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Abstract

Previous attemps to perform figure-ground segmentation have universally made the assump-
tion that observations of the scene are independent in time. In the vocabulary of the stochastic
systems literature: the individual pixels are taken to be samples from a stationary, white ran-
dom processes with independent increments. Many scenes that could loosley be referred to
as static often contain cyclostationary processes: meaning that there is significant structure
in the correlations between observations across time. A tree swaying in the wind or a wave
lapping on a beach is not just a collection of randomly shuffled appearances, but a physical
system that has characteristic frequency responses associated with its dynamics. Our novel
method leverages this fact to perform object detection based solely on the dynamics, rather
than the appearance, of the pixels in a scene. Results are presented for a challenging scene
containing wave activity in the background that visually masks a low-contrast foreground
target.
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1 Introduction

The main contribution of this work is an algorithm, called Wave Vision, or
Waviz, that explicitly harnesses the scene dynamics to improve segmentation.
This allows Waviz to correctly interpret scenes that would confound appearance-
based algorithms by having high-variance distractors in the presence of low-
contrast targets, specifically when the distractors are well modeled as cyclosta-
tionary random processes. This is often the case, since real-world physics often
induces near-periodic phenomenon in the environment: the motion of plants
driven by wind, the action of waves on a beach, and the appearance of rotating
objects. These periodic patterns are so strongly constrained by the relevant
physics that efforts have been made to use then to recover camera calibration
parameters by observing them[10]. In this work we merely strive to capture and
exploit these patterns for segmentation.

2 Background

There is a rich literature that addresses the problem of detecting objects of
interest in a scene that is unified by the definition of interesting: something
is interesting if it is sufficiently different from a model of the stationary scene
viewed through a stationary camera. The simplest of these methods assume that
the scene is truly static, so that the uninteresting variability in the scene is ade-
quately described by a unimodal, zero-mean, white, Gaussian noise process [13].
More complex systems include mechanisms for rejecting lighting changes as un-
interesting, such as variablility caused by cast shadows [3].

Finally, there is a class of algorithms that allow the scene to be non-static.
These algorithms represent the background as a multi-modal process [8], where
each mode is a static model plus a zero-mean, white, Gaussian noise process [12].
The literature is far too varied to review here, however all these techniques have
at their core the common assumption of a white process, that the observation
process has independent increments [11].

3 Cyclostationarity

The independent increments assumption means that two samples drawn from
the same pixel location will be independent. They may be drawn from the
same probability distribution, but they will be independent samples from that
distribution. The goal of the segmentation algorithm is to decide if the sam-
ples are drawn from the background distribution, or from some other, more
interesting distribution. By assuming independent increments, these algorithms
are relying completely on the appearance of the scene. Let’s examine the case
of a tree blowing in the wind. The multi-modal background models[12] would
build up separate modes to explain, say sky, leaf, and branch appearances. As
the tree moves, the individual pixel may image any of these. The independent
increments assumption says that these different appearances may manifest in
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any order. However, we know that the tree will move with a characteristic fre-
quency response that is related to it’s physical composition. That characteristic
response places constraints on the ways that the library of appearances may be
shuffled.

Specifically, given two samples from the observation process: z[k] and z[l],
the independent increments assumption states that the autocorrelation function
R.[k,1] is zero when k # I:

Ry[k, 1] = E[z[klz"[I]] (1)
o268k — 1 2)
where 02 = E [z[k]z*[K]] is the sample covariance and 6[k — [] is the discrete-

time impulse function. This is correct when the process is stationary and white:
such as a static scene observed with white noise. For a situation where the
observations are driven by some physical, dynamic process, we can expect that
the dynamics will leave their spectral imprint on the observation covariance.
So if the process is simply periodic, then we would expect to see very similar
observations occur with a period of T' samples, so in contrast to the above model:

Rylk,k+T] #0

We say that this process is cyclostationary if the above relationship is true for
all time. More generally, wide-sense cyclostationarity is defined as [11]:

plk] = plk+TIvt (3)
K.k1] = Kulk+T,1+TVk,I (4)

where K[k, ] is autocovariance function for processes that are not zero-mean.
These types of processes can be more complex than the simply periodic, and
are characterized by significant structure in their autocorrelation functions, as
illustrated in the self-similarity matrix shown in Figure 1. Figure 2 shows the
sample trace from a pixel that is observing lapping waves on a beach.

process is said to be harmonziable if its autocorrelation can be reduced to
the form R, [k — ], that is, so that the autocorrelation is completely defined by
the time difference between the samples. It is possible to estimate the spectral
signature of harmonziable, cyclostationary processes in a compact, parametric
representation utilizing the Fourier transform [2]. Figure 3 shows an example
transform of the same pixel as Figures 2 and 1 In the case of the evenly sampled,
discrete observation processes we encounter in computer vision, we can use the
efficient Fast Fourier Transform (FFT).

In Waviz we propose to estimate a background model that captures these
spectral signatures, and then use those signatures to detect changes in the scene
that are inconsistent with these signatures. By leveraging these dynamic con-
straints, we should be able to achieve higher specificity than a segmentation
algorithm that ignores these constraints. Below we show results that demon-
strate the ability of this kind of model it find low-contrast targets embedded in
high-variance, dynamic scenes that are largely inaccessible to classic techniques.
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Figure 1: self-similarity matrix from the near-field water region at
pixel(320, 400)

4 Using Spectral Similarity

Of course, the literature is not devoid of work that utilizes spectral fingerprints
as a classification feature. However all the previous work on using spectral meth-
ods to classify activity have in common that they apply the spectral methods
only to the foreground objects [6, 4, 1, 9, 7]. That is, objects that are either
stationary in the frame, or have been extracted from the scene and stabilized by
some other process, typically one of the segmentation schemes discussed above
combined with some kind of tracker framework.

The literature on temporal textures contains some work on building search-
able representations for video databases that would allow the system to recognize
activity. These representations needed to be compact for storage in databases,
and concise for quick indexing. As a result they involve summarizing the spec-
tral content as a single number, for example, as the ratio of harmonic power
to non-harmonic power in the signal. This involves explicitly attempting to
extract features from the signal in the Fourier domain[6, 4]. We make no prior
assumptions about what features will be interesting in the frequency domain,
and instead use the Fourier signal directly.

The surveillance literature also contains work on spectral fingerprints that
focuses instead on analysis of the full process autocorrelation function[1, 9].
This work is aimed at detecting pedestrians and pedestrians with sprung masses
(backpacks, satchels, and the like). Howver, the word detect in somewhat mis-
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Figure 2: Sample trace from the near-field water region at pixel(320, 400)

leading in this work. The method classifies targets into pedestrian, and non-
pedestrian classes after they have already been extracted from the scene using
classical techniques. As a result, these works, like the others above, make an
independent increments assumption about the scene dynamics, even while ex-
ploiting rich descriptions of foreground object dynamics.

One system that is closely related to Waviz is the work by Liu and Sarkar[5]
that uses a priori models of the periodicity in pedestrian motion to aid in the
detection and segmentation of pedestrians in video. It is similar to this work in
that it uses models of periodicity to segment video. This is in contrast to the
work mentioned above that uses periodicity to classify motion only after it is
segmented. It is different from this work in that it is using engineered models
of a particular foreground process that is deemed a priori to be interesting:
pedestrian motion. Waviz instead builds models in situ of the observed scene. It
is therefore sensitive to anything that is sufficiently different from that situation-
specific scene. Both use periodicity for segmentation, but the Liu work has
a pointedly narrow definition of interest, while Waviz adopts a very inclusive
definition.

5 Implementation

We begin by accumulating sample sequences for each pixel from a number of
frames of video. Each of these sequences serves as an example of the periodic
behavior of a particular pixel in the image. An example sequence is shown in
Figure 2. The sample shown in that figure represents a single pixel over 128
frames of video.

These sequences, z[n| are used to initialize the background model for each
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Figure 3: Fourier transform of the near-field water region at pixel(320,400)

pixel. We extract a harmonic series representation, a[k] using a discrete Fourier

transform, such that:
N—

l’[t] _ a[k]ei27rkt/N
k=0

—

We use only the magnitudes ||a[k]|| of the Fourier coefficients in the representa-
tion. We take this as an estimate of the spectral components in the autocorre-
lation function of the underlying scene process [2].

For each new sample z[n'] we extract a new harmonic series representation,
blk] for the current observation sample using z[n’] and the window of N — 1
previous samples. We take this to represent the process underlying the current
observations.

To determine if these two samples sequences were generated by the same
underlying process, we compute the Lo-norm of the difference between the two
harmonic series:

N-1 3
d = (a,b) = (Z (llal#]ll - IIb[/f]II)2>

k=0

This distance, d provides a measure of the difference between the underlying
processes. Small distances are taken to mean that the samples are drawn from
the same process, and therefore represent observations consistent with the scene.

The length of the window, N, is a parameter that must be chosen with care.
If the window is too small, then low-frequency components will be poorly mod-
eled. However large windows come at the cost of more computation and more
lag in the system. We compare results from 32-, 64-, and 128-point windows
below.
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6 Short-Time Fourier Transform

The short-time Fourier transform (STFT) is a Fourier-related transform used to
determine the sinusoidal frequency and phase content of a signal as it changes
over time. Simply described, a window function, which is non-zero for only
a short period of time, is multiplied by the function to be transformed. The
window functions are applied to avoid discontinuities at the beginning and the
end of a set of data. The smaller these discontinuities are, the faster the side
slopes drop. The window functions, such as a Gaussian, usually have a cone
shape centered around zero. The data to be transformed is broken up into
chunks, which usually overlap each other. Each chunk is Fourier transformed,
and the complex result is added to a matrix, which records magnitude and phase
for each point in time and frequency. This can be written as:

Slk,w] =Y a[n + mlwlmle 7™ (5)

m

for signal z[n] and window w[n]. One of the downfalls of the STFT is that it
has a fixed resolution. The frequency resolution is set mainly by the size of
the segment, although some benefits may be derived from using a higher count
(zero-padded) FFT, especially when using small segment sizes. The segment
size also determines the percent of the overall data stream processed in a single
FFT. Thus the time resolution is also fixed by the segment size (and to a much
lesser extent by the sharpness of the data tapering window).

The segment size thus controls the tradeoff between frequency resolution
and time resolution. Choosing a wide window gives better frequency resolution
but poor time resolution. A narrower window gives good time resolution but
poor frequency resolution. Optimizing the STFT usually involves (1) finding
an appropriate segment size, (2) setting the density in time by adjusting the
amount of redundancy or overlap between the segments, (3) zero-padding the
FFT for small segment sizes to better render spectral maxima, and (4) choosing
an appropriate data tapering window.

6.1 Adaptation

Since the signals we encounter are almost never truly stationary, we add a
simple exponential update mechanism to the above algorithm. This consists of
combining the current estimate of the harmonic sequence with the estimate of
the scene’s harmonic sequence:

ar+1[k] = ai[k] + a(be[k] — a:[k])

Where « is the exponential mixing factor that we set to 0.02 in all our experi-
ments.
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Figure 4: Tracking results. Top: unimodal (left) and multi-modal (right)
background subtraction; Bottom: 32-point (left) and 64-point (right) adap-
tive FFT.

7 Results

We tested our algorithm on 2000 frames of infrared video of a boat moving
offshore in the presence of waves. The frames were taken from the Al11-Zod2
sequence. Frames 600-2600 were chosen because the camera remains stationary
during those frames. The boat is a low-contrast object in the infrared video,
and the wave action is a significant, dynamic distraction for any background
segmentation algorithm. We compared several versions of our algorithm: using
the 16-, 32-, 64-, and 128-point FFT. We also tested unimodal and multi-modal
background subtraction algorithms.

In an attempt to most directly demonstrate the performance of the back-
ground models, we present sequential discovery performance. That is, we as-
sume that there is one target per frame, and in each frame we pick the most
novel pixel location as our estimate of the location of the target. Figure 5 shows
some examples of the images transformed into distance maps by the algorithm.
Obviously this scheme could be improved on with any number of tracking al-
gorithms, but we feel this most directly demonstrates the performance of the
underlying scene models.

Figure 4 shows discovery results from three algorithms superimposed on an
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uni | multi | 16-pt | 32-pt | 64-pt | 128-pt
20 | 50% | 37% | 16% | 10% 12% 32%
15 | 52% | 38% | 16% | 13% 18% 33%
10 | 65% | 46% | 22% | 22% 28% 42%

Table 1: Error rates. Percent of missed detections for three levels of tolerance:
10, 15, and 20 pixels. See text for further explanation.

uni | multi | 16-pt | 32-pt | 64-pt | 128-pt
280 | 161 98 92 102 99

Table 2: The root mean squared error between tracking results and ground
truth.

example frame of the sequence. The top row shows the independent increments
methods (unimodal on the left, multi-modal on the right). The bottom row
illustrates the much better performance of the adaptive FFT-based scene model
using a 32-point (left) window and a 64-point window (right). the results are
plotted on a sample image from the scene for context.

Table 1 gives some quantitative results for five algorithms: the unimodal
model, a multi-modal model [8], and four FFT-based models of varying window
sizes. The percentages indicate the number of frames where the algorithm’s
estimate of the boat’s position was off by more than the threshold in the left
column, in pixels. You can see that the 32-point, adaptive FFT performs the
best of the five algorithms, with almost 4 out of 5 detections falling within 10
pixels of the target.

Table 2 shows overall root mean squared error for the algorithms on the test
sequence. Again the 32-point adaptive FFT algorithm is the best performer.
However the 128-point adaptive FFT looks much better in this analysis: it
significantly out-performs both of the Gaussian models. Given that the hit-rate
performance if the 128-point algorithm was similar to the Gaussian mixture
performance, this may indicate that the 128-point FFT is actually finding the
target more often, but is reporting a highly biased position estimate that is
causing near-hits to be often labeled as misses.

This assertion is given credence by the more detailed analysis of the results
in Figure 2. We can see that the multi-Gaussian algorithm is very precise: if
it find s the target it then it reliably gets the position correct to within several
pixels. This is indicated by the sharp knee in the “multi” curve of Figure 6.
The FFT-based algorithms seem to introduce a bias that corrupts the position
estimate despite what is essentially a successful detection. We suspect that this
is doe to lags introduced by the windowing of the sliding FFT. Eliminating that
lag should be possible, but is deferred to future work.
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8 Conclusion

We have presented a novel algorithm called Waviz that detects new objects based
solely on the dynamics of the pixels in a scene, rather than their appearance.
This is accomplished by directly estimating models of cyclostationary processes
to explain the observed dynamics of the scene and then comparing new obser-
vations against those models. We have presented results that demonstrate the
efficacy of this algorithm on challenging video.
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Figure 5: Left: Select frames from the sequence. Center: The distance
transformed images that are generated by the multi-modal Gaussian background
algorithm. Right: Corresponding images created by the 64-point FFT Waviz
algorithm. Bright means novel. Frames are individually normalized.
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Figure 6: Analysis of hit ratio (vertical access) versus the threshold determining
what is an acceptable hit.
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