
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

DiamondHelp: A Graphical User Interface Framework for
Human-Computer Collaboration

Rich, C.; Sidner, C.; Lesh, N.; Garland, A.; Booth, S.; Chimani, M.

TR2004-114 September 2004

Abstract
DiamondHelp is a reusable Java framework for building graphical user interfaces based on
the collaborative paradigm of human-computer interaction. DiamondHelp’s graphical design
combines a generic conversational interface, adapted from online chat programs, with an
application-specific direct manipulation interface. DiamondHelp provides ”a things to say”
mechanism for use without spoken language understanding; it also supports extensions to take
advantage of speech technology. DiamondHelp’s software architecture factors all application-
specific content into two modular plug-ins, one of which includes Collagen and a task model.

International Workshop on Smart Appliances and Wearable Computing, IEEE Interna-
tional Conference on Distributed Computing Systems Workshops

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2004
201 Broadway, Cambridge, Massachusetts 02139

DiamondHelp: A Graphical User Interface Framework
for Human-Computer Collaboration

Charles Rich, Candy Sidner, Neal Lesh, Andrew Garland, Shane Booth, Markus Chimani
Mitsubishi Electric Research Laboratories

201 Broadway
Cambridge, MA, 02139, USA

rich@merl.com

ABSTRACT

DiamondHelp is a reusable Java framework for building
graphical user interfaces based on the collaborative paradigm
of human-computer interaction. DiamondHelp’s graphical
design combines a generic conversational interface, adapted
from online chat programs, with an application-specific
direct manipulation interface. DiamondHelp provides a
“things to say” mechanism for use without spoken language
understanding; it also supports extensions to take advantage
of speech technology. DiamondHelp’s software architec-
ture factors all application-specific content into two modular
plug-ins, one of which includes Collagen and a task model.

Keyword: Intelligent assistants for complex tasks.

INTRODUCTION

. . . technology remains far too hard for most folks to
use and most people can only utilize a tiny fraction
of the power at their disposal. [13]

Our diagnosis of this problem identifies two fundamental un-
derlying causes: the exhaustion of conventional interaction
paradigms and the lack of consistency in user interface de-
sign. This paper addresses both of these causes by introduc-
ing a new framework for building intelligent user interfaces,
called DiamondHelp.

The currently dominant human-computer interaction
paradigm is direct manipulation [11], which can be applied
with great effectiveness and elegance to those aspects of
an interface which afford natural and intuitive analogies to
physical actions, such as pointing, dragging, sliding, etc.
In practice, however, most interfaces of any complexity
also include an ad hoc and bewildering collection of other
mechanisms, such as tool bars, pop-up windows, menus,
command lines, etc.

To make matters worse, once one goes beyond the most ba-
sic functions (such as open, save, etc.) there is very little
design consistency between interfaces to different products,
even from the same manufacturer. The result is that it re-

Figure 1: DiamondHelp for combination washer-dryer.

quires too large an investment of the typical user’s time to
learn all the intricacies of each new product.

The DiamondHelp framework consists of three components:

• an interaction paradigmbased on task-oriented human
collaboration,

• a graphicaluser interface designwhich combines
conversational and direct manipulation interfaces,

• and asoftware architectureof reusable Java Beans.

The first two of these components are oriented towards the
user; the third component addresses the needs of the software
developer. Each of these components is described in detail in
a section below. Figure 1 shows an example of the Diamond-
Help user interface design for a combination washer-dryer.

The immediate motivation for DiamondHelp has been our re-
cent attention to the usability crisis in high-tech home prod-
ucts, such as DVD recorders, combination washer-dryers,
refrigerator-ovens, programmable thermostats, etc. How-
ever, DiamondHelp is not limited to home appliances; it can
be applied to any software interface.

DiamondHelp grows out of a longstanding research thread
on human-computer collaboration, organized around the
Collagen system [9, 10]. Our work on Collagen, how-
ever, has been primarily concerned with the underlying se-

1

mantic and pragmatic structures for modeling collaboration,
whereas DiamondHelp is focused on the appearance (the
“look and feel”) that a collaborative system presents to the
user. Although Collagen plays a key role in our implementa-
tions of DiamondHelp applications (see Software Architec-
ture section), the DiamondHelp framework can also be used
independently of Collagen.

INTERACTION PARADIGM

Although the concept of an “interaction paradigm” is some-
what abstract and difficult to define formally, it is crucial to
the overall development of interactive systems. In particu-
lar, the consistent expression and reinforcement of the inter-
action paradigm in the user interface design (what the user
sees) leads to systems that are easier to learn and use. The
interaction paradigm also provides organizing principles for
the underlying software architecture, which makes such sys-
tems easier to build.

The collaborative paradigm for human-computer interaction,
illustrated in Figure 2, mimics the relationships that typi-
cally hold when two humans collaborate on a task involving
a shared artifact, such as two mechanics working on a car
engine together or two computer users working on a spread-
sheet together. This paradigm differs from the conventional
view of interfaces in two key respects.

First, notice that the diagram in Figure 2 is symmetric be-
tween the user and the system. Collaboration in general in-
volves both action and communication by both participants,
and in the case of co-present collaboration (which is the fo-
cus of DiamondHelp) the actions of each participant are di-
rectly observed by the other participant.

One consequence of this symmetry is that the collaborative
paradigm spans, in a principled fashion, a very broad range
of interaction modes, depending on the relative knowledge
and initiative of the system versus the user. For example, “tu-
toring” (aka intelligent computer-aided instruction) is a kind
of collaboration in which the system has most of the knowl-
edge and initiative. At the other end of the range is “intelli-
gent assistance,” wherein the user has most of the knowledge
and initiative. Furthermore, a collaborative system can eas-
ily and incrementally shift within this range depending on
the current task context. This kind of “mixed initiative” is
the exception rather than the rule in conventional interfaces.

Second, and at a deeper level, the primary role of com-
munication in collaboration is not for the user to tell the
system what to do (the traditional “commands”), but rather
to establish and negotiate aboutgoals and how to achieve
them. Licklider observed this fundamental distinction over
40 years ago in a classic article, which is well worth revisit-
ing [3]:

[Compare] instructions ordinarily addressed to intel-
ligent human beings with instructions ordinarily used
with computers. The latter specify precisely the in-
dividual steps to take and the sequence in which to

GOALS
 (etc.)

GUI

SYSTEM
communication

observe observe

action action

USER

Application

Figure 2: The collaborative paradigm.

take them. The former present or imply something
about incentive or motivation, and they supply a cri-
terion by which the human executor of the instruc-
tions will know when he has accomplished his task.
In short: instructions directed to computers specify
courses; instructions directed to human beings spec-
ify goals. [6]

The problem with the “command” view of user interfaces is
that it demands too much knowledge on the part of the user.
Conventional systems attempt to compensate for this prob-
lem by adding various kinds of ad hoc help facilities, tool
tips, wizards, etc., which are typically not integrated into any
clear paradigm. (See the Related Work section for specific
discussion of the relation of DiamondHelp to wizards and
Microsoft’s Clippy.) In contrast, collaboration encompasses
all of these capabilities within the paradigm.

Finally, notice that Figure 2 does provides a place to include
direct manipulation as part of the collaborative paradigm,
i.e., one can choose to implement the application GUI us-
ing direct manipulation. This is, in fact, exactly what we
have done in the user interface design for DiamondHelp, de-
scribed in the next section.

USER INTERFACE DESIGN

Our overarching goal for the DiamondHelp user interface
design was to signal, as strongly as possible, a break from
the conventional interaction style to the new collaborative
paradigm. A second major challenge was to accomodate
what is inescapably different about each particular applica-
tion of DiamondHelp (the constructs needed to program a
thermostat are very different from those needed to program
a washing machine), while preserving as much consistency
as possible in the collaborative aspects of the interaction. If
a someone knows how to useoneDiamondHelp application,
they should know how to useanyDiamondHelp application.

In order to address these concerns, we divided the screen into
two areas, as shown in the example DiamondHelp interfaces
of Figures 1, 3 and 4. Figure 1 has been implemented in Java;

2

Figure 3: DiamondHelp for programmable thermostat.

Figures 3 and 4 are Flash simulations. The top half of each
of these screens is the same distinctive DiamondHelp con-
versational interface. The bottom half of each screen is an
application-specific direct manipulation interface. Dividing
the screen into two areas is, of course, not new; our con-
tributions are the specific graphical interface design and the
reusable software architecture described below.

Conversational Interface

To express and reinforce the human-computer collaboration
paradigm, which is based by human-human communication,
we adopted the scrolling speech bubble metaphor often used
in online chat programs, which support human-human com-
munication. The bubble graphics nicely reflect the collabora-
tive paradigm’s symmetry between the system and the user,
discussed above. This graphical metaphor also naturally ex-
tends to the use of speech synthesis and recognition technol-
ogy (see Extensions and Variations section below).

The top half of every DiamondHelp interface is thus a con-
versation (“chat”) between DiamondHelp (the system), rep-
resented by the Mitsubishi three-diamond logo on the left,
and the user, represented by the human profile on the right.
All communication between the user and system takes place
in these bubbles; there are no extra toolbars, pop-up menus,
etc.

The basic operation of the conversational part of the Dia-
mondHelp interface is as follows. Let’s start with the open-
ing of the conversation, which is the same for all Diamond-
Help applications:

After the system says its welcome, a user bubble appears

Figure 4: DiamondHelp for DVD recorder.

with several options for the user to choose from. We call this
the user’s “things to say” bubble. At the opening of the con-
versation, there are only four choices: “What next?,” “oops,”
“done,” and “help.” Notice that the last three of these options
are specially laid out with icons to the right of the vertical
line; this is because these three options are always present
(see Predefined Things to Say section below).

At this point, the user is free either to reply to the system’s
utterance by selecting one of the four things to sayor to inter-
act with the direct manipulation part of the interface. Unlike
the case with traditional “dialogue boxes,” the application
GUI is never locked. This flexibility is a key aspect of how
we have combined conversational and direct manipulation
interfaces in DiamondHelp.

In this scenario, the user decides to request task guidance
from the system by selecting “What next?” in the things-to-
say bubble. As we have argued elsewhere [10],everyinter-
active system should be able to answer a “What (can I do)
next?” question.

As part of the interface animation, whenever the user makes
a things-to-say selection (by clicking or touching the de-
sired word or phrase), the not-selected items are erased and
the enclosing bubble is shrunk to fit only the selected word
or phrase. Furthermore, in preparation for the next step of
the conversation, the completed system and user bubbles are
“grayed out” and scrolled upward (if necessary) to make
room for the system reply bubble and the user’s next things-
to-say bubble:

3

DiamondHelp applications always reply to “What next?” by
a “You can. . . ” utterance with the actual options for the pos-
sible next task goals or actions presented inside the user’s
things-to-say bubble:

In this scenario, from DiamondHelp for a programmable
thermostat (see Figure 3), the direct manipulation interface
shows the family’s schedule for the week. The entries in
this schedule determine the thermostat’s temperature settings
throughout the day. The user chooses the goal of removing a
schedule entry:

The system replies by asking the user to indicate, by selec-
tion in the direct manipulation interface, which schedule en-
try is to be removed. Notice that the user’s things-to-say
bubble below includes only three choices. “What next?” is
not included because the system has just told the user what
to do next:

Although the system is expecting the user next to click (or
touch) in the direct manipulation interface (see Figure 5), the
user is still free to use the conversational interface, e.g, to ask
for help.

Scrolling History

As in chat windows, a DiamondHelp user can at any time
scroll back to view parts of the conversation that have moved
off the screen. This is particularly useful for viewing ex-
planatory text, which can be quite long (e.g., suppose the
system utterance in Figure 4 was several lines longer).

The oval beads on each side of the upper half of the screen
in Figures 1, 3 and 4 are standard scroll bar sliders. We also
support scrolling by simply dragging anywhere on the lined
background of the upper window.

Figure 5: Selection in the direct manipulation area (see small
triangular cursor in first column of schedule).

An interesting DiamondHelp extension to explore is al-
lowing the user to “restart” the conversation at an earlier
point in the history and move forward again with different
choices. This could be a good way to support the backtrack-
ing paradigm for problem solving and is also closely related
to our earlier work on history-based transformations in Col-
lagen [9].

Things to Say

The user’s things-to-say bubble is partly an engineering com-
promise to compensate for the lack of natural language un-
derstanding (see Extensions and Variations section below).
It also, however, partly serves the function of suggesting to
the user what she can do at the current point [12, 1].

In the underlying software architecture, each choice in the
things-to-say bubble is associated with the semantic repre-
sentation of an utterance. When the user selects the de-
sired word or phrase, the architecture treats the choice as
if the missing natural-language understanding system pro-
duced the associated semantics.

From a design perspective, this means that the wording of
the text displayed for each things-to-say choice should read
naturally as an utterance by the user in the context of the
ongoing conversation. For example, in Figure 1, in reply
to the system’s question “How can I help you?”, one of the
things-to-say choices is “Explain wash agitation,” not “wash
agitation.”

At a deeper level, to be true to the spirit of the collaborative
paradigm, thecontentof the conversations in DiamondHelp,
i.e., both the system and user utterances, should concern not
only primitive actions (“Remove a schedule entry”), but also
higher-level goals (“Schedule a vacation”) and motivation
(“Why?”).

When Collagen is used in the implementation of a Diamond-
Help application, all the system utterances and the user’s

4

things-to-say choices are automatically generated from the
task model given for the application (see Collagen Collab-
oration Plug-in section). Without Collagen, the appropriate
collaborative content is provided by the application devel-
oper, guided by the principles elucidated here.

An obvious limitation of the things-to-say approach is that
there is only room for a relatively small number of choices
inside the user bubble—six or eight without some kind of
nested scrolling, which we would like to avoid. Furthermore,
since we would also like to avoid the visual clutter of drop-
down choices within a single user utterance, each thing-to-
say is a fixed phrase without variables or parameters.

Given these limitations, our design strategy is to use the di-
rect manipulation interface to enter variable data. For ex-
ample, in DiamondHelp for a washer-dryer, instead of the
system asking “How long is the dry cycle?” and generating
a things-to-say bubble containing “The dry cycle is 10 min-
utes,” “. . . 15 minutes,” etc., the system says “Please set the
dry cycle time,” points to the appropriate area of the direct
manipulation interface, and expects the user to enter the time
via the appropriate graphical widget. Figure 5 is a similar ex-
ample of using the direct manipulation interface to provide
variable data, in this case to select the thermostat schedule
entry to be removed.

Predefined Things to Say

Most of the things to say are specific to an application. How-
ever, a key part of the generic DiamondHelp design is the
following set of user utterances which should have the same
meaning in all applications: “What next?,” “Never mind,”
“Oops,” “Done,” and “Help.” In addition, to save space and
enhance appearance, we have adopted a special layout for
the last three of these utterances, which are always present.

“What next?” has already been discussed above. “Never
mind” is a way to end a question without answering it (see
Figure 1). “Oops,” “Done,” and “Help” each initiate a subdi-
alogue in which the system tries to determine, respectively,
how to recover from a mistake, what level of task goal has
been completed, or what form of help the user desires.

When Collagen is used in the implementation of Diamond-
Help, the semantics of the predefined things-to-say are au-
tomatically implemented correctly; otherwise this is the re-
sponsibility of the collaboration plug-in implementor (see
Software Architecture section).

Task Bar

An additional component of the DiamondHelp conversa-
tional interface is the “task bar,” which is the single line lo-
cated immediately above the scrollable history and below the
DiamondHelp logo in Figures 1 and 4 (the task bar in Fig-
ure 3 happens to be blank at the moment of the screen shot).
For example, in Figure 1, the contents of the task bar reads:

Make a new cycle > Adjust wash agitation > Help

The task bar, like the scrollable history and the predefined
“What next?” utterance, is a mechanism aimed towards help-

ing users when they lose track of their context, which is a
common problem in complex applications. When Collagen
is used in the implementation of DiamondHelp, the task bar
is automatically updated with the path to the currently active
node in the task model tree (see Figure 7). Otherwise, it is
the responsibility of the collaboration plug-in implementor
to update the task bar with appropriate task context informa-
tion.

Currently, the task bar is for display only. However, we
have considered extending the design to allow users to click
(touch) elements of the displayed path and thereby cause the
task focus to move. This possible extension is closely related
to the scrollable history restart extension discussed above.

Application GUI

The bottom half of each screen in Figures 1, 3 and 4 is an
application-specific direct manipulation interface. The de-
tails of these GUI’s are not important to the main point of this
paper. If fact, there is nothing in the DiamondHelp frame-
work that guarantees or relies upon the application GUI be-
ing well-designed or even that it follow the direct manipula-
tion paradigm, though this is recommended. (The only way
to guarantee this would be for DiamondHelp to automati-
cally generate the application GUI from a task model. We
have done some research on this approach [2], but it is still
far from practical.)

Furthermore, to achieve our overall goal of consis-
tency across applications, an industrial-grade DiamondHelp
would, like conventional UI toolkits, provide standard color
palettes, widgets, skins, etc. However, this is beyond the
scope of a research prototype.

Two design constraints whichare relied upon by the Dia-
mondHelp framework are: (1) the user should be able to use
the application GUI at any time, and (2) every user action on
the application GUI is reported to the system (see Manipula-
tion Plug-in section below).

Finally, it is worth noting that, for the three applications pre-
sented here, it is possible to perform every function the appli-
cation supports entirely using the direct manipulation inter-
face, i.e., totally ignoring the conversational window. While
this is a pleasant fact, we also believe that in more complex
applications, there may be some overall advantage in relax-
ing this constraint. This is a design issue we are still explor-
ing.

SOFTWARE ARCHITECTURE

In contrast to most of the discussion of above, which fo-
cuses on the the user’s view of DiamondHelp, this section
addresses the needs of the software developer. The overar-
ching issue in DiamondHelp’s software architecture isreuse,
i.e., factoring the code so that the developer of a new Dia-
mondHelp application only has to write what is idiosyncratic
to that application, while reusing as much generic Diamond-
Help framework code as possible.

5

Model

View

Manipulation
Plug−in

user action

user
utterance

observation

Collagen

Task Model

utterance
system

application GUI update

user bubble

system bubble

things
to say

task bar

user manipulation

system action

user
choice

Collaboration
Plug−in

DiamondHelp

Figure 6: DiamondHelp software architecture.

Figure 6 shows our solution to this challenge, which we have
implemented in Java Beans and Swing. (Dotted lines in-
dicate optional, but recommended, components.) All the
application-specific code is contained in two “plug-ins,”
which are closely related to the two halves of the user in-
terface. The rest of the code (shaded region) is generic Dia-
mondHelp framework code.

In addition to the issues discussed in this section, there are
a number of other standard functions of plug-and-play ar-
chitectures (of which DiamondHelp is an instance), such as
discovering new devices connected to a network, loading the
appropriate plug-ins, etc., which are beyond the scope of this
paper.

Manipulation Plug-in

Notice that the manipulation plug-in “sticks out” of the Di-
amondHelp framework box in Figure 6. This is because it
is directly responsible for managing the application-specific
portion of the DiamondHelp interface. DiamondHelp simply
gives this plug-in a Swing container object corresponding to
the bottom half of the screen.

We recommend that the manipulation plug-in provide a
direct-manipulation style of interface implemented using the
model-view architecture, as shown by the dotted lines in Fig-
ure 6. In this architecture, all of the “semantic” state of the
interface is stored in the model subcomponent; the view sub-
component handles the application GUI.

Regardless of how the manipulation plug-in is implemented
internally, it must provide an API with the DiamondHelp
framework which includes two event types: outgoing events
(user action observation) which report state changes result-
ing from user GUI actions, and incoming events (system ac-

tion) which specify desired state changes. Furthermore, in
order to preserve the symmetry of the collaborative paradigm
(see Figure 2), it is the responsibility of the plug-in to update
the GUI in response to incoming events, so that the user may
observe system actions. As an optional but recommended
feature, the manipulation plug-in may also provide the Dia-
mondHelp framework with the graphical location of each in-
coming state change event, so that DiamondHelp can move
a cursor or pointer to that location, to help the user observe
system actions.

Note that the content of both incoming and outgoing state
change events is specified in semantic terms, e.g., “change
dry cycle time to 20 min,” not “button click at pixel 100,200.”
Lieberman [7] further discusses this and other issues related
to interfacing between application GUI’s and intelligent sys-
tems.

Collaboration Plug-in

Basically, the responsibility of the collaboration plug-in is to
generate the system’s responses (actions and utterances) to
the user’s actions and utterances. Among other things, this
plug-in is therefore responsible for implementing the seman-
tics of the predefined utterances (see next section).

The collaboration plug-in has two inputs: observations of
user actions (received from the manipulation plug-in), and
user utterances (resulting from user choices in the things-to-
say bubble). It also has four outputs: system actions (sent to
the manipulation plug-in), system utterances (which go into
system bubbles), things to say (which go into user bubbles),
and the task bar contents.

Notice that the collaboration plug-in is responsible for pro-
viding only thecontentof the system and user bubbles and

6

select last day

add entry remove entry modify entry schedule vacation

program thermostat

select first day

Figure 7: Task model for programmable thermostat.

the task bar. All of the graphical aspects of the conversational
window are managed by DiamondHelp framework code. It
is also an important feature of the DiamondHelp architec-
ture that the collaboration plug-in developer does not need
to be concerned with the graphical details of the application
GUI. The collaboration plug-in developer and the manipu-
lation plug-in developer need only to agree on a semantic
model of the application state.

For a very simple application, the collaboration plug-in may
be implemented by a state machine or other ad hoc mecha-
nisms. However, in general, we expect to use the Collagen
version described in the next section.

Collagen Collaboration Plug-in

The Collagen version of the collaboration plug-in includes
an instance of Collagen, with a little bit of wrapping code to
match the collaboration plug-in API. Collagen has already
been extensively described in the literature [9, 10]. We will
only highlight certain aspects here which relate to Diamond-
Help.

The most important reason to use the Collagen collaboration
plug-in is that the application developer only needs to pro-
vide one thing: atask model. All four outputs of the collab-
oration plug-in described above are then automatically gen-
erated by Collagen.

A task model is an abstract, hierarchical, partially ordered
representation of the actions typically performed to achieve
goals in the application domain. Figure 7 shows a fragment
of the task model for the programmable thermostat applica-
tion in Figure 3. Collagen currently provides a Java exten-
sion language for defining task models. We are also consid-
ering an XML version of this language.

System utterances and actions are produced by Collagen’s
usual response generation mechanisms [8]. The semantics of
some of the predefined DiamondHelp user utterances, such
as “Oops,” “Done,” and “Help,” “ are captured in a generic
task model, which is used by Collagen in addition to the
application-specific task model provided. Each of these pre-
defined utterances introduces a generic subgoal with an asso-
ciated subdialogue (using Collagen’s discourse stack). Other
predefined utterances, such as “What next?”, and “Never
mind,” are built into Collagen.

The third collaborative plug-in output produced by Collagen
is the user’s things to say. Basically, the things to say are
the result of filtering the output of Collagen’s existing dis-

course (agenda) generation algorithm. The first step of fil-
tering is remove everything except expected user utterances.
Then, if there are still too many choices, a set of application-
independent heuristics are applied based on the type of com-
municative act (proposal, question, etc.). Lastly, predefined
utterances are added as appropriate. The further details of
this algorithm need to be the topic of a separate paper.

Collagen’s powerful plan recognition capabilities [4, 5] are
used to keep the task bar up to date with respect to the given
task model.

RELATED WORK

Although an increasing number of intelligent systems have
been built recently using the collaborative paradigm (espe-
cially tutoring systems), none have focused specifically on
the user interface design issues we discuss here, nor do any
include a generic software architecture that is comparable
with DiamondHelp.

Use of a textual things-to-say list together with Collagen
and speech recognition has been studied by Sidner and For-
lines [12] for a personal video recorder interface and by
Dekoven [1] for a programmable thermostat.

In terms of generic software architectures for connecting
arbitrary applications with “help” facilities, a major exam-
ple is Microsoft’s well-known Clippy. Clippy’s interac-
tion paradigm might be described as “watching over the
user’s shoulder and jumping in when you have some advice,”
and is, in our opinion, the main reason for Clippy’s well-
known unpopularity among users. In contrast, the collabo-
rative paradigm underlying DiamondHelp emphasizes ongo-
ing communication between the system and user to maintain
shared context.

The second major example of generic help architectures are
“wizards,” such as software installation wizards, etc., which
come in many different forms from many different manufac-
turers. Our feeling about wizards is that they embody the
right paradigm, i.e., interactively guiding the user, but in too
rigid a form. DiamondHelp subsumes the capabilities of wiz-
ards, but also allows users to take more initiative when they
want to.

CONCLUSION

The contributions of this work to intelligent user interfaces
are twofold. First, we have explicated a novel user interface
design, which expresses and reinforces the human-computer
collaboration paradigm by combining conversational and di-
rect manipulation interfaces. Second, and more concretely,
we have produced the DiamondHelp software, which can be
used by others to easily construct such interfaces for new ap-
plications.

Extensions and Variations

A number of small extensions to DiamondHelp have already
been discussed in the body of this paper. Another general
set of extensions have to do with adding speech and natural

7

language understanding technology.

Adding text-to-speech generation to the system bubble is a
very easy extension, which we have already done (its an op-
tional feature of the software). Furthermore, we have found
that using a system with synthesized speech is surprisingly
more pleasant than without, even when user input is still by
touch or click.

Adding speech recognition can be done in two ways. The
first, more limited way, is to use speech recognition to choose
one of the displayed things to say. We have already done
this (another optional feature) and have found that the speech
recognition is in general quite reliable, because of the small
number of very different utterances being recognized. Fur-
thermore, because of the way that the things-to-say mecha-
nism is implemented, this extension requires no changes in
the collaboration or manipulation plug-ins for an application.

A second, and much more ambitious approach, is to dispense
with the things-to-say bubble and try to recognize anything
the user says, which, of course, requires broad underlying
speech and natural language understanding capabilities. If
one has broad natural language understanding, another vari-
ation is to support unrestricted typed input from the user in-
stead of speech.

Finally, it would be trivial (as least from the user interface
point of view) to revert the conversational interface to its
original function as a chat between two humans, the user and
a remote person. This could be useful, for example, for re-
mote instruction or troubleshooting. The system could even
automatically shift between normal and “live chat” mode.

Future Work

In addition to building DiamondHelp interfaces for several
additional applications, we also plan to conduct first infor-
mal and then formal user studies. The purpose of the infor-
mal user studies will be simply to get feedback and sugges-
tions on our user interface design. For the formal studies,
we would like to compare a DiamondHelp interface with a
conventional interface for the same application, and measure
the usual parameters, such as task completion time, solution
quality, and user satisfaction. One approach for the com-
parison condition is to use the same direct manipulation in-
terface as in the DiamondHelp condition, but with a written
user manual instead of DiamondHelp.

REFERENCES

1. E. DeKoven.Help Me Help You: Designing Support for
Person-Product Collaboration. PhD thesis, Delft Inst.
of Technology, 2004.

2. J. Eisenstein and C. Rich. Agents and GUIs from task
models. InProc. Int. Conf. on Intelligent User Inter-
faces, pages 47–54, San Francisco, CA, Jan. 2002.

3. N. Lesh, J. Marks, C. Rich, and C. Sidner. “Man-
computer symbiosis” revisited: Achieving natural com-
munication and collaboration with computers.IEICE
Transactions Inf. & Syst., E87-D(6):1290–1298, June

2004.
4. N. Lesh, C. Rich, and C. Sidner. Using plan recognition

in human-computer collaboration. InProc. 7th Int. Conf.
on User Modelling, pages 23–32, Banff, Canada, June
1999.

5. N. Lesh, C. Rich, and C. Sidner. Collaborating with
focused and unfocused users under imperfect communi-
cation. InProc. 9th Int. Conf. on User Modelling, pages
64–73, Sonthofen, Germany, July 2001. Outstanding
Paper Award.

6. J. C. R. Licklider. Man-computer symbiosis.IRE Trans.
Human Factors in Electronics, HFE-1:4–11, Mar. 1960.

7. H. Lieberman. Integrating user interface agents with
conventional applications. InProc. Int. Conf. on Intelli-
gent User Interfaces, pages 39–46, San Francisco, CA,
Jan. 1998.

8. C. Rich, N. Lesh, J. Rickel, and G. A. A plug-in archi-
tecture for generating collaborative agent responses. In
Proc. 1st Int. J. Conf. on Autonomous Agents and Multi-
agent Systems, Bologna, Italy, July 2002.

9. C. Rich and C. Sidner. Collagen: A collaboration
manager for software interface agents.User Modeling
and User-Adapted Interaction, 8(3/4):315–350, 1998.
Reprinted in S. Haller, S. McRoy and A. Kobsa, editors,
Computational Models of Mixed-Initiative Interaction,
Kluwer Academic, Norwell, MA, 1999, pp. 149–184.

10. C. Rich, C. Sidner, and N. Lesh. Collagen: Applying
collaborative discourse theory to human-computer inter-
action. AI Magazine, 22(4):15–25, 2001. Special Issue
on Intelligent User Interfaces.

11. B. Shneiderman and C. Plaisant.Designing the User
Interface: Strategies for Effective Human-Computer In-
teraction. Addison-Wesley, Reading, MA, 2005.

12. C. L. Sidner and C. Forlines. Subset languages for con-
versing with collaborative interface agents. InInt. Conf.
on Spoken Language Processing, Sept. 2002.

13. S. H. Wildstrom. Technology & you: Lessons from a
dizzying decade in tech.BusinessWeek, June 14 2004.

8

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2004-114.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

