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Abstract

We consider a multiple input multiple output (MIMO) system wherein channel correlation as
well as noisy channel estimation are both taken into account. For a given block fading duration,
pilot-assisted channel estimation is carried out with the aid of a minimum mean square error
estimator. The pilot sequences and data are jointly optimized to maximize the ergodic capacity
while fulfilling a total transmit energy constraint. Using the optimization results, we study the
effect of various system parameters and different types of channel knowledge. We show that
systems with channel covariance knowledge and imperfect channel estimates can even outper-
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at the transmitter. Further, we show that the signal to noise ratio and the block fading duration
determine the qualitative behavior of ergodic capacity as a function of antenna spacing or angular
spread. Finally, we find that the optimum pilot-to-data power ratio is always greater than one. It
increases as the total transmit power decreases or as the block fading length increases.
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Abstract— We consider a multiple input multiple output (MIMO)
system wherein channel correlation as well as noisy channel
estimation are both taken into account. For a given block fading
duration, pilot-assisted channel estimation is carried out with
the aid of a minimum mean square error estimator. The pilot
sequences and data are jointly optimized to maximize the ergodic
capacity while fulfilling a total transmit energy constraint.
Using the optimization results, we study the effect of various
system parameters and different types of channel knowledge.
We show that systems with channel covariance knowledge and
imperfect channel estimates can even outperform those with
perfect channel estimation at the receiver, but without any
channel knowledge at the transmitter. Further, we show that the
signal to noise ratio and the block fading duration determine the
qualitative behavior of ergodic capacity as a function of antenna
spacing or angular spread. Finally, we find that the optimum
pilot-to-data power ratio is always greater than one. It increases
as the total transmit power decreases or as the block fading
length increases.

I. INTRODUCTION

While second generation cellular systems were intended for
speech communications as well as some rudimentary data ser-
vices, third-generation (3G) systems distinguish themselves by
providing data communications with high rates. The original
specifications of 3GPP (Third-Generation Partnership Project)
called for data rates up to 2 Mbps, which is easily achievable
in the allocated 5 MHz bandwidth. However, higher system
capacity and higher data rates are now desired. Given the
scarce system bandwidth, these can only be achieved by trans-
mission schemes with high spectral efficiency such as Multiple
input multiple output (MIMO) [5], [13], [14]. Furthermore,
algorithms, testbeds, and prototypes have demonstrated the
practical viability of MIMO [2], [6]. Therefore, MIMO tech-
nology is now an active work item in 3GPP standardization
efforts [1].

An important aspect of MIMO systems is the use of channel
state information (CSI) at the transmitter (CSIT). In the
frequency division duplex (FDD) mode of operation, instanta-
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neous CSIT has to be obtained by feedback from the receiver.
While only one transmit-receive antenna link estimate needs
to be fed back in conventional non-MIMO systems, the same
needs to be done for all transmit-receive antenna pair links
in MIMO. Therefore, the feedback burden is considerable in
MIMO systems, and, if not optimized, can adversely affect
the overall spectral efficiency of the system. Even in the time
division duplex (TDD) mode of operation, which does not
require explicit feedback, the instantaneous CSIT acquired
from reverse link transmissions may be outdated during the
transmission phase, especially when the mobile station moves
fast. For this reason, a great deal of interest has been paid to
systems that exploit statistical or covariance knowledge [8],
[12] at the transmitter – denoted henceforth as CovKT. Such
systems have the advantage of requiring a much lower rate of
feedback, or can eliminate it altogether.

While theoretical investigations of MIMO systems almost
always assume that the CSI at the receiver (CSIR) is perfect,
this assumption cannot be fulfilled in practical 3G systems.
The noise present during the channel estimation phase will
render the receiver CSI (CSIR) imperfect, and can appreciably
decrease the capacity. Most previous studies that took imper-
fect CSIR into account were restricted to the case of spatially
white channels. For example, [7] first derived a lower bound
to a MIMO system capacity. This paper considered pilot-
aided channel estimation for a block fading spatially white
wireless channel and derived the optimum training sequence,
pilot-to-data power ratio, and training duration. One paper that
studied data transmission for correlated MIMO channels with
estimation error is [15]. However, it modeled the estimation
error in an ad hoc manner.

An obvious way to improve CSIR is to increase the power of
the pilots or the training duration. However, for systems with
a fixed power budget and a given channel coherence time,
doing so reduces both the power and time allowed for data
transmission. The trade-off between pilots and data is thus of
great practical interest.

In this paper, we discuss the use of optimum pilot and data se-
quences, pilot duration, and pilot-to-data power ratio in MIMO
systems operating in a spatially correlated channel when the
transmitter has access to only covariance information. The
receiver obtains its CSIR from noisy pilot sequences by means



of a simple minimum mean square error (MMSE) channel
estimator. The main focus in the current paper is to highlight
the implications on the link performance and study the effect
of different system parameters.

This paper is organized as follows. Section II sets up the
system model and the notation used in the paper. Section III
gives a concise description of the system and lists the key
theoretical results, the details of which can be found in [4],
[11]. The main results of the paper can be found in Sec. IV,
which provides numerical examples and discusses the impact
on the system performance of different system parameters
such as block fading duration, the channel correlation, transmit
power, etc. Concluding remarks are given in Section V.

II. SYSTEM MODEL

We consider an Nt×Nr MIMO system with Nt transmit and
Nr receive antennas. A block fading frequency-flat channel
model [10], in which the channel remains constant for T
time instants (symbol durations) and decorrelates thereafter
is assumed. T corresponds to the coherence interval of the
channel. Of the T time instants, Tp are used for transmitting
pilots, and the remaining Td = T − Tp for data. Pp and Pd
denote the power allocated to pilots and data, respectively. We
shall use the subscripts p and d for variables related to pilots
and data, respectively. Lower and upper case boldface letters
shall be used to denote vectors and matrices, respectively. In
denotes the n×n identity matrix, (.)† the Hermitian transpose,
Tr {.} the trace, and EX is the expectation over X .

A. Channel Model

The Nr×Nt matrix H = [hij ] denotes the instantaneous chan-
nel state, where the element hij is the complex fading gain
from transmit antenna j to receive antenna i. Experimental
results have demonstrated the validity of the Kronecker model
for several typical channels [9]. H is then given by

H = R
1/2
r HwR

1/2
t , (1)

where Rt and Rr are the transmit and receive antenna
correlation matrices, respectively. Rt (Rr) depends on the
mean angle of departure (arrival), θ, the rms angular spread,
σθ, and the relative antenna spacing, dt, [3]. The matrix Hw

is spatially white, i. e., its entries are zero-mean, independent,
complex Gaussian random variables with unit variance. Fur-
thermore, we assume that the receiver is in a rich scattering
environment, as is typically the case in the downlink of a
cellular system. Therefore, Rr = In. Rt is full ranked.

B. Training and Data Transmission Phases

The signal received during the entire training phase of duration
Tp instants, is an Nr × Tp matrix, Yp = [yij ], where yij is
the signal received by receive antenna i at time instant j. Yp

is given by
Yp = HXp + Wp, (2)

where Xp = [xij ] is the transmitted pilot matrix of size Nr×
Tp and is known a priori at the receiver. Here, xij is the signal
transmitted from antenna i at time j. Wp is the spatially and
temporally white noise matrix, defined in a similar manner;
with its entries having variance σ2

w. Qp = XpX
†
p denotes the

pilot covariance matrix.1

The received vector, yd, at any given time instant is related
to the transmitted signal vector, xd, by

yd = Hxd + wd, (3)

where wd is the spatially white and temporally uncorrelated
noise vector. The vectors yd, xd, and wd are of dimensions
Nr × 1, Nt × 1, and Nr × 1, respectively. Qd = Exd [xdx

†
d]

denotes the data covariance matrix.

C. MMSE Channel Estimator

Given the second-order statistics of the channel and the pilot
sequence Xp, the MMSE channel estimator generates the
channel estimate, Ĥ, by passing the received Yp through a
deterministic matrix filter. For Rr = INr , it can be shown
that [4]

Ĥ = H̃wR̃
1/2
t , (4)

where H̃w is spatially white with its entries having unit
variance and R̃t = RtXp(X

†
pRtXp + σ2

wITp)−1X†pRt.

The channel estimation error is defined as ∆ = H− Ĥ. From
(3), it follows that the data transmission phase is governed by
yd = Ĥxd+∆xd+wd. A lower bound, CL, on the capacity,
based on a receiver that treats the term ∆xd + wd as noise,
can be shown to be [4]

CL =

(
1− Tp

T

)
EH̃w

log2

∣∣∣∣∣INt +
H̃†wH̃wQd

σ2
w + σ2

l

∣∣∣∣∣ , (5)

where σ2
l = Tr

{
Qd(Rt − R̃t)

}
is the noise term due to

imperfect estimation. Here,
(

1− Tp
T

)
is the penalty factor

due to training because no data transmission occurs then.

III. OPTIMAL JOINT PILOT AND DATA LOADING

The optimum pilot and data design that maximizes CL, subject
to a total energy constraint PpTp + PdTd = PT , satisfies the
following properties [4]:

1) The eigenspaces of both pilot and data covariance
matrices, Qd and Qp, should be the same as that of
the channel transmit covariance matrix, Rt.

2) The ranks of both pilot and data covariance matrices
should match. They shall be denoted by k.

3) The optimum training interval, Tp, also equals k. This
result also implies that Tp ≤ min(Nt, Nr).

1Given that the pilot Xp is a deterministic matrix, no expectation operator
is used for defining Qp.



Here, Tr {Qd} = Pd, Tr {Qp} = PpTp, and P is the
total power budget available at the transmitter. With the
above results, the capacity maximization problem reduces to
a numerical search over the eigenvalues of Qp and Qd. A
considerably simpler power allocation strategy that distributes
the pilot power uniformly among the k non-zero eigenmodes
of Qp and the data power uniformly among the k non-zero
eigenmodes of Qd results in near-optimal performance [4].

IV. NUMERICAL EXAMPLES AND DISCUSSIONS

Numerical results presented in this section are for uniform
linear arrays at the transmitter and the receiver. The mean
angle of departure is θ = 45◦ and the noise variance is
σ2
w = 1. We also assume a Gaussian shape for the angular

spectrum, which is characterized by its rms angular spread,
σθ.

We first focus on the Nt = Nr = 4 system.

A. Impact of Block Fading Duration (T )

Figure 1 plots the ergodic capacity as a function of the block
fading duration T for two angular spreads, σθ = 10◦ and
45◦ and for P = 5 dB and 15 dB (dt = 0.5). For both
angular spreads, CL increases as T increases. This is because
the impact of the training penalty

(
1− Tp

T

)
diminishes as T

increases.

B. Impact of Spatial Correlation (σθ and dt)

Changing the angular spread affects the spatial correlations
between the transmit antenna elements. As σθ increases, the
correlations between the transmit antenna elements decrease
and the MIMO channel changes from highly correlated to
spatially white. Increasing the relative antenna spacing, dt,
also has a similar effect [3]. Figure 2 plots CL as a function
of σθ for different total transmit power values.2 It is clear that
the power budget, P , affects the qualitative behavior of CL
with respect to σθ. While CL increases monotonically with σθ
for P = 20 dB and 30 dB, it decreases monotonically with
σθ for P = 0 dB. For an intermediate value of P = 10 dB,
CL even reaches a maximum value at σθ = 15◦.

We delve into this further in the equivalent Figures 3 and 4 that
plot CL as a function of dt for P = 5 dB and 15 dB, σθ = 10◦

and 45◦, and T = 10 and 100. The behavior of the capacity
as a function of the antenna spacing is governed by several
effects. As the antenna spacing increases: (i) the number
of used eigenmodes and, thus, the number of data streams
increases, (ii) the eigenvalue spread decreases, which increases
the strength of the unused (weaker) channel eigenmodes and
decreases the strength of the used channel eigenmodes. This
can decrease capacity. At the same time, a smaller eigenvalue

2As the noise and channel coefficients are assumed to have unit variance,
the total transmit power is equivalent to the average received signal to noise
ratio (SNR).

spread also increases capacity as it leads to a better distribution
of power among the used eigenmodes.

The relative strength of the different effects determines the
different observed behaviors of capacity as a function of the
antenna spacing. For smaller P , only the largest eigenmode
(k = 1) is used [8]. As mentioned, decreasing dt increases
the largest eigenmode and improves capacity. On the other
hand, multiple eigenmodes are used for larger P . Therefore,
as dt increases, the eigen spread decreases and the capacity
increases. Notice that T affects the number of eigenmodes
used, and thus, impacts the threshold values of P at which
the above two different trends occur.

C. Optimal Pilot and Data Power Allocation

Figure 5 plots the optimal allocation of power between the
pilots and data, α = Pp/Pd, as a function of P for σθ = 10◦

and 45◦. The figure contains two sub-plots corresponding to
T = 10 and T = 100. It can be seen that α decreases as P
increases. However, α is always greater than 1, which means
that the transmitted (pilot) power during training must be
greater than the power transmitted during data communication.
Note that this does not imply any ordering on the pilot and data
energies. The discontinuities in α occur when the number of
eigenmodes used for transmission, k, increases. It can be seen
that α is significantly greater for T = 100 than for T = 10.
This can be explained as follows. Even when the total energy
budget, PT , increases as T increases, Tp cannot exceed Nt.
Therefore, Pp increases instead. In summary, k and T are the
principal parameters that affect α; given these, it is mostly
insensitive to σθ and P .

D. Combined Impact of CSIT and CSIR

We now proceed to evaluate the impact of the CSIR and
CSIT assumptions on the ergodic capacity of MIMO systems.
We compare CL, the capacity achieved by the system that
jointly designs the pilot and data given CovKT and pilot-
aided imperfect estimation at the receiver, with systems in
which channel knowledge at the transmitter is not exploited
or is unavailable and with perfect or imperfect CSIR. Note
that if perfect CSIR is assumed, no resources need to be
wasted on pilots (Pp = 0). Without any CSIT, Tp needs to be
Nt [7]. Specifically, we compare CL with the ergodic capacity
of the following systems: no CSIT and imperfect pilot-aided
estimation at the receiver (Tp = Nt), no CSIT and perfect
CSIR (Tp = Nt), CovKT and perfect CSIR (Tp = 0), perfect
instantaneous CSIT and perfect CSIR (Tp = 0). The last
scheme above is the classic water-filling over space solution.
For better understanding the role of the training penalty, a
system with CovKT and perfect CSIR (with Pp = 0) that still
trains for a duration equal to the number of modes used for
transmission is also considered.

Figure 6 compares the above for a 2×4 system for σθ = 10◦,
dt = 0.5, and T = 10. When the CSIR is perfect and Tp = 0,



we observe that CovKT performs as well as instantaneous
CSIT. For imperfect CSIR, we find that at higher P values,
when all the eigenmodes are in operation, the capacities with
CovKT and no CSIT become the same.

Figure 7 compares the same for a 4 × 1 transmit diversity
system. The capacity with instantaneous CSIT is better than
that with CovKT by 0.5 bits/sec/Hz for all P . This is unlike
the 2 × 4 system. Figure 8 [11] deals with a 4 × 4 system.
There is one key difference between the 2 × 4 case and the
4 × 1 and 4 × 4 cases – the capacity with imperfect CSIR
(but, with CovKT) exceeds that with perfect CSIR (without
CSIT). As expected, in all the three cases, for the same CSIT
assumptions, the capacity with perfect CSIR is always greater
that that with imperfect CSIR.

V. CONCLUSIONS

In this paper, we considered a MIMO system with channel
covariance knowledge at the transmitter and noisy CSI at
the receiver, and operating in a spatially correlated channel.
The channel state is estimated at the receiver via an MMSE
estimation filter using a priori defined pilot sequences. Using
jointly optimized pilot and data sequences, we studied the
effect of different system parameters on the ergodic capacity.
We compared the ergodic capacity of systems with different
types of CSIT (instantaneous, covariance, and no CSIT) and
either perfect or imperfect CSIR. We showed that systems
with covariance knowledge and imperfect CSIR can achieve
higher ergodic capacity than systems with no CSIT, even if
they have perfect CSIR. The capacity always increased with
the (block) fading duration. The capacity, as a function of the
antenna spacing, can show a monotonic increase, a monotonic
decrease, or a local maxima. We also found that the training
duration should be kept small, while the power assigned to
the pilot symbols should be higher than that assigned to the
data symbols; the optimum power values also depend on the
number of used eigenmodes and the block fading duration.
Our results thus motivate exploiting covariance knowledge
at a multiple antenna transmitter, and provide fundamental
guidelines for the optimized design of 3G MIMO systems.
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