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Abstract
Bayesian filters have now become the standard for spam filtering; unfortunately most Bayesian
filters seem to reach a plateau of accuracy at 99.9 percent. We experimentally compare the
training methods TEFT, TOE, and TUNE, as well as pure Bayesian, token-bag, token-
sequence, SBPH, and Markovian ddiscriminators. The results deomonstrate that TUNE is
indeed best for training, but computationally exorbitant, and that Markovian discrimination
is considerably more accurate than Bayesian, but not sufficient to reach four-nines accuracy,
and that other techniques such as inoculation are needed.
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Abstract: Bayesian filters have now become the standard for spam filtering;
unfortunately most Bayesian filters seem to reach a plateau of accuracy at 99.9%.
We experimentally compare the training methods TEFT, TOE, and TUNE, as well as
pure Bayesian, token-bag, token-sequence, SBPH, and Markovian discriminators.
The results demonstrate that TUNE is indeed best for training, but computationally
exorbitant, and that Markovian discrimination is considerably more accurate than
Bayesian, but not sufficient to reach four-nines accuracy, and that other techniques
such as inoculation are needed.

Keywords: spam, Bayesian, filter, email, e-mail, Markovian, 

Introduction: The original heuristic spamfilters such as SpamAssassin and
Brightmail are weighted filters whose features are generated by humans working in
a reactive way.  These filters use a fixed set of feature detectors, and set a threshold
score for rejection of an email as “too spammy”.  The first generation of these filters
also had a human-generated weight set; now most heuristic filters use a neural net
or other relaxation-based system to optimize the feature weighting.  For example,
SpamAssassin (   http  ://  www.spamassassin.org   ) uses a set of over three hundred
hand-coded Perl routines as feature recognizers.

In the recent past, these heuristic filters been eclipsed by the Bayesian antispam
filters.  Paul Graham described these filters initially in A Plan For Spam i.  These
Bayesian filters have essentially dominated spam filtering, because of their
significantly greater accuracy and greatly increased difficulty of subversion. Instead
of using human-coded ad-hoc “feature recognizers”, a Bayesian filter is trained on a
pair of text corpi, one of spam, and one of nonspam.  The Bayesian filter counts the
word frequencies in each of the spam and nonspam corpi, and from that ratio can
determine a local probability on any incoming text given only that it contains a
particular word.

In any case, the Bayesian filter's first big advantage is already evident- there is no
human intervention required to generate the feature recognizers.  A simple
whitespace delimiter detector can break the incoming text into words, and each
word is considered a feature in the database.

Some Bayesian filters incorporate a  database clipping function that extracts only a
few hundred or thousand of the most spammy or non-spammy words from the



database for testing during the execution phase.  Most Bayesian filters also use a
testing clip, in that only the top ten or twenty words in the spammy or nonspammy
category are considered significant.  

Whether or not the Bayesian filter does database or test clipping, the next phase is
to apply a statistical combining function to the local probabilities of each of the
word features.  Typically the local probability is something of the form:

Plocal-spam =  N
spam
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)

with appropriate bounds testing to prevent divide-by-zero errors.  A more advanced
local probability formula takes into account that a local probability certainty should
be shaded toward uncertainty (P=0.5), especially when there are low experience
counts for that feature in the example texts.  For example:
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which biases the local probability estimates strongly toward 0.5 for low numbers of
event counts.  For example, if  C1 = 2 and C2 = 1, and if there is only one example of
a word being spammy, the local probability of an incoming text containing that word
being spam is considered to be 0.75, which is only a moderate likelihood of spam  If
there had been ten examples of the word in spam, and none in nonspam, the local
probability of the incoming text found to contain that word being spam would be
95.4%, a reasonably high likelihood for spam.

 Each word feature generates one such local probability.  These local probabilities
are then used in a Bayesian chain rule to calculate an overall probability that an
incoming text is spam.   As noted above, some Bayesian filters will do database or
testing clipping, to minimize the total computation.  The Bayesian chain rule is:

                           P(feat | in class) * P (in class)
P (in class | feature) = ______________________________________________________________
                          P(feat | class) * P (in class) + P(feat | not in class) * P (not in class)

which is aplied iteratively to chain each local probability feature into an overall
probability for the text in question.

One failing of the Bayesian chain rule is that strictly speaking it is only valid in the
case of all features being statistically independent.  This is emphatically not the case
in text analysis; the words are not chosen randomly but with a very significant
correllation.  What is remarkable about Bayesian text classifiers is that the Bayesian
classifiers work so well even with this gaping fundamental error.

To avoid the error of presumed decorrellation, is possible to use a chi-squared or
other combining rules.  SpamBayes ( http://www.spambayes.org ) uses a  modified
Chi-squared combining rule.
The overall success of Bayesian filters is visible in two ways- first, the large number



of freely available filters.  At last check, over twenty different Bayesian-style
spamfilters were available on Sourceforge.net.  Almost all of these filters quoted
demonstrable accuracies on the order of 99.9% accuracy.  By comparison, a human
is only about 99.84% accurate in filtering spam and nonspam (Yerazunis 2003), so
any of these filters is more effective than a human “correspondence secretary”. 

The extreme effectiveness of Bayesian filters has not been lost on the one group
whose livelihood is most affected by the filters: the spammers themselves.  While
spammers used to evade simple checksumming filters by adding a few randomly
chosen words or gibberish strings to the text and subject, spammers now typically
use subterfuges such as:
• “Long Story” spams, where the first page or two of a spam seems to be actual

innocent email.  
• “Dictionary Salad” spams, where large sections of the text are randomly chosen

dictionary words.  The spammers apparently are hoping to drown their signal in
the random dictionary noise.

• “News Story” spam, where the initial text is copied verbatim from a news report
of a current popular news event completely unrelated to the spam “payload”.

• “Habeas Haiku” spams.  The Habeas Haiku is a short poem whose copyright is
owned by Habeas Inc, a group of lawyers.  Initially use of the Habeas Haiku was
to be under license only to companies agreeing to obey Habeas' code of email
conduct, but the haiku has now been co-opted by spammers to the extent that,
statistically speaking, the presence of the haiku is a strong statistical predictor of
spam.  This switchover from “nonspam” to “spam” indication occurred on one test
stream in less than one week of time in early December 2003.

Spammers have also begun another very interesting tactic- penetration of well-
credentialled and widely-distributed mailing lists, such as alumni and special-
interest mailing lists.  These well-credentialled lists are often whitelisted by their
subscribers and hence the spam is delivered without significant filtering.

Comparison of Methods and Variations of Bayesian Antispam Filtering

A consistent comparison experiment  for different filtering techniques needs to
operate against a consistent incoming data stream.  Because of the significant
variation in spams from day to day, for our experimentation we used the April 2003
standard testing corpus available from the SpamAssassin web site (available at
http://spamassassin.org/publiccorpus/ * <added 27-Feb-2004>).

This test set contains 4,147 messages, pre-classified into spam, easy nonspam, and
hard nonspam.   Of the messages, 1400 are spam, and the remainder are nonspam.
This test is a severe torture test of filtering- the author can rarely score 90%
accuracy on this torture test, while in real life the author can achieve about 99.84%
accuracy.  

To provide a larger test set, the set of 4147 messages was shuffled ten times, with
each shuffle providing an effectively random sequencing of the messages.    Each of
the ten shuffles was preserved so that every experimental configuration would get
the same ten sequences of the messages.

Except as noted, the last 500 messages of each shuffle were “reserved” as the final
evaluation testing set, and errors were summed, so each experimental configuration
had 5,000 test attempts.  Thus, our raw output statistics are in errors per 5,000 in
the test.



Just as in real life, the testing procedure ran for the complete set of 4147 messages,
and training was performed as specified even during the final 500 (evaluation)
messages.  After a complete run of 4147 messages were done, the learning
databases were deleted so the next run would not only execute against a different
shuffle, but also without any a priori training.

Training Methods Comparison

The first experimental set was to determine the relative merits of various training
methods.  As we have considerable experience with Sparse Binary Polynomial Hash
features and a Bayesian Chain Rule, we set up a SBPH/BCR classifier and ran it with
three different training methods:

• TEFT  - Train Every Thing – for each member of the shuffle set, classify the text,
record the output (correct or incorrect), and then force train that piece of text into
the database in the correct category.  

• TOE – Train Only Errors – for each member of the shuffle set, classify the text,
record the output (correct or incorrect), and if the text was incorrectly classified,
train that text into the database in the correct category.

• TUNE – Train Until No Errors – for the first N-500 messages, repeatedly classify
and train the messages if incorrect.  After this intensive training test and record
the final 500 texts, doing training if an error occurred.  (Because there is no
gaurantee of convergence, training was terminated if only a few messages in the
training set were not trained.  Of all 42470 messages in the ten training sections,
only three were not correctly classified.)

The results are summarized below in Table 1.  The execution processor was a
Transmeta 666 with Red Hat Linux 7.3 and 128 megabytes of memory.  The feature
hashtable size was limited to 1,000,000 slots, and slots were randomly decremented
when there were no unused slots available.

Training Method Errors per 5000 Approximate time for all
10 shuffles

TEFT 149 6 hrs

TOE 69 3 hrs

TUNE 54 20 hrs

Table 1  Comparison of TEFT, TOE, and TUNE training methods

Note that TOE training is almost as good as TUNE training, with only a small
fraction of the CPU time expended.

Even though TUNE is somewhat more accurate than TOE training, TUNE requires
keeping the entire prior history of both spam and nonspam.  In a testing situation
with repeated execution, this is acceptable, but in a real-life deployment this would
require a huge amount of storage per user.  A rough estimate might be as much as
250 megabytes per year per user, even if duplicate spams are dropped from the
database.  

The additional CPU time needed for TUNE processing is nontrivial.  With a back-
catalog of 4147 messages, it took approximately two hours to re-classify and retrain
sort; this process would need to be repeated whenever any training occurred.  For



an individual user with a dedicated CPU, this is acceptable, but even a small ISP
(with, say, 1000 accounts) could not deploy  such a system. 

Comparison of Extensions to Bayesian Filtering

Taking the results of table 1 to indicate that TOE (train only errors) training is
acceptable in performance and accuracy, we can now consider the relative
accuracies of different extensions of a Bayesian antispam filter.

For these experiments, we again use the 4147 corpus messages, in the same ten
shuffles, clearing out any learned memory between each shuffle.  Each extension to
Bayesian filtering will see the same ten shuffles, and each will be trained with in the
TOE method.  Each method will be allowed at most 1,000,000 feature slots, and the
same random deletion of old slots to make room for new data was activated, however
none of these extensions needed to purge older data.

The different variations tested were:

• Standard Bayesian - each word is a feature.  This is the method proposed by
Graham and used in most antispam filters.  There was no clipping in either the
database or the text; every feature was retained and used in the evaluation.

• Token Grab Bag – A sliding window of five words is moved across the input text.
All combinations of those five words (but requiring the first word in the window)
are taken in an order-insensitive way.  Every such order-insensitive combination
is a feature.

• Token Sequence Sensitive – A sliding window of five words is moved across the
input text.  All combinations of word deletions are applied (except that the first
word in the window is never deleted) and the resulting sequence-sensitive set of
words is used as a feature.

• Sparse Binary Polynomial Hashing with Bayesian Chain Rule (SBPH/BCR) – As
described in Yerazunis iia sliding window of five words is moved across the input.
A feature is the sequence-and-spacing-sensitive set of all possible combinations of
those five words, except that the first word in the window is always included.

• Peaking Sparse Binary Polynomial Hashing – this is similar to SBPH/BCR, except
that for each window position, only the feature with the most extreme probability
(furthest from 0.5) is used.  The other features generated at that window position
are disregarded.  This is an attempt to 'decouple” the sequences of words in a text
and make the Bayesian chain rule more appropriate.

• Markovian matching – This is similar to Sparse Binary Polynomial Hashing but the
individual features are given variable weights.  These weights are assigned in a
superincreasing way, so that a feature that contains more words than any of it's
subfeatures can outweigh all of it's sub-features combined. 

These tests were run on the same system as the training tests.  Run times did not
differ substantially from TOE-trained SBPH/BCR in table 1;



Evaluator Errors per 5000

Pure Bayesian matching 92

Peak Window Value 80

Token Sequence Sensitive 78

Token Grab Bag 71

Sparse Binary Polynomal Hash 69

Markovian matching 56

Table 2 Accuracies of various Evaluators

 
Interestingly, Token Sequence Sensitive (TSS) scored as a weaker system than
Token Grab Bag (TGB), by a statistically significant amount.  One might assume that
the extra information available to a TSS filter would give higher performance, but
apparently in the face of spammer countermeasures such as random word insertion,
we find that TSS does not perform as well as TGB.  Interestingly, SBPH and TGB are
very close in performance.  

The best performance of all of the filters was found to be the Markovian matching
filter, so some further details are in order.

The Markovian matching filter does not attempt to generate the actual Markov
model of the incoming texts, for computational tractability.  Instead, it uses a hashed
representation of the known example texts in each corpus as local sections of the
large (and mostly unknown) Markov models of spam and nonspam.

The implementation of this is quite simple.  Instead of chaining tokens (as described
in Zdziarski iii, the features are weighted to give greatly increased credence to
evidence found in longer features.

For example, in the text “The quick brown fox jumped”, the features and their
associated weights would be



Feature Weight

The 1

The quick 4

The <skip> brown 4

The quick brown 16

The <skip> <skip> fox 4

The quick <skip> fox 16

The <skip> brown fox 16

The quick brown fox 64

The <skip> <skip> <skip> jumped 4

The quick <skip> <skip> jumped 16

The <skip> brown <skip> jumped 16

The quick brown <skip> jumped 64

The <skip> <skip> fox jumped 16

The quick <skip> fox jumped 64

The <skip> brown fox jumped 64

The quick brown fox jumped 256

Table 3 Example Features and Weights for Markovian matching

In this experiment, we used superincreasing weights as determined by the formula 

Weight = 22N 

Thus, for features containing 1, 2, 3, 4, and 5 words, the weights of those features
would be 1, 4, 16, 64, and 256 respectively.  These weights are used to bias short
feature local probabilities toward 0.5 such as in
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A Theoretical Justification for the Observed Markovian Accuracy

One might ask why a Markovian filter would be significantly more accurate than the
very closely related Sparse Binary Polynomial Hash (SBPH) filter.  One hypothesis is
that the SBPH filter is still a linear filter, while a Markovian filter with
superincreasing weights is nonlinear.  One can envision the filtering domain of
SPBH in a high-dimensional hyperspace (one hyperspatial dimension per feature).
However, the partition between spam and nonspam is still a flat plane in this
hyperspace; texts on one side of the plane are judged to be spam, those on the other
side are judged to be nonspam.

Minsky and Papert ivshowed that such a linear filter cannot implement anything even
as complex as a mathematical XOR operation.  That is, linear filters cannot learn (or



even express!) anything as complex as  “A or B but NOT BOTH”.  The classic
Bayesian spam filter is still a linear filter; as an example, a Bayesian cannot be
trained to allow “viagra” or “pharmacy” but not both.

The Markovian filter with superincreasing weights is no longer a linear filter;
because any feature of length N can override all features of length 1, 2, ... N-1 
a Markovian filter can easily learn situations where A or B but NOT BOTH is the
correct partitioning.  As implemented with a sliding window of length 5, the
Markovian partitions the feature hyperspace along a quintic (fifth-order) curved
surface, which may not even be fully connected. 

This theoretical justification is, unfortunately, not proven.  It may be some other
issue of implementation that causes a Markovian filter to have significantly better
accuracy in these tests than a Bayesian.  Therefore, the matter should be considered
“likely”, but by no means “closed” in a scientific sense.

Also, we should note that the accuracy advantage of a Markovian over a Bayesian is
significant- the Markovian made about 40% fewer errors on the same data streams.
But a 40% improvement in filtering accuracy is only a few months respite at the
current month-to-month increase rate of increase in spam.  Even a Markovian is no
defense against the spam attack where a spammer joins a well-credentialed list; this
attack is becoming more and more common.

Inoculation and Minefielding

The next generations of spam filtering can take advantage of the DeSade
observation- that is, that one man's pain is another man's pleasure.  In this case, we
use the pain of one person receiving a spam to train not only their own filters, but
also the filters of a number of friends.  In this situation, the error rate of the system
for discriminatable spam goes with the inverse of the number of subscribers; with
ten friends participating, you achieve 10x improvement in filtering.  However, this is
still a human-mediated training and hence subject to human error.

Dispite this, we have programmed such inoculation-based systems and preliminary
results are that they do function well. 

A second observation is a site-wide rather than a  per-user observation.  If one
observes the behavior of most spam campaigns, the same spammer will spam all of
the accounts known to it on a given site in a very short period of time.  In one case,
this was every account on a small site in less than ten seconds.    

Because of this rapid propagation of the spam, human reaction time is too slow- by
the time the first human reads the spam, all of the mailbox filters will have already
either accepted or refused the spam.

To  counter this style of attack, one can add “email minefield” defenses.  An email
minefield is constructed by adding a large set of dummy email addresses into the
address space of a site.  These email addresses are then intentionally leaked to
spammers.  
Since no human would send email to those extra addresses, any email to those
addresses is known a-priori to be spam.

More usefully, spammers usually attempt to falsify their headers and hide their IP
addresses.  However, during the SMTP transaction from the spammer to the
minefield address, the spammer must reveal their actual IP address.  The spammer



cannot spoof this address, as the SMTP transaction depends on at least the RCPT OK
section of the transaction being delivered correctly to the spammer, and that can
only happen if the spammer reveals a correct IP address during the socket setup
phase.

At this point, the targeted site and any site cooperating with the targeted site can
immediately blacklist the offending IP address.  This blacklist can be either a
“recieve and discard”, or  “refuse connection” situation.  

Unfortunately, John Graham-Cumming v points out, it is possible to use a Bayesian
filter against a Bayesian filter.  In this process, the “evil bayesian” filter is supplied
with a large dictionary of words; it repeatedly sends spam with included random
words to the “good” bayesian filter and recieves back negative acknowledgements
when the “good” bayesian filter correctly detects the spam.  Graham-Cumming
reports that the “evil bayesian” will converge on the set of random dictionary words
most likely to thwart the “good” bayesian's filtering ability and allow spam to
penetrate.

This result is extendable to any filtering algorithm; Graham-Cumming points out that
the only true defense for it is to never return any feedback to the sender.  Thus, our
minefielding system must also perform in the same way to avoid disclosing which
accounts are minefield accounts and which are real humans- incoming mail to either
kind of account must be accepted and only afterwards deleted if it is known to come
from a spamming IP address.  

Fortunately, the same rapidity of communication that allows a spammer to hit all of
the accounts on a system also allows one system to even more rapidly communicate
the source IP address to other systems.  In this kind of shared realtime minefield,
multiple cooperating sites dynamically blacklist individual IP addresses for short
periods of time (a few hours to days) in response to spamming activity to a minefield
account.  

Further, because the dynamic minefield spans multiple sites for both sensing a spam
attack and transmitting blacklist IP addresses, a very large number of accounts can
be protected relatively easily and without human intervention to either add IP
addresses to the blacklist or remove them from the blacklist.  

Dynamic minefielding in this style is currently in testing and is a subject for future
work.

Conclusions:

Bayesian filtering may have reached a limit of accuracy; enhancements may be
useful but the amount of information in a particular email is limited and an ever-
increasing quality of filtering may be impossible.  

Fortunately, correllating mail from multiple accounts, either with or without human
intervention, will provide a significantly larger source of information, and a source of
information with a significantly higher limit.
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