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when only one branch is allowed, the performance is still well above the conventional selection
scheme and near optimum.

GLOBECOM

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2003
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Phase-Shift-Based Antenna Selection for MIMO
Channels

Xinying Zhang
Princeton University
Princeton, NJ 08544

xinying@ee.princeton.edu

Andreas F. Molisch
Senior Member, IEEE

Mitsubishi Electric Research Lab
Murray Hill, NJ

Andreas.Molisch@ieee.org

Sun-Yuan Kung
Fellow, IEEE

Princeton University
Princeton, NJ 08544

kung@ee.princeton.edu

Abstract— This paper addresses the antenna subset selection
in multiple antenna systems with full diversity transmission, for
both correlated and uncorrelated channels. To reduce the se-
vere performance degradation of traditional selection/combining
schemes, we propose to embed phase-shift-only operations in
the RF chains before selection. The resulting system shows a
significant advantage in utilizing the multiple antenna diversity
under almost any channel condition while incurring only a small
hardware overhead. With the optimum phase shifter design given
in analytical form, our analysis shows that with more than two
branches allowed for selection, the new scheme can achieve
the same SNR gain as the full-complexity MRC (Maximum-
Ratio-Combining). Even when only one branch is allowed, the
performance is still well above the conventional selection scheme
and near optimum.

I. INTRODUCTION

MIMO (Multiple-Input-Multiple-Output) systems have at-
tracted considerable attention, due to the promising perfor-
mance enhancement via deploying multiple antennas at both
the transmission ends. While a lot of attention has been given
to the rate increase through simultaneous transmission of dif-
ferent data streams [11][12], there is also great interest in using
the multiple antenna elements for performance enhancement
of a single data stream, by providing higher diversity.

The high expense of implementing the multiple RF chains
motivates the recent popularity of antenna selection schemes
[2][9], which optimally chooses a subset from the transmit
and/or receive antennas for transmission and therefore maxi-
mally benefits from the multiple antenna diversities within the
RF cost constraint. Despite the great advantages in terms of
cost reduction, they suffer from severe performance degrada-
tion. In most practical MIMO channels, due to the directional
nature of the multipath propagation, the signals at the antenna
array are highly correlated dependent on the arriving angles.
In this case, the performance of conventional selection reduces
to that of a L-antenna system, losing all advantages of having
additional antenna elements. Even in uncorrelated channels,
the performance degradation (due to smaller average SNR) can
be significant when only a small portion of the antennas are
allowed for selection. In a recent paper [3], we have proposed
a scheme that addresses the first problem, by inserting a Butler
matrix (a hardwired spatial FFT operation in the RF domain)
between the antenna elements and the selection switch.

In this paper, we extend and modify our results to deal with
both correlated and independent channel fading by embedding
a variable phase-shift-only operation that performs an optimum
transformation before selection. In contrast to the FFT opera-
tion proposed in [3], the variable phase shifters used here is
adapting to the channel. We recognize the rapid advances in
MMIC techniques, and stress that the economic design and
fabricate of large-scale circuity with variable phase shifters
are available for the microwave frequency range [5][6]. Our
analysis shows that under diversity transmission, with more
than two branches allowed for selection, the new scheme can
achieve the same performance as the full-complexity reception
with all the signals involved. When only one branch is allowed,
the SNR gain of the new scheme is also significantly better
than the conventional one and near optimum. For simplicity we
only address the receiver selection while the transmit selection
can be treated in duality.

II. SPATIALLY CORRELATED CHANNEL MODEL

We consider a general multiple antenna system adopting
ULA (Uniformly-spaced Linear Antenna) arrays at both the
transmitter and the receiver sides. We denote t and r as the
number of transmit and receive antenna elements respectively,
and H is the r×t transfer function of the MIMO channel. The
channel fading is assumed to be block-fading, which remains
fixed over a block of symbols and then changes to a new,
independent realization. Considering the spatial correlation
among different antennas, we adopt the channel model that
has been extensively used in [4] [8] [9]:

H = R1/2WT1/2, (1)

where W is a Rayleigh fading matrix with i.i.d. circularly
symmetric complex Gaussian entries ∼ NC(0, 1), R, T are
r×r, t× t matrices denoting receive and transmit correlations
respectively. The two correlation matrices are determined by
the angles of arrival (AoA) and departure (AoD). For simplic-
ity of analysis we only consider the receiver correlation and set
T = It, and the PAS (Power Azimuth Spectrum) of the AoA is
assumed to be Gaussian distributed: θ = θr+ε; ε ∼ N (0, σ2

r).
The assumptions above allow a closed-form computation of
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matrix R, as shown in [13]:

Rm,n =
∫ ∞

−∞

1√
2πσr

e−j2π(n−m)d cos(θr+ε)e
− ε2

2σ2
r dε, (2)

where d is the relative (receive) antenna spacing with respect
to the carrier wavelength.

III. ANTENNA SELECTION SYSTEMS AND COMPARISON

The block diagram of our considered MIMO diversity
system is illustrated in Figure 1. The information stream
is multiplied by a t-dimensional complex weighting vector
�v, converted to the passband and applied to each of the t
transmitting antennas. At the receiver end, the observation
streams are demodulated and then linearly combined with
the weighting vector �u to get an estimate of the information
stream. Without antenna selection, all the r receiving streams
are combined in the full-complexity reception, which requires
r down converters. In conventional antenna selection, L out of
the r streams are chosen for combination. In our new scheme,
the observations are first passed through a r×r matrix Φ with
phase-shift-only entries before selection and combination.
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Fig. 1. MIMO channel model and system diagram.

The system described above is expressed by the linear
equation:

�x(k) = H�vs(k) + �n(k), (3)

where s(k) ∈ C is the transmitting stream, �x(k) ∈ Cr

is the sample stacks of the complex-valued receiver data
sequences. The total transmission power is constrained to
P : E [s(k)s∗(k)] = P . The thermal noises �n(k) ∈ Cr are
i.i.d. circularly symmetric Gaussian random processes with
variance σnIr. And the t-dimensional transmitter weighting
vector satisfies ‖�v‖ = 1.

A. Full-Complexity MRC (FC-MRC) Scheme

When all the antenna elements are exploited, the output
signal at the receive linear combiner �u is

ŝ(k) = �u∗H�vs(k) + �u∗�n(k), (4)

where ∗ denotes the conjugate transpose of a matrix (vector).
The estimated SNR (Signal-to-Noise Ratio) after linear com-
bining is therefore

E [|�u∗H�vs(k)]|2
|�u∗�n(k)|2 = ρ

|�u∗H�v|2
|�u∗|2 , (5)

where ρ = P
σn

is the average SNR. To facilitate the perfor-
mance analysis we introduce the singular value decomposition
(SVD) of the transfer function H: H = UHΣHV∗

H, where
UH and VH are unitary matrices representing the left and
right singular vector spaces of HH, respectively; and ΣH is
the diagonal matrix consisting of all the singular values of H.
For convenience we denote λH,i as the i-th largest singular
value of matrix H, and �uH,i, �vH,i are the left and right singular
vectors of H associated with λH,i, respectively.

To maximize the SNR upon reception, MRT (Maximum-
Ratio-Transmission) and MRC (Maximum-Ratio-Combining)
should be adopted with the optimum weights �u = �uH,1, �v =
�vH,1, which result in an optimum achievable SNR

SNRFC = ρλ2
H,1. (6)

B. Hybrid-Selection MRC (HS-MRC) Scheme

When only L out of the r (L < r) receive antennas are
selected and combined, mathematically, each selection option
corresponds to a L×r selection matrix on the transfer function,
which extracts L out of the r rows in H that are associated
with the selected antennas. We denote SL as the set of all
such selection matrices. For any selection option S ∈ SL, an
optimum estimate SNR is achieved via a similar MRC on the
L branches:

max
�u∗∈C1×L

max
‖�v‖=1

ρ
‖�uSH�v‖2

‖�u‖2
= ρλ2

SH,1. (7)

The L/r HS-MRC reception chooses the optimal antenna
subset selection matrix S among all the elements in SL that
maximizes the estimate SNR above:

SNRHS(L) = max
S∈SL

ρλ2
SH,1. (8)

C. FFT-based Selection MRC (FFTS-MRC) Scheme

To cope with the highly correlated MIMO channels, a
FFT-based selection scheme is proposed in [3], where a r-
point FFT matrix ΦFFT is inserted in the RF chain before
the L/r receiver antenna selection S (ΦFFT is normalized:
ΦFFT Φ∗

FFT = Ir to preserve the noise level). The FFT
in microwave frequency can be implemented by a hardwired
Butler matrix and the L/r selection is followed by a MRC
on the L selected branches after FFT. The optimum estimate
SNR achieved in FFTS is:

SNRFFTS(L) = max
S∈SL

ρλ2
SΦF F T H,1. (9)

D. Phase-Shift & Selection MRC (PSS-MRC) Scheme

The phase-shift matrix Φ and the L/r selection S in Figure
1 can be integrated into one L×r matrix with phase-shift-only
entries. The set consisting of all such matrices is denoted by
FL = {F| [F]m,n = ejφm,n , 1 ≤ m ≤ L; 1 ≤ n ≤ r}. In
PSS, given any F ∈ FL, the linear combining is performed
on the virtual channel FH with the thermal noises F�n(k).
Following a similar argument as before, with the optimal
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choice of F ∈ FL, the maximal SNR achieved in PSS scheme
is

SNRPSS(L) = max
F∈FL

max
�u∗∈C1×L

max
‖�v‖=1

ρ
|�u∗FH�v|2
‖�u∗F‖2

. (10)

The PSS also consists of an optimal selection search as in
HS-MRC, in the space of FL. For any fixed F ∈ FL, however,
the optimal weighting vector and estimate SNR can no longer
be treated via a straightforward svd operation, as the matrix F
is in general non-unitary and does not preserve the whiteness
of noises. Instead, the SNR is computed based on a standard
Gram-Schmidt procedure. Assume the rank of F is k (k ≤ L),
then construct a k × r matrix Q whose k row vectors form
a set of orthonormal basis for the row subspace of F. The
estimate SNR with optimal choice is then

max
�u∗∈C1×L

max
‖�v‖=1

ρ
|�u∗FH�v|2
‖�u∗F‖2

= max
�u∗∈C1×k

max
‖�v‖=1

ρ
|�u∗QH�v|2
‖�u∗Q‖2

= ρλ2
1(QH). (11)

E. Unification and Performance Comparisons via Subspace
Explanation

The aforementioned four schemes can be unified from a
subspace perspective. The optimum SNRs in (6), (8), (9) and
(10) can be equivalently written in the same formula:

max
�u∗∈U

max
‖�v‖=1

ρ
|�u∗H�v|2
‖�u‖2

, (12)

with different allowable set U . Based on the previous deriva-
tions, it is straightforward to show that the constrained space
for the four schemes are

1) FC-MRC: UFC = C1×r;
2) HS-MRC: UHS = ∪S∈SL

R.S.(S) where R.S.(S) is
the row span of S;

3) FFTS-MRC: UFFT S = ∪S∈SL
R.S.(SΦFFT );

4) PSS-MRC: UPSS = ∪F∈FL
R.S.(F).

The four selection/combining schemes attempt to maximize
the same function in (12) with �u∗ chosen from the correspond-
ing candidate spaces related by UHS ,UFFT S ⊂ UPSS ⊂ UFC ,
resulting in an estimate SNR increasing in the following order:

SNRHS , SNRFFTS ≤ SNRPSS ≤ SNRFC . (13)

Due to the marked space expansion from UHS to UFC , FC-
MRC performs much better than HS-MRC, regardless of the
spatial correlation level in the channel: SNRFC 	 SNRHS .
Recall that the optimum SNR in FC-MRC is achieved with
the weighting vector �u = �uH,1. Therefore the equality
SNRPSS = SNRFC can be achieved if and only if �uH,1 ∈
UPSS , i.e. �uH,1 is a vector with phase-shift-only entries or
a linear combination of L such vectors. As will be shown
below, when L ≥ 2, this condition is always guaranteed, which
implies that

SNRPSS = SNRFC when L ≥ 2. (14)

When L = 1, UPSS offers a sufficiently large space to
approximate �uH,1, leading to a significant improvement over
HS-MRC.

F. Hardware Comparison

The hardware expense of the antenna selection/combining
schemes is dominated by the three factors: (1) RF to baseband
demodulators, (2) RF chain operations, and (3) the optimum
selection matrix search.

In contrast to the expenses of r downconverters in FC-MRC,
only L such devices are required for HS-MRC, FTTS-MRC
and PSS-MRC. The saving is prominent especially when L �
r. As for RF components, the FFTS requires a Butler matrix,
which can be easily implemented in microwave frequency, e.g.,
by delay lines. Our novel PSS scheme benefits from recent
advances in controllable RF components that make feasible
the implementation of fast phase-shift-only operations in RF
chains with a minor hardware overhead [5] [6].

For optimum subset selection, HS-MRC and FFTS-MRC
search in the space SL, demanding |SL| = (r

L) svd operations.
A faster (but suboptimum) selection algorithm is now available
for HS-MRC [7]. For PSS, as will be addressed in the next
section, the optimum (or suboptimum) selection matrix F is
given in closed-form when the channel state information (CSI)
is tracked at the receiver. The calculation in PSS hence requires
no search in the full space FL. Only a QR factorization
(or, equivalently, a Gram-Schmidt procedure) is in demand
together with a svd operation. Due to the advances in fast
digital signal processing, the computational load of PSS-MRC
operations is not a significant obstacle.

IV. OPTIMUM PHASE SHIFTER DESIGN OF PSS
RECEPTION

In this section we investigate the optimum design of the
phase-shift selection matrix F ∈ FL and SNR performance
in PSS scheme when the CSI (Channel State Information) is
available at the receiver.

A. Pure LoS (Line-of-Sight)

We start from the extreme case σr = 0. This corresponds to
the ideal LoS situation in which the PAS concentrates on one
explicit spatial direction with no angle spread. The correlation
matrix then collapses to a rank-1 matrix R = �a(θr)�a∗(θr),
where �a(θr) is the antenna response vector defined as

�a(θr) =
[

1 ej2πd cos θr . . . ej2π(r−1)d cos θr
]T

. (15)

The channel transfer function is therefore simplified to

H = R1/2W = �a(θr)�w∗, (16)

where �w is a t×1 random vector with i.i.d. complex Gaussian
entries: �w ∼ NC(0, It).

Without antenna selection, for any channel realization with
�w, the FC-MRC just performs the beam forming in the
direction of θr with the transmit/receive weighting vectors
�v = �w

‖�w‖ and �u = �a(θr). The optimum estimate SNR of
FC-MRC is

SNRFC = ρ
|�u∗�a(θr)�w∗�v|2

‖�u‖2

= ρr‖�w‖2 ∼ Γ(t, ρr). (17)
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Here Γ(t, ρr) denotes the Gamma distribution with parameters
t and ρr 1. The distribution of SNRFC in the last equality
is obtained due to the fact that the 2-norm of the i.i.d.
Gaussian random vector �w follows the Gamma distribution
with expectation t and variance t.

In the ideal LoS case, the optimum weights �u = �a(θr) of
FC-MRC consists of phase-shift-only entries, which implies
�a∗(θr) ∈ UPSS(L) for any 1 ≤ L ≤ r. According to the
discussion in Section III-E, the same SNR gain of FC-MRC
can also be achieved by PSS-MRC in this case:

SNRPSS(L) = SNRFC = ρr‖�w‖2 ∼ Γ(t, ρr). (18)

Even with only one branch selected (L = 1), the PSS-MRC
can achieve the full channel diversity gain of freedom r. A
simple design of the optimum phase-shift selection matrix F ∈
FL is to set one row of F as �a∗(θ) with all the other rows
arbitrarily selected.

To demonstrate the performance improvement of PSS-MRC
over HS-MRC, we calculate the SNR gain of HS-MRC
reception:

SNRHS(L) = max
S∈SL

ρλ2
S�a(θ)�w∗,1

= max
S∈SL

ρ‖�w‖2‖S�a(θ)‖2

= ρL‖�w‖2 ∼ Γ(t, ρL). (19)

HS-MRC can only obtain a diversity gain of L.

B. General Case Analysis

In Section III-E, we have established that the PSS-MRC
can deliver the same SNR as FC-MRC reception if and only if
�u∗
H,1 ∈ UPSS(L), which spans all the possible linear combina-

tions of L phase-shift-only vectors. This condition is satisfied
in the ideal LoS channels with σr = 0; but for most general
MIMO channels, the optimum antenna selection/combining
could not be treated via a simple beam forming and the entries
of �uH,1 no longer lie on a circle. However, the analysis below
shows that in this case, the full SNR gain of FC-MRC can
still be achieved by PSS-MRC provided L ≥ 2. The optimum
design of the phase-shifters is given as a function of �uH,1.
When L = 1, there is in general an inevitable SNR loss with
PSS-MRC. A suboptimal phase-shifter design for L = 1 is
given in analytical form; such a design is supported by the
simulation results as a near-optimum solution.

1) L ≥ 2:
Given any complex vector �uH,1 of dimension r, we can always
find two vectors with phase-shift-only entries whose linear
combination is equal to �uH,1. Denote the entries of the sin-
gular vector as �uH,1 =

[
γ1e

jϕ1 γ2e
jϕ2 . . . γre

jϕr
]T

and the phases of F as Fm,n = ejφm,n (1 ≤ m ≤ 2; 1 ≤
n ≤ r). It is straightforward to show that �u∗

H,1 can be linearly

1The pdf. of X ∼ Γ(α, β) is pX(x) = 1
βαΓ(α)

xα−1e−x/β (x >

0). The Γ function is Γ(α) =
∫ ∞
0

xα−1e−xdx. For a positive integer α,
Γ(α) = (α − 1)!.

combined by the two row vectors of F if the weights and
phases are set as follows:[

γmax+γmin

2
γmax−γmin

2

]
F = �u∗

H,1, with

γmax = max
1≤k≤r

γk; γmin = min
1≤k≤r

γk,

φ1,i = −ϕi − cos−1 γ2
i + γmaxγmin

γi(γmax + γmin)
;

φ2,i = −ϕi + cos−1 γ2
i − γmaxγmin

γi(γmax − γmin)
. (20)

The F selection above guarantees �u∗
H,1 ∈ R.S.(F). Two

phase-shift-only vectors are sufficient to span any vector �uH,1;
when L > 2, F can be selected in the same manner with other
L − 2 rows arbitrarily designed. Therefore with L ≥ 2, we
always have �u∗

H,1 ∈ UPSS(L), which in turn leads to the full
SNR gain achieved by FC-MRC:

SNRPSS(L) = SNRFC , L ≥ 2. (21)

2) L = 1:
When L = 1, the matrix F ∈ FL reduces to a 1×r phase-shift
vector, denoted by F =

[
ejφ1 ejφ2 . . . ejφr

]
. Recall

(10), the optimum estimate SNR is now

max
F∈F1

max
u∈C

max
‖�v‖=1

ρ
|uFUHΣHV∗

H�v|2
‖uF‖2

= max
F∈F1

ρ

r

t∑
i=1

|F�uH,i|2λ2
H,i. (22)

As λH,1 ≥ λH,2 ≥ . . . ≥ λH,t, the maximization of the
equation above could empirically be approximated by the
optimization of |F�uH,1|2:

max
F∈F1

|F�uH,1|2 = max
F∈F1

|
r∑

k=1

γkejφkejϕk |2 = (
r∑

k=1

γk)2,

with the choice F =
[

e−jϕ1 . . . e−jϕr
]
.

V. SIMULATION

Simulations are conducted based on Monte Carlo tests. The
SNR gain, defined as the ratio of the optimum estimate SNR to
the average SNR ρ = P

N , serves as the major measurement to
evaluate the performance of the different selection-combining
schemes. The simulation is based on the channel model in
Section II. As shown in [13], measurements have been done
attempting to validate the Gaussian distribution of AoA; for
different distance and environments the angle spread σr lies
in the interval [0, 6◦]. With small angle spread, the calculation
of R in (2) is simplified to [13]:

Rm,n ≈ e−j2π(n−m)d cos θre−
1
2 [2π(n−m)dσr sin θr]2 .

Both transmit and receive correlation are considered in the
tests; the transmit correlation matrix is generated in a similar
fashion. Figure 2 shows the empirical cdf of SNR gain for a
MIMO system with t = r = 8 antenna elements at both ends
and the antenna spacing is d = 0.5 carrier wavelength. Two
results are plotted at θr = π

4 and θr = π
6 . When L = 1, the
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HS-MRC delivers a significant SNR loss of about 6 ∼ 7db, as
shown in (a) and (c). FFTS reception outperforms HS-MRC.
The improvement is keenly dependent on the arriving angle:
it is larger at θr = π

4 in (a), where the FFTS is only 1 ∼ 2db
from the optimum FC-MRC curve; at θr = π

6 , the loss of
FFTS is more significant. At both angles, PSS behaves very
close to the full-complexity curve. When L = 2, the SNR
curves of PSS-MRC and FC-MRC overlap each other. In all
the cases PSS-MRC proves to be the best among all antenna
selection schemes. Figure 3 demonstrates the SNR gain of
the four schemes with respect to the antenna spacing. We see
that for large correlation (i. e. small antenna spacing), HS-
MRC performs considerably worse than the others. Both FFTS
and PSS approach the SNR gain of FC-MRC. With very low
correlation, FFTS approaches the HS-MRC curve, while PSS
has asymptotically a 4db improvement in SNR gain.
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Fig. 2. Performance comparison of the four schemes with the angle spread
σr = 6o and antenna spacing d = 0.5 in a t = 8, r = 8 system.
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VI. CONCLUSION

In this paper we presented a new antenna subset selection
scheme in a multiple antenna system. Standard antenna selec-
tion, selecting L out of r antenna elements, and maximum-
ratio combining them, exhibits a simple implementation with
fewer demodulators, but loses the average signal power. This
loss is largest in highly correlated channels, but can also be
significant in uncorrelated fading environment. By embedding
variable phase shifters in the RF chains before selection, our
new system shows a significant advantage in improving the
SNR gain with a much more reduced complexity for frequency
conversion. Regardless of the correlation level in the channel,
our approach can outperform both the traditional HS-MRC
and FFT-based selection schemes. With two or more branches
selected, the new design exhibits the full SNR gain of the
original MIMO channel with full-complexity reception. The
receiver side selection can be applied to the transmitter end
in duality, which inspires the joint transceiver selection [10]
under investigation.
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