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1 Introduction

Low-density parity-check (LDPC) codes [1] were first introduced in the 1960’s and rediscovered

in the 1990’s. The iterative belief propagation (BP) algorithm [2] provides a powerful tool

for decoding of LDPC codes [3]. LDPC codes with iterative decoding based on BP achieve

remarkable performance that is very close to the Shannon limit.

To decode LDPC codes, either soft decision decoding or hard decision decoding can be used.

Soft decoding based on BP gives better performance. However, the standard BP decoder of

LDPC codes often needs several tens or hundreds of iterations for the iterative decoding process

to converge, which is not always realistic in practical scenarios because of high decoding delay.

Furthermore, LDPC codes of interest can have large code length in order to achieve a good

performance, and it can be difficult to implement the decoding in hardware in a fully parallel

way. In [4], a “shuffled” BP algorithm was presented which reduced the required number of

iterations compared to standard BP by judicious scheduling which balanced parallel and serial

operations. The aim of this paper is to propose a “replica shuffled” BP scheme which further

accelerates the decoding process.

This paper is organized as follows. Section 2 and Section 3 briefly review the standard and

shuffled BP decoding of LDPC codes, respectively. Section 4 presents the replica shuffled BP

decoding method. Section 5 discusses parallel implementation of replica shuffled BP. Section 6

provides simulation results for the various iterative decoding algorithms, and Section 7 presents

our conclusions.

2 Standard BP

An (N, k) LDPC code of length N and dimension k is specified by an M by N parity-check

matrix containing mostly zeros and only a small number of ones. The parity check matrix

H = [Hmn] for an LDPC code has rows corresponding to the parity constraints and columns

corresponding to the N bits of the code. As is well known, an LDPC code can equivalently be

represented by a bipartite graph with check nodes corresponding to the rows of the parity check

matrix and variable nodes corresponding to the columns.

We will denote the set of bits that participate in check m by N (m) = {n : Hmn = 1} and

the set of checks in which bit n participates as M(n) = {m : Hmn = 1}. We also use N (m)\n

to denote the set N (m) with bit n excluded, and M(n)\m to denote the set M(n) with check

m excluded.
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Suppose a regular binary (N, k) LDPC code C is used for error control over an AWGN chan-

nel with zero mean and power spectral density N0/2. Assume BPSK signaling with unit energy,

which maps a codeword c = (c1, c2, . . . , cN) into a transmitted sequence x = (x1, x2, . . . , xN),

according to xn = 1 − 2cn, for n = 1, 2, . . . , N . If c = [cn] is a codeword in C and x = [xn] is

the corresponding transmitted sequence, then the received sequence is x + n = y = [yn], with

yn = xn + ηn, where for 1 ≤ n ≤ N , the ηn are statistically independent Gaussian random

variables with zero mean and variance N0/2.

In the following, we consider log-likelihood ratios (LLR’s). An LLR passing along the edge

connecting bit node n and check node m provides information about the decision of bit n and

the reliability of that decision, according to all the information propagated to bit node n or check

node m. We define the following notations associated with the ith iteration:

• Fn: The LLR of bit n which is derived from the received value yn. In BP decoding, we

initially set Fn = 4
N0

yn.

• ε(i)
mn

: The LLR of bit n which is sent from check node m to bit node n. It is obtained from

the information {z(i−1)
mn′ : n′ ∈ N (m)\n}, where the notation zmn is introduced next.

• z(i)
mn

: The LLR of bit n which is sent from the bit node n to check node m. It is obtained

from the a priori information Fn and the information {ε(i)
m′n

: m′ ∈ M(n)\m}.

• z(i)
n : The a posteriori LLR of bit n computed at each iteration. It is obtained from the a

priori information Fn and the information {ε(i)
mn

: m ∈ M(n)}.

For each iteration, we have the a priori information {Fn} obtained from the received values

{yn}, and the extrinsic information {zmn} delivered by the previous iteration. We need to update

{zmn} as the extrinsic information for the next iteration, and compute {zn} for the decision of the

current iteration. The standard LLR BP algorithm in terms of extrinsic information is carried

out as follows:

Initialization: Set i = 1, maximum number of iteration to IMax. For each m,n, set z(0)
mn

= Fn.

Step 1: (i) Horizontal Step, for 0 ≤ n ≤ N − 1 and each m ∈ M(n), process:

τ (i)
mn

=
∏

n′∈N (m)\n

tanh(z
(i−1)
mn′ /2) (1)

ε(i)
mn = log

1 + τ (i)
mn

1− τ
(i)
mn

(2)
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(ii) Vertical Step, for 0 ≤ n ≤ N − 1 and each m ∈ M(n), process:

z(i)
mn

= Fn +
∑

m′∈M(n)\m

ε
(i)
m′n

(3)

z(i)
n

= Fn +
∑

m∈M(n)

ε(i)
mn

(4)

Step 2: Hard decision and stopping criterion test:

(i) Create ĉ
(i) = [ĉ(i)

n ] such that ĉ(i)
n = 1 if z(i)

n < 0, and ĉ(i)
n = 0 if z(i)

n > 0.

(ii) If Hĉ
(i) = 0 or the maximum iteration number IMax is reached, stop the decoding

iteration and go to Step 3. Otherwise set i := i + 1 and go to Step 1.

Step 3: Output ĉ
(i) as the decoded codeword.

3 Plain shuffled BP

At the ith iteration of the standard BP algorithm, first all values of the check-to-bit messages

are updated by using the values of the bit-to-check messages obtained at the (i− 1)th iteration,

i.e., each ε(i)
mn

is updated by using {z(i−1)
mn′ : n′ ∈ N (m)\n}. Then, all values of the bit-to-check

messages are updated by using the values of the check-to-bit messages newly obtained at the ith

iteration, i.e., each z(i)
mn

is updated from {ε(i)
m′n

: m′ ∈ M(n)\m}.

In general, for both the check-to-bit messages and bit-to-check messages, the more indepen-

dent pieces of information that are used to update the messages, the more reliable they become.

The ith iteration of the standard two step implementation of the BP algorithm uses all values

z
(i−1)
mn′ computed at the previous iteration in (1). However certain values z

(i)
mn′ could already be

computed in (3) based on a partial computation of the values ε(i)
mn obtained from (2), and then

be used instead of z
(i−1)
mn′ in (1) to compute the remaining values ε(i)

mn
. This suggests a shuffling

of the horizontal and vertical steps of the standard BP decoding. Hence this new version was

referred to as “shuffled” BP decoding [4].

In the shuffled BP algorithm, the initialization, stopping criterion test and output steps re-

main the same as in the standard BP algorithm. The only difference between the two algorithms

lies in the updating procedure. Step 1 of the shuffled BP algorithm is modified as: for 1 ≤ n ≤ N

and each m ∈ M(n), process the horizontal step and vertical step jointly, with (1) modified as:

τ (i)
mn =

∏

n
′∈N (m)\n

n′<n

tanh(z
(i)
mn′/2)

∏

n
′∈N (m)\n

n′>n

tanh(z
(i−1)
mn′ /2) (5)
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4 Replica shuffled BP

Shuffled BP decoding is a bit-based sequential approach and the method described in Section 3 is

based on a natural increasing order, i.e, the messages concerning bit nodes are updated according

to order n = 1, 2, . . . , N . The larger the value of n, the more independant pieces of information

are used to update the messages concerning bit n and the more reliable these messages become.

Therefore, as the index n increases, the reliability of the bit decisions increases and the error

rate decreases. Of course, the same reasoning applies if shuffled BP decoding is performed in

reverse order; thus if shuffled BP decoding is employed using a bit order starting with bit N and

ending with bit 1, then the error rate will increase with the index n. Figure 1 shows the number

of bit errors using standard or shuffled BP decoding (with increasing and decreasing order) for

the (273,191) PG-LDPC code [5] at a SNR of 3.0 dB after 10000 random blocks are decoded.

In replica shuffled BP decoding, two or more replica shuffled subdecoders based on different

updating orders operate simultaneously and cooperatively. After each iteration, each subdecoder

receives more reliable messages from and sends more reliable messages to subdecoders. Based on

these more reliable messages, all replica subdecoders begin the next iteration. Let
−→
D and

←−
D de-

note the replica subdecoders with natural increasing and decreasing updating order, respectively.

Let −→ε (i)
mn

and −→z i

mn
be variables associated with

−→
D at iteration i. Variables associated with

←−
D

are defined in a similar way. The replica shuffled BP decoding with two replica subdecoders is

carried out as followings:

Initialization: Set i = 1, maximum number of iteration to IMax. For each m,n, set −→z (0)
mn =

←−z (0)
mn

= Fn.

Step 1: Each replica subdecoder process the following two steps simultaneously. For 0 ≤ n ≤

N − 1 and each m ∈ M(n), process

(i) Horizontal Step

−→τ (i)
mn =

∏

n
′∈N (m)\n

n′<n

tanh(−→z (i)
mn′/2) •

∏

n
′∈N (m)\n

n′>n

tanh(−→z (i−1)
mn′ /2) (6)

−→ε (i)
mn = log

1 +−→τ (i)
mn

1−−→τ (i)
mn

(7)

←−τ (i)
mn =

∏

n
′∈N (m)\n

n′>n

tanh(←−z (i)
mn′/2) •

∏

n
′∈N (m)\n

n′<n

tanh(←−z (i−1)
mn′ /2) (8)
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←−ε (i)
mn

= log
1 +←−τ (i)

mn

1−←−τ (i)
mn

(9)

(ii) Vertical Step

−→z (i)
mn = Fn +

∑

m′∈M(n)\m

−→ε (i)
m′n

←−z (i)
mn

= Fn +
∑

m′∈M(n)\m

←−ε (i)
m′n

Step 2 Exchange of more reliable messages. Set −→z (i)
mn

=←−z (i)
mn

for 0 ≤ n < N/2 and←−z (i)
mn

= −→z (i)
mn

for N/2 ≤ n ≤ N − 1.

Step 3: Hard decision and stopping criterion test:

(i) Create ĉ
(i) = [ĉ(i)

n
] such that for 0 ≤ n < N/2, ĉ(i)

n
= 1 if Fn +

∑
m∈M(n)

←−ε (i)
mn

< 0, and

ĉ(i)
n = 0 otherwise; for N/2 < n ≤ N − 1, ĉ(i)

n = 1 if Fn +
∑

m∈M(n)
−→ε (i)

mn < 0, and

ĉ(i)
n

= 0 otherwise.

(ii) If Hĉ
(i) = 0 or the maximum iteration number IMax is reached, stop the decoding

iteration and go to Step 4. Otherwise set i := i + 1 and go to Step 1.

Step 4: Output ĉ
(i) as the decoded codeword.

Extension to more than two replica sub-decoders is straightforward, after noticing that the

two sub-decoders could perform equally well if they started N/2 bits apart.

5 Group replica shuffled BP

To take advantage of as many newly delivered messages as possible and therefore to achieve the

best performance, a fully serial replica shuffled BP is desirable. However, this scheme is not

attractive for hardware implementation due to large decoding delay. A fully parallel implemen-

tation is not realistic either for large code lengths.

In [4], a method called “group shuffled” BP was presented. In group shuffled BP, the bits of

a codeword are processed in groups in a semi-parallel manner. The groups are processed serially

while the bits within a group are processed in parallel. This approach can be extended in a

straightforward way to make group replica shuffled BP decoders.
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6 Simulation results

Figure 2 depicts the word error rate (WER) of iterative decoding of a randomly generated

regular (8000, 4000) LDPC code with row weight 6 and column weight 3 [6], using standard

BP, the ordinary (“plain”) shuffled and the group replica shuffled BP algorithm, for G = 2, 4,

8, 16 and 8000 groups and with four replica subdecoders. The maximum number of iterations

for plain and group replica shuffled BP was set to be Imax = 10. We observe that the WER

performance of replica shuffled BP decoding with four subdecoders and Imax = 10, and G ≥ 4 is

approximately the same as that of standard BP with Imax = 60.

We also simulated a (10000, 5000) irregular LDPC code constructed by the progressive edge-

growth (PEG) algorithm of [7] with dv = 15. The variable node degree distribution was λ(x) =

0.23802x+0.20997x2 +0.03492x3 +0.12015x4 +0.01587x6 +0.00480x13 +0.37627x14, which was

chosen from [8]. Four subdecoders were used for the replica shuffled BP algorithm. Figure 3

shows the bit error rate (BER) and word error rate (WER) performance of the standard BP,

plain shuffled BP, and replica shuffled BP decoding algorithms. Replica shuffled BP with 10

iterations has almost the same performance as the standard BP with 60 iterations. Figure 4

compares the group and the original algorithms for G = 1000. As shown in Figure 4, when G is

relatively large, the performance of the group algorithm approximates that of the original one.

Figure 5 depicts the WER of standard and replica shuffled BP decoding of a (16200, 7200)

irregular LDPC code which is constructed in a semi-random matter and has been selected in the

DVB-S2 standard [9]. The variable node degree distribution is λ(x) = 0.00006x + 0.57772x2 +

0.3111x3 + 0.11111x8. The number of replica subdecoders is four. We observe that the replica

shuffled BP with Imax = 10 and G = 32 provides a similar performance as that of the standard

BP with Imax = 70.

7 Conclusion

In this paper, a low latency iterative decoding method for LDPC codes was proposed. A reduc-

tion of the number of iterations is achieved by duplicate decoding of the same iteration in parallel

and combining the oupts after each iteration. As an example of the kind of speed-up possible

using this method, we have shown that for the LDPC code selected in the DVB-S2 standard,

10 iterations of the proposed approach with four sub-decoders achieves the same performance

as 70 iterations of the standard BP decoder. Extensions of this approach to other iteratively

decodable codes have been considered in [10].
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Figure 1: Number of bit errors in the (273,191) PG-LDPC code at a SNR of 3.0 dB.
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Figure 2: Error performance for iterative decoding of the (8000, 4000)(3, 6) LDPC code with the

group replica shuffled BP algorithm, for G = 1, 2, 8, 100, 8000 and at most 10 iterations.
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Figure 3: BER for iterative decoding of a (10000, 5000) irregular LDPC code with dv = 15 and

at most 200 iterations.
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