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Abstract

We describe lessons learned in developing a program for interactive optimization of large airlift
scheduling problems. While for small problems one can create a visualization that both shows
a complete solution and is editable at the same time, with large problems, such as visualizations
provide too high a level of aggregation and cannot display the detail necessary for interaction.
We explain how this changes the interactive process, and the implications for our design, such
as the need for automatic focusing on parts on the problem to ease optimization. An additional
problem requirement was that the user be enabled to change the problem specification (such as
delivery deadlines). As a further contribution, we provide a specialized repair algorithm that aims
at generating a valid solution after such changes, while introducing as few changes as necessary.
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ABSTRACT
We describe lessons learned in developing a program for in-
teractive optimization of large airlift scheduling problems.
While for small problems one can create a visualization that
both shows a complete solution and is editable at the same
time, with large problems, such visualizations provide too
high a level of aggregation and cannot display the detail
necessary for interaction. We explain how this changes
the interactive process, and the implications for our design,
such as the need for automatic focusing on parts on the
problem to ease optimization. An additional problem re-
quirement was that the user be enabled to change the prob-
lem specification (such as delivery deadlines). As a fur-
ther contribution, we provide a specialized repair algorithm
that aims at generating a valid solution after such changes,
while introducing as few changes as necessary.
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1 Introduction

While there has been a considerable amount of work on
automatic optimization systems, very little work has ad-
dressed how people can best use or interact with them. As
with many technologies, the quality of the interface for op-
timization systems is often the bottleneck for the real-world
use of the system. For example, the work we report on here
originated because a potential customer is currently solving
large airlift scheduling problems manually. The problem
involves using a given set of airplanes to satisfy a given set
of delivery requests using a given set of airports, covering
the flight operations of a complete year’s cycle. A previous
fully automatic system was rejected because the customer
wanted more control.

The experts who craft the solutions manually have
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knowledge which is not fully captured in the problem spec-
ification. Thus, the schedules produced by automatic algo-
rithms may not be optimal with respect to all the constraints
and preferences known to the experts. This knowledge may
be difficult for the experts to articulate even in natural lan-
guage, let alone reduce to a form that can be input to an
automatic optimization algorithm.

Research in interactive, or human-in-the-loop, opti-
mization systems directly addresses the question of how
people can effectively interact with optimization systems.
The aim is to utilize the users’ knowledge to steer the
search algorithm towards good solutions, as well as to make
her understand and trust the solution.

In this paper, we report on lessons learned by applying
the Human-Guided Search (HuGS) framework and toolkit
[1, 7, 6] to the above airlift schedule problem. Most pre-
vious work on interactive optimization, including our own,
has been on small, academic problems. The goals of this
paper are to demonstrate that many advantages of HuGS for
these problems transfer well to large, complex applications
as well as to present some novel techniques and concepts
we needed to introduce for this application.

We can briefly summarize our findings as follows. As
with previous HuGS applications:

P1 Users decide how to invest computational resources,
e.g., they canfocusan optimization algorithm on im-
proving a chosen subset of the current schedule.

P2 Users can employ powerful optimization algorithms
while manually editing and refining the current sched-
ule to respect their real-world knowledge.

P3 Users can temporarily introduce infeasibilites into the
current schedule while finding better schedules.

However, we found that large problems require a dif-
ferent pattern of interaction than small ones. For both small
and large problems, the user’s activity can be classified
into three categories: inspection, modification, and user-
controlled reoptimization of the current solution. (We de-
scribe these phases in more detail below.) For small prob-
lems, the user can constantly and quickly shift between
these phases. It is easy for the user to visualize and control



what portion of the solution the optimization is currently
focused on. If the optimization algorithm changes the so-
lution in an undesirable way, the user can easily detect this
problem, backtrack to a previous solution, change the focus
to prevent the undesirable change, and re-invoke the opti-
mization. Furthermore, in academic problems the problem
specification remains constant during the entire session. In
contrast, for our current application we needed to develop:

N1 Heuristics to help control the focus of the optimization
algorithm as the user navigates to different views of
the schedule because it is difficult to control the focus
when the current complete schedule can not be viewed
in detail on one screen.

N2 Methods for allowing the user to change the problem
specification during the session, e.g., to add delivery
requests or change deadlines. These changes often
make the current schedule infeasible.

N3 A special mode to support refining near-acceptable
schedules. In this mode, after the user searches
through the schedule for errors (with respect to her
real-world knowledge), she wishes to minimize the
number of changes made by the optimization algo-
rithm in the process of fixing these errors. Minimizing
changes frees the user from re-inspecting much of the
schedule.

2 Background

Interactive systems that leverage the strengths of both hu-
mans and computers must distribute the work involved in
the optimization task among these two participants. Ex-
isting systems have implemented this division of labor in
various ways. In some interactive systems, the users can
only indirectly affect the solutions to the current problem.

For example, in interactive evolution the computer
generates solutions via biologically inspired methods, and
the user selects which solutions will be used to generate
novel solutions in the next iteration [12, 13]. Other sys-
tems provide more interactivity by allowing users to control
search parameters (e.g., in circuit-design optimization [3])
or adding constraints as the search evolves (e.g. in drawing
applications [4, 9, 10]).

Some systems allow more direct control by allow-
ing users to manually modify computer-generated solutions
with little or no restrictions and then invoke various com-
puter analyses on the updated solution. An early vehicle-
routing system allowed users to request suggestions for im-
provements after making schedule refinements to the ini-
tial solution [14]. An interactive space-shuttle operations-
scheduling system allowed users to invoke a repair algo-
rithm on their manually modified schedules to resolve any
conflicts introduced by the user [2].

Our human-guided search (HuGS) framework [1, 6]
also allows users to manually modify solutions, but in addi-
tion it allows them to explicitly steer the optimization pro-

cess itself. Users can invoke, monitor, and halt optimiza-
tions as well as specify the scope of these optimizations.
They can also backtrack to previous solutions. HuGS in-
cludes a generic mechanism for allowing users to focus the
search algorithm. Users can assign one of threemobili-
ties (high, medium, or low) to each problem element (e.g.,
a delivery request). Informally speaking, the optimization
algorithms are only allowed to apply transformations to the
current solution that alter at least one high-mobility ele-
ment and do not alter any low-mobility elements. (For ex-
ample, the algorithm could only shift high-mobility deliv-
ery requests from one day or airplane to another.) Thus,
the low-mobility elements are frozen and can be used to di-
vide the optimization problem into smaller su b-problems.
The medium-level elements in the current solution can be
adjusted, but only in service of adjusting the high-mobility
elements. (This is relevant if, for example, a valid transfor-
mation would be to swap two delivery requests on different
airplanes, in which case one must have high mobility but
one could have medium mobility.)

HuGS was utilized in an interactive vehicle-routing
system; initial experiments with this system showed that
human-guided optimization outperformed almost all re-
ported vehicle-routing algorithms. A more focused study
examined people’s ability to guide search in the various
ways allowed by HuGS [11]. Following the HuGS frame-
work, do Nascimento and Eades developed an interactive
layered graph-drawing system that provided most of the
functionality of HuGS and also allowed users to add con-
straints to the problem at runtime [8]. Preliminary exper-
iments have shown that people can improve automatically
generated solutions using this system.

3 Problem Description

This section defines our airlift scheduling problem and the
relevant operations we have to support.

There are a set of airplanes, a set of airports, and a set
of requests. Each airplane is of a specifiedairplane type
and is associated to itshome airportthat it starts from and
returns to each day. Each airplane has a varyingavailability
windowfor each day of the year; planes can fly only during
these periods. Each airport also has its own availability
window and specifications of how long landing, takeoff and
loading takes. Furthermore, the flight durations between
airports, which depend on the airplane type, are specified.

Each request has a givencargo type, cargo quantity,
pickup airport, dropoff airport, anddeadline; it might also
be associated to a required airplane type. Any feasible so-
lution to the request set requires that each dropoff occurs
during the week before its deadline, which is thedelivery
windowof the request. The type of an airplane determines
how much total cargo (and in some cases how much cargo
of each type) can be carried. Multiple pickups or multi-
ple dropoffs can occur simultaneously. The pickup and the
dropoff of each request must be handled on the same day.

Our aim is to find a solution, or aschedule, that uses



as few airplanes as possible; a secondary objective is to
minimize the overall flight time of all planes. Our specific
test instance involves 69 airplanes, 13 airports, and over
3600 requests, which span a complete year.

4 Algorithms

We divide a complete schedule intoairplane schedulesfor
each airplane. Each airplane schedule can be broken up
into a set ofroutes, where each route is the portion of the
airplane schedule for one specific day.

A key algorithmic subroutine used in all phases of op-
timization is a branch and bound algorithm, which takes
the set of requests on a route and returns the time-minimal
schedule for that route. For our test instance, each route
can typically have about 15 requests (30 operations) be-
fore it becomes infeasible. By utilizing various carefully
engineered aggressive bounding strategies, our branch and
bound algorithm can solve such instances in under a sec-
ond.

We define amoveto be taking one request from one
route, and adding it to another route. When considering a
move, each route is independently, perfectly optimized by
the branch and bound algorithm. An alternative approach
would have been to have a move specify how a new request
would fit into a route schedule, but this greatly increases
the space of possible moves; we have found this approach
much more effective.

Armed with a search space defined by the possible
moves, our HuGS framework allows the user to employ
several different local search algorithms. The two we have
focused on in this work are a greedy and tabu search. The
greedy algorithm simply examines the space of possible
moves until it finds a move that improves the current sched-
ule; this move is then implemented, and the greedy search
continues. Various optimizations increase the efficiency of
this search; see [1] for more details.

As an example of how these algorithms are used, we
outline how the branch and bound and greedy algorithms
are used to generate an initial solution schedule for the user.
We attempt to generate a feasible solution by sequentially
putting each requestR in the best route given the current
route for all previously placed requests, using the branch
and bound algorithm to evaluate each possible placement of
R. This algorithm already provides reasonably good initial
solution, currently in under 30 seconds for our test prob-
lems. Then the greedy search is run non-interactively until
no further improving moves are possible; that phase results
in a locally optimal initial solution. This second step can
take up to 45 minutes, but this is acceptable since initial
solutions are generated infrequently.

When using interaction, we have found that tabu
search, another local-search based heuristic [5], generally
performs better than greedy search [7]. In each iteration,
tabu search evaluates all neighbors of the current solution
and moves to the best one. The neighbors are evaluated
both in terms of the problem’s objective function and by

other metrics designed to encourage investigation of unex-
plored areas of the solution space. The classic diversifi-
cation mechanism that encourages exploration is to main-
tain a list of tabu moves that are temporarily forbidden, al-
though others have been developed.

The HuGS tabu search makes use of the mobilities
used in the visualization framework to encourage diversifi-
cation. After a move, the mobilities of certain requests are
modified to prevent moves involving certain requests and
allowing moves of other requests. A more detailed descrip-
tion of how mobilities are in general used within HuGS can
be found in [7].

5 Approach to the Problem

We describe our program in terms of a cycle of three user
activities: inspection, modification, and reoptimizationof
the current solution.

5.1 Inspection

In this state, the user is the one in control. She can browse
through the entire solution and check if all her soft con-
straints are satisfied.

The application has to assist her by providing appro-
priate visualizations, both for giving an overview, and to
examine specific details. This is best done by providing
different scales of zooming, and a carefully chosen set of
possible focuses. Our visualization supports thezoom, fo-
cus, and drill downparadigm of information visualization,
although we have to design it for the added challenge of
making modifications possible.

• Zoom: A year- and a month-view generate overview
visualizations. Due to their level of aggregation, it
is not possible make modifications, but they give an
overall sense of the data, and show where problems re-
main. A “x-days” mode presents the solution in a de-
tailed and therefore editable manner, always showing
x consecutive days at once, wherex can range from 1
to 10 (which gives a fairly good overview).

• Airplane- vs. Airport-View: Whereas the x-axis of
the view is always the date/time dimension, the user
can select the y-axis to represent the requests either
per airplane or by airport. While the first one is in
general more useful for modifications, the latter one
can give valuable information about the usage of air-
ports.

• Coloring Schemes:Each request can be colored de-
pending on the information the user wants to empha-
size. E.g. the user can select “Deadline” to paint re-
quests that are near their deadline in red, or “Capac-
ity” to see whether a plane is full (red), empty (green),
or something in between. We also support a coloring
scheme that uses one default color for all requests to
reduce the visual distraction.



Figure 4. Tabular details

• Filters: The user might narrow the set of visible re-
quests by filtering them by their cargo type, airport or
airplane.

Figure 1 shows a view representing the schedule of
the whole year. It shows a row for each airplane used; the
x-axis denotes the dates, with vertical lines separating the
months. The gray background color means that the airplane
is not available at this time, whereby white regions denote
availability. Colored dots represent the actual usage of a
plane, with the color describing how full a plane is.

Figure 2 displays the difference between the overview
views, and the detailedx-days views: for each request,
there are two pentagonic boxes representing itsoperations:
its pickup (with the tip to the top) and its dropoff (with the
tip to the bottom). They are labeled with an abbreviation of
their cargo type and their airport. If there are multiple op-
erations happening simultaneously, they are represented by
a single box with a stacked look. Such a box can be easily
expanded to see the details of each of its members.

Because of the sheer size of the problem we include
helpful features. We aid the user by always automatically
selecting the according dropoff when a pickup is selected
(and vice versa). We provide detailed information on each
request (Fig. 3). If the airports are selected as the base el-
ements, we have show the flight route for the airplane that
handles the selected request (Fig. 3).

Any infeasibly scheduled operation – usually intro-
duced by the user’s modifications – is colored in black (en-
circled in Fig. 2).

These examples are only a summary of the most im-
portant features, provided to assist the user in her task of
inspection and modification.

5.2 Modification

If during inspection the user is not satisfied with the current
solution, she enters the next state of the cycle.

We support various types of modifications (N2), in-
cluding changing the airplane and/or the day when a re-
quest is handled. Requests can be added, edited and re-

moved; all of the request’s properties are changeable. Ad-
ditionally, we can change the airplanes’ availability specifi-
cations. There are different reasons to allow modifications:

• Requests, deadlines and other problem aspects might
change; new requests might have to be added, or old
ones canceled. Being able to adopt to such changes is
a real-world requirement.

• The user may have real-world knowledge that is not
modelled in the problem specification and might con-
sider a valid solution flawed.

• The user may have some soft constraints or prefer-
ences, which she might want to apply to the solution.

Modifications are challenging. Because our initial so-
lution is quite good, manually moving a request from one
day to another often introduces infeasibility. Therefore,
we have to provide the user with means to simplify that
task. First, the branch and bound algorithm is run on each
modified route, directly after the user makes a move (P2).
Second, the user is explicitly allowed to introduce infea-
sibilities, and the solution is automatically repaired during
the next reoptimization (P3). If the user drags a pickup
(or dropoff) from one route to another, its corresponding
dropoff (or pickup) is moved with it. After such a man-
ual move, the affected operations are set to low mobility;
thereby we force the optimization algorithm to repair any
potential infeasability without simply undoing the move.

5.3 Reoptimization

After an inspection phase and/or a modification phase, the
user is likely to invoke the human-guidable tabu search on
the current schedule. The user’s goal may be to concentrate
computational resources on optimizing an import part of
the schedule (P1), to fix an infeasibility introduced during
modification (P2,P3), or simply to reoptimize some portion
of the schedule after making a modification that either in-
corporated some real-world knowledge into the schedule or
was performed in order to help the optimization algorithm
out of a local minimum.

We found it difficult to manage both the focus of the
optimization algorithm and the user’s visual focus sepa-
rately. Therefore, the reoptimization is only applied on the
objects the user can currently see: e.g., if she has a view
which shows the first week of April, the optimization algo-
rithm will only modify the schedule on that week (N1).

Also, for this application, we needed to extend our op-
timization function so that, during reoptimization, it avoids
making many changes to the current schedule for small cost
reductions. This extension is needed because in many cases
a small gain in the objection function is often not worth dis-
rupting of the current solution. Changes in the schedule can
place a higher burden on the user, who may need to rein-
spect the schedule. They may also be highly undesirable in
real-world applications. For example, consider a situation



Figure 1. Yearview (Zoom = Year, Base Elements = Airplanes, Coloring Scheme = Capacity, no Filters)

Figure 2. Detailed View (Zoom = 4-Days, Base Elements = Airplanes, Coloring Schemes = Deadline, no Filters): The black
operation (here encircled) is infeasibly scheduled

Figure 3. Detailed View (Zoom = 1-Days, Base Elements = Airports, Coloring Schemes = Airplanes, no Filters): flightroutes
are shown for the marked operations; a tooltip for detailed information on a request



where the relevant schedule information for the following
week has already been handed out to the pilots and airports,
and there is the need to change the cargo quantity of a sin-
gle request. Although a complete re-optimization might
result in a better but very different solution, a solution as
similar to the original one as possible will be preferred for
organizational reasons (N3).

Therefore, our large-scale interactive optimization re-
quires an (optional) shift of the objective function, to pro-
vide valid minimally-disruptive solutions. The notion of
disruption itself depends heavily on the specific applica-
tion, since a simple counting of the applied moves in gen-
eral is not suitable. In our airlift scheduling application, it
makes sense to count the disrupted routes, i.e. any route
that has changed (no matter how much) from the original
solution. Furthermore, we support different modes which
allow, penalize, or forbid the use of routes which where
empty in the original solution.

In all our optimization algorithms, we have two ob-
jective functionsi and o. Objectivei minimizes infeasi-
bilities, and is 0 for all feasible solutions. Objectiveo –
which is only considered for equal values ofi – is normally
the main optimization task of this domain, namely mini-
mizing the number of planes and the overall flight time.
To encode minimal disruption, we extended our system to
utilize an objectives instead ofo that is a weighted sum
s = wd + (1 − w)o. The variablew is the weighting fac-
tor between 0 and 1,d the disruption. For simplicity, we
currently provide the user with only two options forw:

• w = 0. This is traditional optimization in which the
lowest-cost schedule is sought.

• w = 1 − ǫ (for small ǫ). In this mode, the goal of
the optimization algorithm is to repair infeasibilities
in the schedule. But unlike the traditional approach of
finding a valid solution with minimal objective value,
we now try to find a valid solution that disrupts the
current solution as little as possible.

Using the second option we actually encode three ob-
jectives: We eliminate infeasibilities and minimize disrup-
tion. In addition,ǫ makes the minimization of the number
of planes and flight times a third objective.

6 Conclusion

Large-scale interactive optimization systems add new con-
tributions to the research topics of interactive optimiza-
tion and information visualization. They offer signif-
icant advantages over other commonly used optimiza-
tion strategies, by allowing for the user to inspect and
change the optimization results. However, they also expose
new challenges regarding modifiable visualizations, user-
friendliness and algorithmic performance, which are met
in this work through flexible changes in the visualization,
and the means to minimally disrupt results during reopti-
mization.
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