[n] =
[

z[nmax −Wsb] z[nmax −Wsb +

1] ... z[nmax]
]

. Search-back window is denoted byWsb, which is set based on the statistics of the

channel, and is⌈15ns/Tb⌉ in our simulations. Note that the accuracy of this approach is also limited by

the accuracy of the MES.

D. Weighted Multiscale Product (WMP) of MZ-DWT

Derivative of Gaussian (dG) approaches are commonly used inthe literature for detecting the edges

by analyzing the signal at multiple scales, where in order topreserve the correlation (and regularities)

across various scales, non-orthogonal MZ-DWT [33] is employed. The MZ-DWT ofz[n] ∈ L2(R) at

scales, where1 ≤ n ≤ Nb, is given by

W2sz[n] = z[n] ∗ φ2s [n] =
∑

m

φ2s [m]z[n−m] , (4)

which is equivalent to

W2sz[n] =

(

z ∗
(

2sdψ2s

dn

))

[n] = 2s d

dn

(
z ∗ ψ2s

)
[n] , (5)

whereψ[n] andφ[n] are discrete-time approximations to the Gaussian functionand its derivative using

cubic and quadratic splines, respectively,∗ denotes convolution,1 ≤ s ≤ S − 1, and S = log2Nb.



8

Equation (5) implies that MZ-DWT is analogous to smoothing thesignal with Gaussian splines at

multiple scales and then estimating the gradients.

As analyzed by Sadleret. al. in [29], [34], multiscale product (MP) of MZ-DWT given by

P
(DWT )
Sopt

[n] =

Sopt∏

s=1

W2sz[n] , (6)

can be effectively used for improving the accuracy of edge detection, whereSopt is the optimal scale that

enhances the regularities. However, it is not guaranteed toobserve sharp edges in the UWB energy vector,

and since the energy samples do not have a smooth variation, the edges can be mixed with noise samples

when the MP-MZ-DWT is used. Poor edge detection performance of this approach in our simulations

(which is not surprising due to the discussed issues) motivated us to introduce a weighting function

to suppress the edges caused by noise while promoting the edges in the vicinity of the energy-bearing

blocks.

P̃
(DWT )
Sopt,ζ

[n] =
(

ψ2ζ [n] − min
{
ψ2ζ [n]

})

︸ ︷︷ ︸

Weighting Function = G(ζ)

×
Sopt∏

s=1

W2sz[n] , (7)

whereζ is an arbitrary scale so that the energy in the multipath delay profile is effectively captured in

the smoothed signal. The value ofζ is set to3 in our simulations. The TOA estimate is then given as

t̂DWT =
[

argmax
1≤n≤Nb

{
P̃

(DWT )
Sopt,ζ

[n]
}]

Tb for n even, and̂tDWT =
[

argmin
1≤n≤Nb

{
P̃

(DWT )
Sopt,ζ

[n]
}]

Tb for n odd (with

the distinction arising in order to calculate the rising edge).

V. I MPROVING THE ACCURACY OFMES

In this section two filtering techniques that enhance the accuracy of maximum energy block selection

are presented. The first uses the average energy distribution around the maximum energy block, while the

second a bank of scaling filters designed in a dyadic tree structure, which improves the maxima closer

to the leading edge of the signal.

A. Filtered Maximum Energy Selection (F-MES)

By knowing the average energy distribution around the maximum energy block, one can filter the

energy vector to enhance the peaks (and suppress noise components) by collecting the energies present

in the neighboring blocks. In Fig. 6 the mean energy distribution around the maximum energy block

is shown forTb = 1ns andTb = 4ns, after averaging over 1000 channel realizations for CM1.The

mean block energy values are not significantly different for CM2, and therefore those figures are not

included here. In order to capture the energy effectively and characterize the peaks better, one can filter
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the received energy vector with a time-reversed form of the discrete data in Fig. 6, and then apply the

MES-SB or another algorithm to determine the leading edge.

B. Multiscale Energy Products (MEP)

Signal energies from coarse to finer time scales can be exploited to improve leading edge detection

performance. Since the energy values at different scales would be correlated, their product is expected

to enhance the peaks due to signal existence.

Let h2s [n] denote the rectangular filter at scales, given by

h2s [n] = u[n+ 2s] − u[n] , (8)

wheres = 1, 2, ..., S is the scale number ranging from finer scales to coarser,S = ⌊log2Nb⌋, andu[n]

is the step function. The convolution ofh2s [n] with the energy vectorz produces energy concentration

of our signal at various scales, given by

ys[n] =
∑

k

z[k]h2s [n− k]. (9)

Sinceys[n] are correlated across different scales, we can use their direct multiplication to enhance the

peaks closer to the leading edge of the signal, and suppress noise components, i.e.

P
(MEP )
S [n] =

S∏

s=1

ys[n], (10)

whereP (MEP )
S [n] denotes the product of convolution outputs from scale1 (which is the energy vector it-

self) through scaleS. Then, the location of the strongest path is estimated ast̂MEP =
[

argmax
1≤n≤Nb

{
PS [n]

}]

Tb.

Note that once the strongest energy block is estimated, a search-back algorithm can be run to detect the

leading edge of the signal more accurately.

VI. ERRORANALYSIS FOR TC BASED TOA ESTIMATION

In this section, mean absolute error (MAE) of the TC based TOA estimation is analyzed, and closed

form error expressions are presented. First, the probability of detection of a certain block is derived,

which leads us to the derivation of MAE of the TOA estimate forthe case of uniformly distributed TOA.

Assume initially that the delay of the leading-edge energy block is fixed. Letntoa denote the first arriving

energy block index,̂n denote the estimated block index, andn = 1, 2, · · · , NB denote the block indices
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where the energy block is being searched. Then, fixing the valueof thresholdξ, probability of detecting

an arbitrary blocknhyp to be the energy block is calculated as1

PD(nhyp) = P (n̂ = nhyp)

=

[ nhyp−1
∏

n=1

P
(
z[n] < ξ

)
]

× P
(
z[nhyp] > ξ

)
, (11)

wherez[n] has a centralized Chi-square distribution forn = 1, 2, · · · , ntoa − 1 (corresponding to noise-

only blocks), and non-centralized Chi-square distribution for n = ntoa. The cumulative distribution

functions (CDFs) of these centralized and non-centralized Chi-square random variables are given by

Pchi2(ξ) = P
(
z[n] < ξ

)

= 1 − exp

(

− ξ

2σ2

)M/2−1
∑

l=0

1

l!

(
ξ

2σ2

)2

(12)

Pncx2(En, ξ) = P
(
z[n] < ξ

)
= 1 −QM/2

(
En

σ
,

√
ξ

σ

)

, (13)

whereσ2 = N0

2 is the noise variance,Qx(.) denotes the Marcum-Q function with parameterx, andEn

is the signal energy within thenth block, whose PDF varies withn, block size, and channel model. Note

thatnhyp = ntoa corresponds to correct detection, and the probability of falsely detecting the first energy

block is simply calculated asPFD(ntoa) = P
(
n̂ 6= ntoa

)
= 1 − PD

(
ntoa

)
. Fixing the value ofξ, three

cases can be considered fornhyp. If nhyp < ntoa,

PD(nhyp) = [Pchi2(ξ)]
nhyp−1

(
1 − Pchi2(ξ)

)
, (14)

while on the other hand ifnhyp = ntoa,

PD(nhyp) = [Pchi2(ξ)]
ntoa−1×

∫

Entoa

(

1 − Pncx2(Entoa
, ξ)
)

p(Entoa
)dEntoa

, (15)

If nhyp > ntoa, we can further consider two conditions. LetNeb denote the number of noise plus energy

blocks where there exists a significant amount of energy. Ifnhyp − ntoa < Neb

PD(nhyp) = [Pchi2(ξ)]
ntoa−1

(
nhyp−1
∏

n=ntoa

∫

En

Pncx2(En, ξ)p(En)dEn

)

×
∫

Enhyp

(

1 − Pncx2(Enhyp
, ξ)
)

p(Enhyp
)dEnhyp

, (16)

1Note that this is valid fornhyp ≥ 2. For nhyp = 1, the terms corresponding to noise blocks become unity.
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while, if nhyp − ntoa ≥ Neb

PD(nhyp) = [Pchi2(ξ)]
nhyp−Neb−1

(

1 − Pchi2(ξ)
)

×
ntoa+Neb−1∏

n=ntoa

∫

En

Pncx2(En, ξ)p(En)dEn . (17)

In order to carry out the evaluation of the detection probabilities, the energy PDFsp(En) are obtained via

simulations (see Fig. 11) with considering the uniformly distributed delay offsets of the individual paths

within the blocks. Note that in order to calculate closed form expressions for the detection probabilities in

the case of normalized thresholds presented in (3) rather than fixed thresholds, the PDFs ofξnorm can be

used. However, our simulations show that especially for largeEb/N0 values,ξnorm is highly correlated

with the energies in the first couple of energy blocks, with correlation coefficients being on the order of

0.6 at Eb/N0 = 26dB for the first four energy plus noise blocks. This implies that the PDFs ofξnorm

also has to be conditioned onEn, which makes closed form error analysis cumbersome and analytically

intractable for variableξ.

Now let ntoa ∼ U(1, NB). After averaging over different block offsets, the probability of correct

detection of first energy block becomes

P
(avg)
D

(
ntoa

)
=

NB∑

ntoa=1

PD

(
ntoa

)
p(ntoa)

=
1

Nb

NB∑

ntoa=1

PD

(
ntoa

)
. (18)

whereby the average false detection probability becomesP
(avg)
FD

(
ntoa

)
= 1 − P

(avg)
D

(
ntoa

)
.

Given ntoa to be fixed, the MAE can be calculated by averaging over the probability of detection of

different TOA estimations

eabs[ntoa] = E
[∣
∣n̂− n

∣
∣

]

=

Nb∑

n=1

PD(n) ×
∣
∣n− ntoa

∣
∣ . (19)

In other words, the absolute error corresponding to each block are weighted by the probability of detecting

that particular block. Forntoa ∼ U(1, NB), we can averageeabs[ntoa] to obtain the average error as

e
(avg)
abs =

Nb∑

ntoa=1

eabs[ntoa]p(ntoa) =
1

Nb

Nb∑

ntoa=1

eabs[ntoa] . (20)

It is worth to mention that given the means and variances of the centralized and non-centralized Chi-

square distributions asµ0[n] = Mσ2, σ2
0[n] = 2Mσ4, µe[n] = Mσ2 + En, σ2

e [n] = 2Mσ4 + 4σ2En,

we can use Gaussian approximation (for appropriately largevalues ofM ) to model the received signal
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statistics. Then, the approximated CDF will be given byP̃chi2(ξ) = Q
(

ξ−µ0[n]
σ0[n]

)

for the noise only

blocks, andP̃ncx2(En, ξ) = Q
(

ξ−µe[n]
σe[n]

)

for the energy plus noise blocks.

VII. IEEE 802.15.4A CHANNEL MODELS

In all the simulations that are presented in the next section, the channel models CM1 (residential LOS)

and CM2 (residential NLOS) of IEEE802.15.4a [49] are employed (Fig. 8). The channel realizations are

sampled at8GHz,1000 different realizations are generated, and each realization has a TOA uniformly dis-

tributed within(0, Tf ). In IEEE 802.15.4a residential environment channel measurements, tap-amplitude

statistics are reported to be Rayleigh distributed as opposed to log-normal in IEEE 802.15.3a. Mean

number of clusters in CM1 is 3 and while in CM2 it is 3.5.

A raised cosine pulse ofTc = 1ns is considered for all scenarios, and it is convolved with the realizations

of both CM1 and CM2 channels to obtain the received signal. After introducing uniformly distributed

delays, energies are collected within non-overlapping windows to obtain decision statistics. Two critical

statistics for the accuracy of the TOA estimation at this step are the PDF of the energy of the maximum

energy block (Fig. 9), and the PDF of the delay between the maximum energy block and the leading

edge block (Fig. 10). Since CM2 is a non-LOS channel, its delay spread is expectedly longer than that

of CM1. Therefore, as typically observed, it would be more likely for the highest energy blocks in CM2

to have less energy compared to the highest energy blocks in CM1, when the total received energy is

normalized. Also in Fig. 11, PDFs of the energies within the first four blocks including and after the

leading edge block are presented. These PDFs are used to evaluate the theoretical expressions derived in

previous section, as will be compared with simulations in the next section.

The other simulation parameters are (unless otherwise stated) Tf = 200ns,B = 4GHz,NT = 1, and

Ns = 1. Both 1ns and4ns are considered forTb. The MAE is used to compare the performances of

different algorithms. However, although the large frame interval chosen in our simulations considerably

increases the MAE (such as due to choosing the noise only blocks in MES based algorithms), the fact

that there exists consecutive energy plus noise blocks yields clusterings of the delay errors at and after the

ntoath block (see Fig. 15). This implies that small TOA estimates greater thanttoa have larger confidence

values. Note that each1ns timing error corresponds to33cm of ranging error as can be calculated from

the speed of light.
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VIII. R ESULTS AND DISCUSSION

A. Normalized Threshold Characteristics of CM1 and CM2

TOA estimation errors in number of blocks with respect to theemployed normalized threshold for

variousEb/N0 are given in Fig. 12 for CM1 and in Fig. 13 for CM2. It is observed that selectingξnorm

to be on the order of0.8 will yield near optimal performance at almost everyEb/N0 under CM2, while

for CM1 it must be closer to 0.2 at highEb/N0. Regardless of the threshold selection, atEb/N0 < 20dB

the MAE becomes intolerably high for sub-meter resolution ranging. The optimal threshold levels for

CM1 and CM2 with respect toEb/N0 are depicted in Fig 14 for better visualization, forTb = 1ns and

Tb = 4ns.

B. Signal Peak Enhancement with MEP

The performance of the MEP method can be measured by analyzing the the decrease in the delay

(compared with MES) between the strongest energy block and firstenergy block. Let∆ be the distance

in terms of the number of blocks between first-arriving energyblock and maximum energy block. Using

the MEP, the peaks away from the leading edge are effectively suppressed, decreasing∆. In Fig. 15,

CDFs of∆ before and after the bank of multiscale filters are shown forTb = 4ns at variousEb/N0. It is

observed that especially when the noise variance is high, the MEP lowers∆, and consequently the error

in the TOA estimate. LowEb/N0 also yields erroneous selection of the maximum energy blockprior to

the leading edge.

C. Comparison of Performances of Various TOA Estimation Algorithms

In Figs. 16-19, the performances of different energy detection based TOA estimation algorithms are

tested in IEEE 802.15.4a CM1 and CM2 (which can also be implemented with absolute values of

correlator outputs). Theξopt is set to0.5(min{z[n]} + max{z[n]}) with the assumption that there is no

SNR estimate available, and analysis of adaptive selection of the optimal threshold is left to a subsequent

discussion in the next sections. It is observed that the TC performs well at highEb/N0, while the MES

is better at higher noise variance. The reason for TC performing poorly in general at low SNR region

is frequent threshold exceedings caused by noise. On the other hand, when the SNR is large, the TC

does not face an early error floor as opposed to the MES. The WMP-MZ-DWT performs better than

the MES for CM1 at highEb/N0, however, not as well as the MES-SB. Under CM2, performance of

the WMP-MZ-DWT is not acceptable. The performance improvementthat comes with F-MES is better
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at higher noise variance, and at larger block sizes. On the other hand, MEP and especially MEP-SB

performs well at allEb/N0, and does not require estimation of the filter function as in the F-MES case.

The performance difference under CM1 and CM2 is over6dB in favor of CM1 for low to moderate

SNR ranges. This can be explained by Fig. 9, where the probability of large energy values is shown to

be much larger for CM1 compared to CM2. On the other hand, oncethe TOA estimation errors hit the

error floor, algorithms perform slightly better under CM2 than CM1. The explanation for this phenomena

comes with Fig. 10, where it is indicated that even though the energy values are small, they are more

frequently closer to the leading edge for CM2.

D. Effect of Number of Blocks on the Performance of MES

If a larger number of blocks are used in the MES, it becomes more likely that noise samples can be

erroneously selected as the maximum energy block. In Fig. 20,MAE performance of MES was analyzed

for various frame durations whileTb = 1ns. Even though there is not much variation in the performance

at largeEb/N0, higherNb may degrade the performance at lowerEb/N0. Also note that the selection

of Nb ∗ Tb, that isTf , limits the maximum measurable distance. For instance, a distance that it would

take (Nb + 1) ∗ Tb seconds for the radio frequency (RF) signal to traverse wouldbe erroneously treated

as a signal arriving within the first block in the energy analysis.

E. Comparison of Performances Using a Single Pulse, Multiple Pulses, or Multiple Symbols

In Sections III-A.1 and III-A.2, it was noted that using multiple pulses degrades the performance of

TOA estimation with energy detection. In order to support this via simulations, in Fig. 21, performance

of MEP-SB was studied whenNs = 1 andNs = 5, with identical symbol energies in both cases. It

is observed that using multiple pulses per symbol in essencedegrades the performance with an energy

detection approach. It can also be seen that multiple symbols can be used to obtain a gain at lowEb/N0;

however, at high SNR in all the cases, similar error floors are experienced.

F. Comparison of TC Based TOA Estimation Using Theory and Simulations

The theoretical and simulated performances of threshold based TOA estimators when using a fixed

threshold of0.1 × Eb at all Eb/N0 are given in Fig. 22 for CM1 (Tb = 4ns). The PDFs obtained via

simulations in Fig. 11 are used to average the performances over the energy distributions. The PDFs of

the first 8 blocks including and afterntoa are included only, considering the rest of the blocks to be

noise-only blocks. Even though the error expression in (20) shows a good match with simulation at low
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Eb/N0 (where the ranging error is unacceptably bad), it yields optimistic results compared to simulations

at largeEb/N0.

The performance of the threshold based TOA estimation can be improved using an adaptive threshold, as

discussed in previous sections. Givenmax{z[n]} andmin{z[n]}, optimum adaptive normalized threshold

values that corresponds to the operatedEb/N0 can be used to have a superior performance compared

to a fixed threshold (excluding very high SNRs). However, this requires estimation of the SNR, which

is not an easy task in UWB due to extremely low power operationcharacteristics. Instead, an adaptive

normalized thresholdξnorm can be used at all SNR values. As an example,ξnorm = 0.5 is used in Fig. 22,

which shows to match with the optimum threshold results atEb/N0 = 22dB, and performs suboptimal

otherwise.

As a final remark, atEb/N0 = 26dB, it is observed that a fixed threshold performs better than the

optimal adaptive threshold. This is due to the fact that optimal threshold values obtained via simulations

are optimalgiven the knowledge of onlymax{z[n]} andmin{z[n]}. The fixed threshold values used for

demonstrating theoretical and simulation results in Fig. 22assumes the knowledge of the received energy

value, which is not exploited in the adaptive threshold estimation.

IX. CONCLUSION

Various TOA estimation algorithms for low sampling rate UWBsystems based on energy detection

are analyzed. Maximum energy selection based TOA estimation is shown to be not accurate enough,

particularly when the number of blocks is large. Two filteringtechniques are introduced to improve

the accuracy of the maximum energy selection. The first approach exploits the mean energy around the

maximum energy samples in order to enhance the peaks; however, this requires a-priori knowledge of the

filter shape. On the other hand, the second approach analyzes the energy at multiple time resolutions with

hierarchically designed filters, so that the peaks closer to the leading edge are enhanced. Simulations show

that the introduced multi-scale energy product approach implemented with a search-back step outperforms

all the other algorithms in all test cases except TC algorithmat very high SNR. A comparison of using

single pulse versus multiple pulses is discussed, and it is supported via simulations that using larger

number of pulses actually degrades the TOA accuracy when energy detection is used.

An adaptive threshold selection approach that makes use of the minimum and maximum energy samples

is introduced, and optimum threshold values are demonstrated via simulations for CM1 and CM2 channels.

Closed form expressions for MAE for the fixed threshold case are derived and compared with simulations,

yielding good match at low to moderateEb/N0 ranges.
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It may be interesting to further evaluate some of the techniques discussed in the Section II, such as

composite hypothesis testing and stationary index based algorithms, as they can be applied to UWB

TOA estimation. Even though multi-scale products of MZ-DWT ofthe energy vectors did not yield as

satisfactory performance in our simulations, leading edgedetection techniques upon estimation of the

Lipschitz exponent of the energy samples and using the WTMM canbe looked into. Also, how transmitted

reference schemes can be exploited for TOA estimation has not been addressed in the literature, and can

be an attractive research topic.
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Fig. 11. PDFs of block energies in the first four energy blocks (Tb = 4ns). Uniformly distributed delay of the first arriving
path within the block interval is considered.
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Fig. 12. MAE of TOA estimation under CM1 with respect to the normalized threshold for Eb/N0 =
{8, 10, 12, 14, 16, 18, 20, 22, 24, 26}dB.
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Fig. 13. MAE of TOA estimation under CM2 with respect to the normalized threshold for Eb/N0 =
{8, 10, 12, 14, 16, 18, 20, 22, 24, 26}dB.
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Fig. 16. Absolute error plots for different algorithms with respect toEb/N0 (CM1, Tb = 1ns).
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Fig. 17. Absolute error plots for different algorithms with respect toEb/N0 (CM1, Tb = 4ns).
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Fig. 18. Absolute error plots for different algorithms with respect toEb/N0 (CM2, Tb = 1ns).
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Fig. 19. Absolute error plots for different algorithms with respect toEb/N0 (CM2, Tb = 4ns).
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