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Abstract

We present a new unsupervised learning technique for the discovery of temporal clusters in large
data sets. Our method performs hierarchical decomposition of the data to find structure at many
levels of detail and to reduce the overall computational cost of pattern disacovery. We present a
comparision to related methods on synthetic data sets and on real gestural and pedestrian flow
data.
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1 Introduction

The occupants of a building generate patterns as they move from place to
place, stand at a corner talking, or loiter by the coffee machine. These pat-
terns leave their mark on every object in a building. Even something as lowly
as a carpet will eventually come to represent some of these patterns by how
it wears. However, our automated systems are largely blind to these patterns:
elevator, heating and cooling, lighting, information, safety, and security sys-
tems all depend on humans to translate these patterns into policies and ac-
tion.

Such patterns are influenced by the configuration of the environment, the
individuals occupying it, and possibly even external context such as the time
and date. The set of patterns observed by any particular system will certainly
be unique, and possibly even non-stationary. It is necessary for any auto-
matic interpretation of them to adapt to the local structure of the data. Em-
bedded systems will need to efficiently discover the patterns of behavior that
are interesting in the particular host context.

Temporal patterns created by pedestrians moving through a building rep-
resent a form of gestural expression that exists at a scale larger than a single
individual. As such, the algorithmic machinery needed to learn to recognize
particular patterns of pedestrian flow is not fundamentally different than that
needed for many traditional gesture recognition applications. We present ex-
perimental results that demonstrate this point.

We use hidden Markov models (HMMs) to represent the motion patterns.
HMMs have been used successfully in many previous research efforts to model
sequences representing pedestrian flow [3], complex hand gestures [8, 10],
DNA sequences [2], and human speech [6]. Here, we use HMMs in two ca-
pacities. First, as a probabilistic generative model that can represent and dis-
tinguish between different motion patterns, and second as a means of clus-
tering temporal sequences in order to learn distinct underlying processes. In
these respects, we agree with recent literature[7, 1] that mixtures of Hidden
Markov Models represent a powerful model for discovering temporal patterns
in human motion data, gestural and otherwise. However the clustering liter-
ature has so far taken a very classical approach to statistical modeling that
discounts computational concerns. If we hope to utilize temporal clustering
to create adaptive, embedded systems, then we need to find methods for dis-
covering temporal patterns that are computationally lightweight.

We present a framework that hierarchically decomposes a training set into
a number of classes, each representing a single motion cluster modeled by an
individual HMM. This framework involves making a series of binary decom-
positions of the data during the learning process that results in the discovery
of temporal clusters at the leaves of the resulting tree. This approach allows
us to discover large numbers of clusters in large datasets without the need to
evaluate every sequence with every leaf model. Our method has recognition
performance that is similar to the method proposed by Smyth[7] but is sig-
nificantly more efficient. Our shared dependence on hard clustering means
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that, like Smyth’s method, our modeling performance may not be as good
as that reported by Alon, et. al.[1] when learning to separate highly similar
clusters. However, our computational efficiency provides a means to trade
learning time for fidelity when choosing a learning engine.

The algorithm described here, and much of the work cited above, focuses
on the task of unsupervised discovery of structure in large databases of arbi-
trary motion data. However, it is interesting to note that it is also useful to
consider the task that we will call meta-supervised learning: the case where
an oracle may provide labels that group data into some high-level, seman-
tically interesting group that may nevertheless consist of a great diversity of
perceptually distinct gestures. An example of one such high-level event is
people approaching the elevator and pressing the call button. This the end
of this activity is exactly labeled by the elevator call button press. However,
this same label will be applied to all the gestures that terminate in a call but-
ton press, regardless of how the person approached the elevator or where
they originated in the building. If a person may approach an elevator from
the north or the south, it would be difficult to learn a single, accurate model
of “person approaching elevator” if no attempt is made to model these dis-
tinct subprocesses. It is therefore important to perform unsupervised learn-
ing within each semantically labeled data set to expose the perceptually dis-
tinct gestures that comprise the high-level class.

We will discuss the details of the learning algorithm in the next section.
Then we will show experimental results on both synthetic data and a variety
of real data sources in Section 3.

2 Learning by Data Decomposition

The framework consists of a tree of nodes. Each of the nodes contains a com-
posite HMM with a small number of independent paths. Each path through
the HMM carries a one-to-one association with a node in the next level of the
tree. In this paper we will present results for 2-path nodes and, therefore, bi-
nary trees. Learning proceeds from root to leaf. Each node HMM is learned
from the data, and then the data is decomposed into subsets: with each se-
quence assigned to only a single subtree, specifically the subtree associated
with the maximum likelihood path label. At the leaves of the tree, the N se-
quences will be associated with the M models. However, only a single, low-
complexity, low-path-count model was trained on the entire dataset of N se-
quences. The M leaf models, which may be significantly more complex than
the root node models, are only trained on a small subset of the sequences.

For the HMMs that comprise the hierarchy, P (Oi|λk
j ) is the probability

that the ith sequence of observations Oi was generated by the jth model on
the kth level of the hierarchy, which is parameterized by λk

j . The model λ
consist of the standard HMM parameterization {πm, Tpq, bm}, where π are the
prior probabilities for the states, Tpq is the matrix of state transition probabil-
ities, and b is the parameterization of the output distribution. We will present
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Figure 1: A composite HMM consisting of three path HMMs. The start and
end state are non-emitting.

results in Section 3 utilizing both unimodal Gaussian distributions over con-
tinuous data, and multinomial distributions over discreet data.

Section 2.1 presents the Smyth-style clustering, and Section
refsec:trees presents our modifications.

2.1 Composite HMMs

For the composite HMM illustrated in Figure 1, the transition matrix, Tpq,
would be block diagonal, with each of the three paths contributing a block of
non-zero transition probabilities between intra-path states, while the inter-
path transition probabilities would all be zero. This is the composite HMM
structure proposed by Smyth [7].

To train such a model, we first estimate M parallel HMMs via an agglomer-
ative, temporal clustering algorithm, after which we construct the composite
model, and then retrain using the Baum-Welch algorithm to allow soft assign-
ments of examples to HMM paths. Clustering is complicated by the lack of a
natural distance metric between temporal patterns or between the parame-
ters that define the models. Smyth proposes using a derived distance metric
where a different HMM is trained for each training observation, and the dis-
tance between two observations, Oi and Oj is then given by

D(Oi, Oj) =
1
2
[p(Oj | λi) + p(Oi | λj)] (1)

where p(Oj | λi) is the probability of generating the jth observation from the
ith model. Intuitively, if the two observations are similar, then they sould give
rise to similar models which would then generate the opposite observation
with high likelihood. A similar method was used by Wang et. al. [10] but they
proposed a more complicated distance metric:

D(Oi, Oj) =
1
2
[ 1

Ti
(P (Oi | λi)− P (Oi | λj)) +

1
Tj

(P (Oj | λj)− P (Oj | λi))] (2)
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Empirical tests, however, showed that this more complicated distance metric
did not perform as well as Smyth’s simpler metric.

Given this definition of a distance metric, agglomerative clustering of tem-
poral sequences proceeds as follows:

1. Train an HMM for each of the N observations

2. Assign each observation to its own cluster

3. Compute the triangular matrix of distances between all pairs of clusters

4. Find the two closest clusters, A,B : A 6= B

5. Merge these two clusters

(a) Update the distance matrix: D(i, A) = max(D(i, A), D(i, B)), for all
clusters i

(b) Remove the Bth row and column from the distance matrix

(c) Record that these two clusters were merged at this step to form the
hierarchy

6. If more than one cluster remains, go to step 4

This procedure will create a full range of decompositions starting at N
nodes for N sequences, and ending at a single node model. To determine
how many clusters should be used, a separate analysis can be applied to this
data structure to find a “natural break” in the clustering (i.e., a merge between
significantly more distant clusters than the previous merge). Alternately, a
predefined number of clusters can be selected. In the experiments described
below, the number of desired clusters was chosen empirically by comparing
generalization performance between composite HMMs with different num-
bers of paths. Note also that, as defined above, the distance between two
models will increase as they become more similar. Thus, we use the negative
log-likelihood in place of the probabilities shown in Equation 1.

Once the temporal clustering is finished, the M selected clusters are used
as the dataset to train new HMMs. Each of these HMMs represents a different
underlying process as identified by the clustering algorithm. However, these
HMMs are trained after “hard” assignment, which means that each training
observation is a member of exactly one cluster. It has been shown that in
many cases “soft” assignment leads to better models due to similarity and
ambiguity between classes [1]. To accomplish such probabilistic training, a
composite HMM is constructed and then retrained on all of the data.

Constructing the composite HMM is straightforward. Each cluster HMM
becomes a distinct path through the composite HMM. This means that if
each of the M cluster HMMs has s states, then the composite HMM will have
S = M ×s states, leading to a S×S transition matrix. The transition matrices
of each path HMM are copied directly into the transition matrix of the com-
posite HMM along the main diagonal. The prior state probabilities and final
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Figure 2: A tree of HMMs with three levels. Each node is composed of two
HMMs that determine what subset of the incoming data is used for each child
node.

transition probabilities (i.e., the probability of exiting each path HMM) are
then copied into the composite HMM and normalized. Finally, the observa-
tion distributions from the path HMMs are also copied into the correspond-
ing states of the composite model. Once the composite model has been con-
structed, the standard Baum-Welch algorithm can be used to train the paths
with soft observation assignments.

Although this algorithm is straightforward, it can be inefficient to retrain
the composite model. The standard Baum-Welch algorithm uses time on the
order of O(N · S2) per iteration, where the model has S states and is trained
on N observations. Even though most of the state transitions are known to be
zero, they still figure in to the calculation. Thus, training a composite model
composed of M paths will take at least

N · S2

N ·M · s2
=

N · (M · s)2

N ·M · s2
= M (3)

more time than training the path HMMs individually. Furthermore, the com-
posite model will almost certainly require many more iterations to converge
due to the extra parameters to estimate, which will further increase the train-
ing time. Alon et. al. have developed a more efficient algorithm for training
with soft assignments [1] that is similar to the Baum-Welch algorithm except
that the probability of membership of each observation to each path is taken
to be a hidden variable along with the typical hidden state memberships.

2.2 The Tree of Composite HMMs

Two factors motivate the use of trees of HMMs to automatically learn tempo-
ral clusters. First, compared to the composite model described above, a tree
of HMMs will require less time to train. Second, the tree can potentially de-
compose the data more sensibly since each level need only split the dataset
into two parts rather than M separate clusters. For datasets that exhibit natu-
ral divisions that match this model, we would expect to see an improvement
in modeling performance as well as a gain in efficiency.

A tree of HMMs is defined here as a binary tree where each node contains
two HMMs (see Figure 2). The purpose of the two HMMs is to model different
temporal clusters or groups of clusters in the dataset, thus dividing the data
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into two distinct parts. Each of these parts is then sent to the child node cor-
responding to the HMM that better models it. This continued bifurcation of
the dataset becomes fully decomposed at the leaves of the tree. It is impor-
tant to note that the tree of HMMs is not a binary decision tree. Instead, it is a
hierarchical model of all of the data. Thus, the leaf nodes do not represent de-
cisions, rather they form the final step in the decomposition of the data into
distinct clusters.

Each node in the tree will use time proportional to O(ns2), where each
HMM has s states and is trained on n examples. Furthermore, the number of
iterations needed for training to converge in each node is far lower than for
the composite model, which also contributes to faster training.

One important question about the tree model is how the tree as a whole
assigns a probability (i.e., p(O | λ)), where λ represents the tree model, to a
particular observation. Three possibilities were tested empirically:

1. p(O | λ) = probability of best leaf
Only the leaf nodes matter in this model. Every HMM in a leaf node is
evaluated for the given observation and the highest probability is cho-
sen as the probability assigned by the tree.

2. p(O | λ) = probability of best path node
In this model, the tree of HMMs is treated like a decision tree in that are
selected by recursively traversing down the tree from the root by seeing
which of the two HMMs in each node better models the given observa-
tion. In this mode, the model can be seen as a hierarchical decomposi-
tion within which the appropriate scale for the observation is unknown.

3. p(O | λ) = probability of best path leaf
This model is similar to the previous model in that the tree of HMMs is
treated as a decision tree. Here, however, the probability of the obser-
vation given the tree is taken to be the probability assigned by the leaf
HMM.

Extensive testing indicates that, at least for our datasets, the leaf models
generalize to novel data better than the internal decision models.

3 Experiments

In this section we relate the results of several experiments. In the first ex-
periment we replicate the synthetic, ergodic HMM discrimination task from
[1]. We then demonstrate cluster discovery on real data from a handwriting
gesture task. Finally, we present results from the motivating task of discover-
ing gestural structure in a large dataset of people moving around in an office
building.
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δµ
σ 1.50 1.75 2.00 2.25 2.50

Alon 0 8 50 46 50
Smyth 0 0 50 50 50
Trees 0 0 50 50 50

Table 1: The results of the ergodic HMM experiment showing the number of
correct trials, out of 50, given a relative separation between the means.

A B D L N O

Figure 3: Example letter gestures from the Quickwriting data set.

3.1 Ergodic Process Discrimination

The goal of this experiment is to elicit differences between learning algo-
rithms as the similarity between clusters increases. Fifty observation sequences
of length 200 are generated from each of two known HMMs. Each HMM
has two states, and the corresponding states between the models have the
same Gaussian distributions but different transition matrices. The indepen-
dent variable in the experiment is mu2, the mean of the second state of each
HMM. As mu2 approaches the mean of the first state, mu1, the clusters be-
come more ambiguous. Table 3.1 shows the number of times out of 50 trials
that the system correctly assigned at least 90% of the observation sequences
to the correct cluster for each value of mu2. Since a degenerate tree of only
2 clusters is equivalent to the 2-path composite HMM produced by Smyth,
this experiment primarily serves to validate our implementations in that our
results agree with [1].

3.2 Quickwriting Data

In this section we present results on real data collected in a pen gesture con-
text. We collected data from a small number of subjects writing words with a
pen interface utilizing Perlin’s Quickwriting method [5]. Despite the fact that
Quickwriting was designed to be easily recognized, we felt that it was a good
evaluation dataset for this paper because of its balance between complexity,
in terms of the number of clusters, and the ease of training study participants
to perform the gestures. The complexity of of the gestures places it between
handwriting recognition and multiphase hand gestures in complexity. See
Figure 3 for examples of the individual gestures.

The dataset consists of 5 examples each of 5 distinct words from 5 sub-
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Accuracy Speed
Smyth 68.0% ± 0.07% 98.2s
Alon 68.6% ± 0.09% 41.4s
Tree 68.9% ± 0.20% 31.6s

Table 2: The results of the letter gesture experiment, averaged over 25 runs.

jects. We extracted the 13 letters that comprise the dataset and randomly se-
lected 30 examples of each letter. Of the 390 examples, 20% of each letter were
randomly selected as a test set. The remaining 80% were used to train com-
posite HMMs with the Smyth, Alon, and Tree algorithms. The Smyth and Alon
algorithms were given the correct number of clusters. The tree algorithm was
told to build 4 levels, or 16 models, so there were three spare classes in the
Tree model.

Despite this handicap, the Tree model achieved the same classification
performance as the other algorithms. We believe the high error rate maybe
attributable to a few very similar gestures in the dataset, for example see ’B’
(2nd from left) and ’D’ (3rd from left) in Figure 3.

Furthermore, the Tree model trained in a third of the time that it took the
Smyth method to converge, and slightly faster than the Alon method. We will
see below that as the models increase in complexity and the data set increases
in size, the computational performance advantage of the tree framework be-
comes more pronounced.

3.3 Pedestrian Flow Data

Finally we present the original motivating domain for this work: detecting
macroscopic gestures generated by people purposefully moving about in an
office building. Significant attention has been paid to manual gestures and
facial motions, but only recently have computational and perceptual mech-
anisms made it possible to begin to study the macroscopic behaviors that
people exhibit as they move about large spaces, such as office buildings. Be-
cause these gestures are not overtly communicative, they do not fit into the
standard conceptual frameworks that people rely on when modeling manual
gestures[4]. It is therefore necessary to consider data-driven models of these
gestures, to expose the temporal patterns hidden in the data. Our approach is
uniquely suited to discovering these temporal patterns in the large data sets
that are required to capture the diverse behavior observed in these spaces.

The data is comprised of readings taken from 17 virtual motion detectors
that observe a 175m2 contiguous section of an office building. The motion
detectors are simulated using cameras running background subtraction and
primitive motion detection algorithms[9]. Each raw observation vector con-
sists of 17 binary values, with each binary value representing the presence or
absence of motion in the view of one sensor. The sensors report their state
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Figure 4: Left: Receiver Operating Characteristic (ROC) curves showing the
classification performance of the Tree, Smyth, and Alon algorithms on the
pedestrian flow data. Right: ROC curves comparing Tree and Smyth algo-
rithms on a similar task.

7.5 times per second. The dataset, collected over 3 weeks, therefore poten-
tially consists of 13.5 million observations, however only about 20%, or 2.7
million observations, include at least one positive sensor reading. In the re-
sults below, we only consider these 20% of observations that include at least
one moving person in the area.

These raw 17-dimensional binary values (with 217 possible states) were
spatially clustered and then labeled with one of the 300 learned cluster la-
bels. These spatial symbols together make up the range of the 300-element
multinomial distribution used as the observation probability distribution in
the HMM models for this data.

The task in this context is the meta-supervised situation described above.
Given a subset of the training data labeled as, for example, “person approach-
ing the elevator call button”, the task is to build a classifier that correctly de-
tects new examples. We accomplish this by building two trees: one to dis-
cover and model structure in the positive class and one to discover and model
structure in the negative class. The outputs of the two trees are compared in
a likelihood ratio test framework.

The left side of Figure 4 shows the performance results for the classifiers
on the pedestrian flow data. The Tree algorithm trained both models, posi-
tive and negative, in 1783s. The Alon algorithm required 4152s to train both
models, and the Smyth method completed after 50,356s. The tree and Smyth
methods produce models with near-identical classification performance. This
is because agglomerative clustering followed by Baum-Welch re-estimation
in the Smyth case is very similar to agglomerative clustering followed by the

MERL-TR2004-054 June 2004



more efficient Alon-style re-estimation.
The right side of Figure 4 shows results form a similar data set where Smyth

and Trees produced similar classification performance. In this case the train-
ing time for the Trees model was 660s, and the training time for the Smyth
models was 7440s. We expect that in general the two kinds of models should
have comparable classification performance. We have witnessed occasional
failures with the Smyth and Alon methods of the kind demonstrated in the left
side of Figure 4, but we do not yet have a good understanding of why these
failures occur. In cases where the data happens to have a natural hierarchy
that matches the structure of our model, we would expect Trees to have su-
perior performance, while in cases where that hierarchical structure does not
well match the data, we might expect Trees to take a performance hit relative
to the Alon approach. However the drastic difference in performance shown
in the left plot is hard to understand, and seems to depend on some charac-
teristic of the dataset used for training.

4 Discussion

We have presented a framework for efficiently discovering the hidden tempo-
ral structures in large datasets. The frameworks provides efficiency on large,
complex datasets by hierarchically decomposing the data into smaller, self-
similar chunks. Furthermore this gain in efficiency is attainable without sac-
rificing a significant classification performance. We have shown the classifi-
cation performance and computational efficiency with two datasets: a man-
ual gesture data set, and a very large collection of pedestrian flow data.
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