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Abstract

Images of faces, represented as high-dimensional pixel arrays, often belong to
a manifold of intrinsically low dimension. Face recognition, and computer vision
research in general, has witnessed a growing interest in techniques that capitalize on
this observation, and apply algebraic and statistical tools for extraction and analysis of
the underlying manifold. In this chapter we describe in roughly chronological order
techniques that identify, parameterize and analyze linear and nonlinear subspaces,
from the original Eigenfaces technique to the recently introduced Bayesian method
for probabilistic similarity analysis, and discuss comparative experimental evaluation
of some of these techniques. We also discuss practical issues related to the application
of subspace methods for varying pose, illumination and expression.
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Images of faces, represented as high-dimensional pixel arrays, often belong
to a manifold of intrinsically low dimension. Face recognition, and computer
vision research in general, has witnessed a growing interest in techniques that
capitalize on this observation, and apply algebraic and statistical tools for ex-
traction and analysis of the underlying manifold. In this chapter we describe
in roughly chronological order techniques that identify, parameterize and ana-
lyze linear and nonlinear subspaces, from the original Eigenfaces technique to
the recently introduced Bayesian method for probabilistic similarity analysis,
and discuss comparative experimental evaluation of some of these techniques.
We also discuss practical issues related to the application of subspace methods
for varying pose, illumination and expression.

1 Face Space and its Dimensionality

Computer analysis of face images deals with a visual signal (light reflected off
the surface of a face) that is registered by a digital sensor as an array of pixel
values. The pixels may encode color or only intensity; In this chapter we will
assume the latter case, i.e. gray-level imagery. After proper normalization and
resizing to a fixed m-by-n size, the pixel array can be represented as a point
(i.e. vector) in an mn-dimensional image space by simply writing its pixel
values in a fixed (typically raster) order. A critical issue in the analysis of
such multi-dimensional data is the dimensionality , the number of coordinates
necessary to specify a data point. Below we discuss the factors affecting this
number in the case of face images.

1.1 Image Space vs. Face Space

In order to specify an arbitrary image in the image space, one needs to specify
every pixel value. Thus the “nominal” dimensionality of the space, dictated by
the pixel representation, is mn - a very high number even for images of modest
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size. Recognition methods that operate on this representation suffer from a
number of potential disadvantages, most of them rooted in the so-called curse
of dimensionality:

• Handling high-dimensional examples, especially in the context of similarity-
/ matching-based recognition, is computationally expensive.

• For parametric methods, the number of parameters one needs to estimate
typically grows exponentially with the dimensionality. Often this number
is much higher than the number of images available for training, making
the estimation task in the image space ill-posed.

• Similarly, for non-parametric methods, the sample complexity – the num-
ber of examples needed to efficiently represent the underlying distribution
of the data – is prohibitively high.

However, much of the surface of a face is smooth and has regular texture.
Therefore, per-pixel sampling is in fact unnecessarily dense: The value of a
pixel is typically highly correlated with the values of the surrounding pixels.
Moreover, the appearance of faces is highly constrained; for example, any
frontal view of a face is roughly symmetrical, has eyes on the sides, nose in
the middle, etc. A vast proportion of the points in the image space does not
represent physically possible faces.

Thus, the natural constraints dictate that the face images will in fact be
confined to a subspace, which is referred to as the face space.

1.2 The Principal Manifold and Basis Functions

It is common to model the face space as a (possibly disconnected) principal

manifold, embedded in the high-dimensional image space. Its intrinsic dimen-
sionality is determined by the number of degrees of freedom within the face
space; the goal of subspace analysis is to determine this number, and to extract
the principal modes of the manifold. The principal modes are computed as
functions of the pixel values and referred to as basis functions of the principal
manifold.

To make these concepts concrete, consider a straight line in R
3, passing

through the origin and parallel to the vector a = [a1, a2, a3]
T . Any point on

the line can be described by 3 coordinates; nevertheless, the subspace that
consists of all points on the line has a single degree of freedom, with the
principal mode corresponding to translation along the direction of a. Conse-
quently, representing the points in this subspace requires a single basis func-
tion: φ(x1, x2, x3) =

∑3
j=1 ajxj . The analogy here is between the line and the

face space, and between R
3 and the image space.

Note that in theory, according to the described model any face image
should fall in the face space. In practice, due to sensor noise, the signal usu-
ally will have a non-zero component outside of the face space. This introduces
uncertainty into the model and requires algebraic and statistical techniques
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capable of extracting the basis functions of the principal manifold in the pres-
ence of noise. In Section 1.3 we briefly describe Principal Component Analysis,
that plays an important role in many of such techniques. For a more detailed
discussion, see [12, 17].

1.3 Principal Component Analysis

Principal Component Analysis (PCA) [17] is a dimensionality reduction tech-
nique based on extracting the desired number of principal components of the
multi-dimensional data. The first principal component is the linear combi-
nation of the original dimensions that has the maximum variance; the n-th
principal component is the linear combination with the highest variance, sub-
ject to being orthogonal to the n − 1 first principal components.

The idea of PCA is illustrated in Figure 1(a); the axis labeled φ1 cor-
responds to the direction of maximum variance and is chosen as the first
principal component. In a 2D case, the second principal component is then
determined uniquely by the orthogonality constraints; in a higher-dimensional
space the selection process would continue, guided by the variances of the pro-
jections.

PCA is closely related to the Karhunen-Loève Transform (KLT) [21], which
was derived in the signal processing context as the orthogonal transform with
the basis Φ = [φ1, . . . , φN ]T that for any k ≤ N minimizes the average L2

reconstruction error for data points x

ε(x) =

∥

∥

∥

∥

∥

x −

k
∑

i=1

(

φT
i x

)

φi

∥

∥

∥

∥

∥

. (1)

One can show [12] that, under the assumption that the data is zero-mean,
the formulations of PCA and KLT are identical. Without loss of generality
we will hereafter assume that the data is indeed zero-mean, that is, the mean
face x̄ is always subtracted from the data.

The basis vectors in KLT can be calculated in the following way. Let X

be the N × M data matrix whose columns x1, . . . ,xM are observations of a
signal embedded in R

N ; in the context of face recognition, M is the number
of available face images and N = mn is the number of pixels in an image.
The KLT basis Φ is obtained by solving the eigenvalue problem Λ = ΦT ΣΦ,
where Σ is the covariance matrix of the data

Σ =
1

M

M
∑

i=1

xix
T
i , (2)

Φ = [φ1, . . . , φm]
T

is the eigenvector matrix of Σ, and Λ is the diagonal
matrix with eigenvalues λ1 ≥ . . . ≥ λN of Σ on its main diagonal, so that φj

is the eigenvector corresponding to the j-th largest eigenvalue. Then it can be
shown that the eigenvalue λi is the variance of the data projected on φi.
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Fig. 1. The concept of PCA/KLT. (a) Solid lines: the original basis; dashed lines:
the KLT basis. The dots are selected at regularly spaced locations on a straight
line rotated at 30o, and then perturbed by isotropic 2D Gaussian noise. (b) The
projection (1D reconstruction) of the data using only the first principal component.

Thus, to perform PCA and extract k principal components of the data,
one must project the data onto Φk – the first k columns of the KLT basis
Φ, which correspond to the k highest eigenvalues of Σ. This can be seen as a
linear projection R

N → R
k that retains the maximum energy (i.e. variance)

of the signal. Another important property of PCA is that it decorrelates the
data: the covariance matrix of ΦT

k X is always diagonal.
The main properties of PCA are summarized by the following:

x ≈ Φky , ΦT
k Φk = I , E{yiyj}i6=j = 0 (3)

namely, approximate reconstruction, orthonormality of the basis Φk and
decorrelated principal components yi = φT

i x, respectively. These properties
are illustrated in Figure 1, where PCA is successful in finding the principal
manifold, and in Figure 8(a) where it is less successful, due to clear non-
linearity of the principal manifold.

PCA may be implemented via Singular Value Decomposition (SVD): The
SVD of an M × N matrix X (M ≥ N) is given by

X = U D VT , (4)

where the M × N matrix U and the N × N matrix V have orthonormal
columns, and the N ×N matrix D has the singular values3 of X on its main
diagonal and zero elsewhere.

It can be shown that U = Φ, so that SVD allows efficient and robust
computation of PCA without the need to estimate the data covariance matrix

3 A singular value of a matrix X is the square root of an eigenvalue of XXT .
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Σ (2). When the number of examples M is much smaller than the dimension
N , this is a crucial advantage.

1.4 Eigenspectrum and Dimensionality

An important, and largely unsolved problem in dimensionality reduction is the
choice of k – the intrinsic dimensionality of the principal manifold. No analyt-
ical derivation of this number for a complex natural visual signal is available
to date. To simplify this problem, it is common to assume that in the noisy
embedding of the signal of interest (in our case, a point sampled from the face
space) in a high-dimensional space, the signal-to-noise ratio is high. Statis-
tically, that means that the variance of the data along the principal modes
of the manifold is high compared to the variance within the complementary
space.

This assumption relates to the eigenspectrum - the set of the eigenvalues
of the data covariance matrix Σ. Recall that the i-th eigenvalue is equal to the
variance along the i-th principal component; thus, a reasonable algorithm for
detecting k is to search for the location along the decreasing eigenspectrum
where the value of λi drops significantly. A typical eigenspectrum for a face
recognition problem, and the natural choice of k for such a spectrum, is shown
in Figure 3(b).

In practice the choice of k is also guided by computational constraints,
related to the cost of matching within the extracted principal manifold and
the number of available face images; please see [29] as well as Sections 2.2, 2.4
for more discussion on this issue.

2 Linear Subspaces

Perhaps the simplest case of principal manifold analysis arises under the as-
sumption that the principal manifold is linear. After the origin has been trans-
lated to the mean face (the average image in the database) by subtracting it
from every image, this means that the face space is a linear subspace of the
image space. In this section we describe methods that operate under this
assumption and its generalization – a multi-linear manifold.

2.1 Eigenfaces and Related Techniques

In their ground-breaking work in 1991 Kirby and Sirovich [19] proposed the
use of PCA for face analysis and representation. Their paper was followed by
the “Eigenfaces” technique by Turk and Pentland [35], the first application
of PCA to face recognition. Since the basis vectors constructed by PCA had
the same dimension as the input face images, they were named “Eigenfaces”.
Figure 2 shows an example of the mean face and a few of the top Eigenfaces.
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Fig. 2. Eigenfaces (from [36]): average face on the left, followed by 7 top eigenfaces.

Every face image was projected (after subtracting the mean face) into the
principal subspace; the coefficients of the PCA expansion were averaged for
each subject, resulting in a single k-dimensional representation of that sub-
ject. When a test image was projected into the subspace, Euclidean distances
between its coefficient vector and those representing each subject were com-
puted. Depending on the distance to the subject for which this distance would
be minimized, and the PCA reconstruction error (1), the image was classified
as belonging to one of the familiar subjects, as a new face, or as non-face. The
latter demonstrates the dual use of subspace techniques for detection: when
the appearance of an object class (e.g. faces) is modeled by a subspace, the
distance from this subspace can serve to classify an object as a member or
non-member of the class.

2.2 Probabilistic Eigenspaces

The role of PCA in the original Eigenfaces was largely confined to dimension-
ality reduction. The similarity between images I1, I2 was measured in terms
of the Euclidean norm of the difference ∆ = I1−I2 projected to the subspace,
essentially ignoring the variation modes both within the subspace and outside
of it. This was improved in the extension of Eigenfaces proposed by Moghad-
dam and Pentland [26, 27] that uses a probabilistic similarity measure, based
on a parametric estimate of the probability density p(∆|Ω).

A major difficulty in such estimation is that normally there is not nearly
enough data to estimate the parameters of the density in a high dimensional
space. Moghaddam and Pentland overcome this problem by using PCA to di-
vide the vector space R

N into two subspaces as shown in Figure 3: the principal
subspace F , obtained by Φk (the first k columns of Φ) and its orthogonal com-
plement F̄ spanned by the remaining columns of Φ. The operating assumption
here is that the data have intrinsic dimensionality k (at most) and thus reside
in F , with the exception of additive white Gaussian noise within F̄ . Every
image can be decomposed into two orthogonal components by projection into
these two spaces. Figure 3(a) shows the decomposition of ∆ into distance
within face space (DIFS) and distance from face space (DFFS). Moreover,
the probability density can be decomposed into two orthogonal components:

P (∆|Ω) = PF (∆|Ω) · PF̄ (∆|Ω). (5)

In the simplest case, P (∆|Ω) is a Gaussian density. As derived in [26], the
complete likelihood estimate in this case can be written as the product of two
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Fig. 3. (a) Decomposition of R
N into the principal subspace F and its orthogonal

complement F̄ for a Gaussian density, (b) a typical eigenvalue spectrum and its
division into the two orthogonal subspaces.
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= PF (∆|Ω) P̂F̄ (∆|Ω; ρ) ,

(6)

where PF (∆|Ω) is the true marginal density in F , P̂F̄ (∆|Ω; ρ) is the estimated
marginal density in F̄ , yi = φT

i ∆ are the principal components of ∆ and ε(∆)
is the PCA reconstruction error (1). The information-theoretic optimal value
for the noise density parameter ρ is derived by minimizing the Kullback-
Leibler (KL) divergence [8] and can be shown to be simply the average of the
N − k smallest eigenvalues

ρ =
1

N − k

N
∑

i=k+1

λi . (7)

This is a special case of the recent, more general factor analysis model called
Probabilistic PCA (PPCA) proposed by Tipping & Bishop [34]. In their for-
mulation, the above expression for ρ is the maximum-likelihood solution of a
latent variable model as opposed to the minimal-divergence solution derived
in [26].

In practice, the majority of the eigenvalues in F̄ can not be computed
due to insufficient data, but they can be estimated, for example, by fitting a
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nonlinear function to the available portion of the eigenvalue spectrum and es-
timating the average of the eigenvalues beyond the principal subspace. Fractal
power law spectra of the form f−n are thought to be typical of “natural” phe-
nomenon and are often a good fit to the decaying nature of the eigenspectrum,
as illustrated by Figure 3(b).

In this probabilistic framework, the recognition of a test image x is carried
out in terms of computing for every database example xi the difference ∆ =
x−xi and its decomposition into the F and F̄ components, and then ranking
the examples according to the value in (6).

2.3 Linear Discriminants: Fisherfaces

When substantial changes in illumination and expression are present, much of
the variation in the data is due to these changes. The PCA techniques essen-
tially select a subspace which retains most of that variation, and consequently
the similarity in the face space is not necessarily determined by the identity.

In [2], Belhumeur et al. propose to solve this problem with “Fisherfaces” –
an application of Fisher’s Linear Discriminant (FLD). FLD selects the linear
subspace Φ which maximizes the ratio

∣

∣ΦT SbΦ
∣

∣

|ΦT SwΦ|
(8)

where

Sb =

m
∑

i=1

Ni(x̄i − x̄)(x̄i − x̄)T ,

is the between-class scatter matrix, and

Sw =

m
∑

i=1

∑

x∈Xi

(x − x̄i)(x − x̄i)
T

is the within-class scatter matrix; m is the number of subjects (classes) in
the database. Intuitively, FLD finds the projection of the data in which the
classes are most linearly separable. It can be shown that the dimension of Φ

is at most m − 1.4

Since in practice Sw is usually singular, the Fisherfaces algorithm first
reduces the dimensionality of the data with PCA so that (8) can be computed,
and then applies FLD to further reduce the dimensionality to m − 1. The
recognition is then accomplished by a NN classifier in this final subspace. The
experiments reported in [2] were performed on data sets containing frontal
face images of 5 people with drastic lighting variations and another set with
faces of 16 people with varying expressions and again drastic illumination
changes. In all the reported experiments Fisherfaces achieve lower error rate
than Eigenfaces.

4 For comparison, note that the objective of PCA can bee seen as maximizing the
total scatter across all the images in the database.
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2.4 Bayesian Methods

Consider now a feature space of ∆ vectors, the differences between two im-
ages (∆ = Ij − Ik). One can define two classes of facial image variations:
intrapersonal variations ΩI (corresponding, for example, to different facial
expressions, illuminations, etc of the same individual) and extrapersonal vari-
ations ΩE (corresponding to variations between different individuals). The
similarity measure S(∆) can then be expressed in terms of the intrapersonal
a posteriori probability of ∆ belonging to ΩI given by the Bayes rule:

S(∆) = P (ΩI |∆) =
P (∆|ΩI)P (ΩI )

P (∆|ΩI)P (ΩI ) + P (∆|ΩE)P (ΩE)
(9)

Note that this particular Bayesian formulation, proposed by Moghaddam
et al. in [25], casts the standard face recognition task (essentially an m-ary
classification problem for m individuals) into a binary pattern classification
problem with ΩI and ΩE .

The densities of both classes are modeled as high-dimensional Gaussians,
using an efficient PCA-based method described in Section 2.2:

P (∆|ΩE) = e−

1
2
∆

T Σ
−1
E

∆

(2π)D/2|ΣE |1/2

P (∆|ΩI) = e−

1
2
∆

T Σ
−1
I

∆

(2π)D/2|ΣI |
1/2

(10)

These densities are zero-mean, since for each ∆ = Ij−Ii, there exists a Ii−Ij .
By PCA, the Gaussians are known to only occupy a subspace of image

space (face space) and thus, only the top few eigenvectors of the Gaussian
densities are relevant for modeling. These densities are used to evaluate the
similarity in (9). Computing the similarity involves first subtracting a can-
didate image I from a database example Ij . The resulting ∆ image is then
projected onto the eigenvectors of the extrapersonal Gaussian and also the
eigenvectors of the intrapersonal Gaussian. The exponentials are computed,
normalized and then combined as in (9). This operation is iterated over all
examples in the database, and the example that achieves the maximum score
is considered the match. For large databases, such evaluations are expensive
and it is desirable to simplify them by off-line transformations.

To compute the likelihoods P (∆|ΩI) and P (∆|ΩE), the database im-
ages Ij are pre-processed with whitening transformations [11]. Each image is
converted and stored as a set of two whitened subspace coefficients; yΦI for
intrapersonal space and yΦE for extrapersonal space:

y
j
ΦI

= Λ
− 1

2

I VIIj , y
j
ΦE

= Λ
− 1

2

E VEIj , (11)

where ΛX and VX are matrices of the largest eigenvalues and eigenvectors,
respectively, of ΣX (X being a substituting symbol for I or E).
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(a) (b)

Fig. 4. Signal flow diagrams for computing the similarity g between two images: (a)
The original Eigenfaces. (b) Bayesian similarity. The difference image is projected
through both sets of (intra/extra) eigenfaces in order to obtain the two likelihoods.

After this pre-processing, evaluating the Gaussians can be reduced to
simple Euclidean distances as in (12). Denominators are of course pre-
computed. These likelihoods are evaluated and used to compute the maximum

a-posteriori (MAP) similarity S(∆) in (9). Euclidean distances are computed
between the kI -dimensional yΦI vectors as well as the kE-dimensional yΦE vec-
tors. Thus, roughly 2× (kE + kI ) arithmetic operations are required for each
similarity computation, avoiding repeated image differencing and projections:

P (∆|ΩI) = P (I − Ij |ΩI ) =
e
−‖yΦI

−y
j
ΦI

‖2/2

(2π)kI/2| ΣI |1/2
,

P (∆|ΩE) = P (I − Ij |ΩE) =
e
−‖yΦE

−y
j
ΦE

‖2/2

(2π)kE/2| ΣE |1/2
.

(12)

The maximum likelihood (ML) similarity matching is even simpler since
only the intra-personal class is evaluated, leading to the following modified
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form for the similarity measure

S′(∆) = P (∆|ΩI) =
e
−‖yΦI

−y
j
ΦI

‖2/2

(2π)kI/2| ΣI |1/2
. (13)

The approach described above requires two projections of the difference
vector ∆, from which likelihoods can be estimated for the Bayesian similar-
ity measure. The computation flow is illustrated in Figure 4(b). The projec-
tion steps are linear while the posterior computation is nonlinear. Because of
the double PCA projections required, this approach has been called a “dual
eigenspace” technique. Note the projection of the difference vector ∆ onto
the “dual eigenfaces” (ΩI and ΩE) for computation of the posterior in (9).

It is instructive to compare and contrast LDA (Fisherfaces) and the
dual subspace Bayesian technique by noting the similar roles played by the
between-class/within-class and extrapersonal/intrapersonal subspaces. How-
ever, there are key differences between the two techniques and LDA can in
fact be viewed as a special case of the dual subspace Bayesian approach. One
such analysis is presented in [39] wherein PCA, LDA and Bayesian match-
ing are “unified” under a 3-parameter subspace approach and compared in
terms of performance. Likewise, other experimental studies in recent years
have shown that the intra/extra Bayesian matching technique out-performs
LDA. One should bear in mind that ultimately the only optimal probabilistic
justification for the use of LDA is for the case of two Guassian distributions of
equal covariance (although LDA tends to perform well even when this condi-
tion is not strictly true). In contrast, the dual subspace Bayesian formulation
is completely general and is probabilistic by definition and as such it makes no
appeals to Gaussianity, geometry or the symmmetry of the underlying data
or the two ”meta-classes” (intra and extra). The intra/extra probability dis-
tributions can take on any form (eg. arbitrary mixture models) and not just
single Gaussians – although the latter case does allow for easy visualization
(by diagonalizing the dual covariances as two sets of “eigenfaces”).

2.5 ICA & Source Separation

While PCA minimizes the sample covariance (second-order dependency) of
the data, Independent Component Analysis (ICA) [18, 6] minimizes higher-
order dependencies as well, and the components found by ICA are designed
to be non-Gaussian. Like PCA, ICA also yields a linear projection R

N → R
M

but with different properties:

x ≈ Ay , AT A 6= I , P (y) ≈
∏

p(yi) , (14)

that is, approximate reconstruction, non-orthogonality of the basis A and the
near factorization of the joint distribution P (y) into marginal distributions of
the (non-Gaussian) ICs.
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(a) (b)

Fig. 5. ICA vs. PCA decomposition of a 3D data set. (a) the bases of PCA (orthogo-
nal) and ICA (non-orthogonal). (b) Left: the projection of the data onto the top two
principal components (PCA). Right: the projection onto the top two independent
components (ICA). From [1].

An example of ICA basis is shown in Figure 5, where it is computed from
a set of 3D points. The 2D subspace recovered by ICA appears to reflect
the distribution of the data much better than the subspace obtained with
PCA. Another example of an ICA basis is shown in Figure 8(b) where we
see two unordered non-orthogonal IC vectors, one of which is roughly aligned
with the first principal component vector in Figure 8(a) — i.e., the direction
of maximum variance. Note that the actual non-Gaussianity and statistical
independence achieved in this toy example are minimal at best, and so is the
success of ICA in recovering the principal modes of the data.

ICA is intimately related to the blind source separation problem: decom-
position of the input signal (image) x into a linear combination (mixture) of
independent source signals. Formally, the assumption is that xT = AsT, with
A the unknown mixing matrix. ICA algorithms 5 try to find A or the sepa-

rating matrix W such that uT = WxT = WAsT . When the data consist of
M observations with N variables, the input to ICA is arranged in an N ×M
matrix X.

Bartlett et al. [1, 10] investigated the use of ICA framework for face recog-
nition in two fundamentally different architectures:

Architecture I Rows of S are independent basis images, which combined
by A yield the input images X. Learning W allows to estimate the ba-
sis images in the rows of U. In practice, for reasons of computational
tractability, PCA is first performed on the input data X to find the top K
eigenfaces; these are arranged in the columns of a matrix E. 6 Then ICA
is performed on ET - that is, the images are variables, and the pixel values

5 A number of algorithms exist, most notably Jade [5], InfoMax and FastICA [16].
6 These Eigenfaces are linear combination of the original images, which under the

assumptions of ICA should not affect the resulting decomposition.
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Fig. 6. Basis images of ICA: Architecture I (top) and II (bottom). From [10].

are observations. Let C be the PCA coefficient matrix, that is X = CET .
Then the k independent ICA basis images (Figure 6, top) are estimated
by the rows of U = WET , and the coefficients for the data are computed
from X = EW−1U.

Architecture II In this architecture algorithm assumes that the sources in
S are independent coefficients, while the columns of the mixing matrix
A are the basis images; that is, the variables in the source separation
problem are the pixels. Similar to Architecture I, ICA is preceded by
PCA; however, in this case the input to ICA is the coefficient matrix C.
The resulting ICA basis consists of the columns of EA (Figure 6, bottom),
and the coefficients are found in the rows of U = WCT . These coefficients
give the factorial representation of the data.

Generally, the bases obtained with Architecture I reflect more local prop-
erties of the faces, while the bases in Architecture II have global properties
and much more resemble faces (see Figure 6).

2.6 Multi-Linear SVD: “Tensorfaces”

The linear analysis methods discussed above have been shown to be suitable
when pose, illumination or expression are fixed across the face database. When
any of these parameters is allowed to vary, the linear subspace representation
does not capture this variation well (see Section 5.1). In Section 3 we discuss
recognition with nonlinear subspaces. An alternative, multi-linear approach,
called “Tensorfaces”, has been proposed by Vasilescu and Terzopoulos in [38,
37].

Tensor is a multidimensional generalization of a matrix: a n-order tensor

A is an object with n indices, with elements denoted by ai1,...,in ∈ R. Note
that there are n ways to flatten this tensor, i.e. to rearrange the elements in
a matrix: the i-th row of A(s) is obtained by concatenating all the elements
of A of the form ai1,...,is−1,i,is+1,...,in .

A generalization of matrix multiplication for tensors is the l-mode product
A×l M of a tensor A and an m× k matrix M, where k is the l-th dimension
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(a) (b)

Fig. 7. Tensorfaces. (a) The data tensor; the four dimensions visualized are iden-
tity, illumination, pose and the pixel vector. The fifth dimension corresponds to
expression (only sub-tensor for neutral expression is shown). (b) The Tensorfaces
decomposition. From [37].

of A:

(A×l M)i1,...il−1,j,il+1,...in
=

k
∑

i=1

ai1,...il−1,i,il+1,...inmji. (15)

Under this definition, Vasilescu and Terzopoulos propose in [38] an algorithm
they call n-mode SVD, that decomposes an n-dimensional tensor A into

A = Z ×1 U1 ×2 U2 · · · ×n Un. (16)

The role of the core tensor Z in this decomposition is similar to the role of
the singular value matrix Σ in SVD (4): it governs the interactions between
the mode matrices U1, . . . ,Un which contain the orthonormal bases for the
spaces spanned by the corresponding dimensions of the data tensor. The mode
matrices can be obtained by flattening the tensor across the corresponding
dimension and performing PCA on the columns of the resulting matrix; then
the core tensor is computed as

Z = A×1 UT
1 ×2 UT

2 · · · ×N UT
n .

The notion of tensor can be applied to a face image ensemble in the fol-
lowing way [38]: consider a set of N -pixel images of Np people’s faces, each
photographed in Nv viewpoints, with Ni illuminations and Ne expressions.
The entire set may be arranged in a Np × Nv × Ni × Ne × N tensor of order
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5. Figure 7(a) illustrates this concept: only 4 dimensions are shown; to visu-
alize the fifth one (expression), imagine that the four-dimensional tensors for
different expressions are “stacked”.

In this context, the face image tensor can be decomposed into

A = Z ×1 Up ×2 Uv ×3 Ui ×4 Ue ×5 Upixels. (17)

Each mode matrix represents a parameter of the object appearance. For ex-
ample, the columns of the Ne × Ne matrix Ue span the space of expression
parameters. The columns of Upixels span the image space; these are exactly
the eigenfaces which would be obtained by direct PCA on the entire data set.

Every person in the database can be represented by a single Np vector,
which contains coefficients with respect to the bases comprising the tensor

B = Z ×2 Uv ×3 Ui ×4 Ue ×5 Upixels.

For a given viewpoint v, illumination i and expression e, an Np×N matrix
Bv,i,e can be obtained by indexing into B for v, i, e and flattening the resulting
Np×1×1×1×N sub-tensor along the identity (people) mode. Now a training
image xp,v,e,i of a person j under the given conditions can be written as

xp,v,e,i = BT
v,i,e cp, (18)

where cj is the j-th row vector of Up.
Given an input image x, a candidate coefficient vector cv,i,e is computed

for all combinations of viewpoint, expression and illumination, solving the
equation in (18). The recognition is carried out by finding the value of j that
yields the minimum Euclidean distance between c and the vectors cj across
all illuminations, expressions and viewpoints.7

In [38] the authors report experiments involving the data tensor consisting
of images of Np = 28 subjects photographed in Ni = 3 illumination conditions
from Nv = 5 viewpoints, with Ne = 3 different expressions; the images were
resized and cropped so that they contain N = 7493 pixels. The performance
of TensorFaces is reported to be significantly better than that of standard
Eigenfaces described in Section 2.1.

3 Nonlinear Subspaces

In this section we describe a number of modeling techniques for principal man-
ifolds which are strictly nonlinear. We must emphasize that while the mathe-
matics of these methods are readily applicable to all types of data, in practice
one should always distinguish between the intrinsic nonlinearity of the data

7 This technique can also be used to estimate the parameters (of illumination, etc.)
associated with the variability of the input images.
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(a) (b) (c)

Fig. 8. (a) PCA basis (linear, ordered and orthogonal) (b) ICA basis (linear, un-
ordered and non-orthogonal), (c) Principal Curve (parameterized nonlinear mani-
fold). The circle shows the data mean.

and the nonlinearity which arises due to the (improper) choice of parameter-
ization. For example, object translation is linear but its visual representation
(as spatially sampled in the image, for example) can be highly nonlinear. A
judicious choice of the coordinate frame (very often an ojbect-centered one)
will linearize the data manifold, thus obviating the need for computationally
difficult and intractable nonlinear modeling techniques. Therefore, whenever
possible one should seek the “right” parameterization for a given problem.

3.1 Principal Curves and Nonlinear PCA

The defining property of nonlinear principal manifolds is that the inverse

image of the manifold in the original space R
N is a nonlinear (curved) lower-

dimensional surface that “passes through the middle of the data” while min-
imizing the sum total distance between the data points and their projections
on that surface. Often referred to as principal curves [14], this formulation is
essentially a nonlinear regression on the data. An example of a principal curve
is shown in Figure 8(c).

One of the simplest methods for computing nonlinear principal manifolds is
the nonlinear PCA (NLPCA) auto-encoder multi-layer neural network [20, 9]
shown in Figure 9. The so-called “bottleneck” layer forms a lower-dimensional
manifold representation by means of a nonlinear projection function f(x), im-
plemented as a weighted sum-of-sigmoids. The resulting principal components
y have an inverse mapping with a similar nonlinear reconstruction function
g(y), which reproduces the input data as accurately as possible. The NLPCA
computed by such a multi-layer sigmoidal neural network is equivalent — with
certain exceptions8 — to a principal surface under the more general definition

8 The class of functions attainable by this neural network restricts the projection
function f() to be smooth and differentiable, hence suboptimal in some cases [22].
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g(y)f(x)

Y XX
Fig. 9. An auto-associative (“bottleneck”) neural network for computing principal
manifolds y ∈ R

k in the input space x ∈ R
N .

[13, 14]. To summarize, the main properties of NLPCA are:

y = f(x) , x ≈ g(y) , P (y) = ? (19)

corresponding to nonlinear projection, approximate reconstruction and typi-
cally no prior knowledge regarding the joint distribution of the components,
respectively (however, see Zemel [43] for an example of devising suitable pri-
ors in such cases). The principal curve in Figure 8(c) was generated with a
2-4-1-4-2 layer neural network of the type shown in Figure 9. Note how the
principal curve yields a compact and relatively accurate representation of the
data, in contrast to the linear models (PCA and ICA).

3.2 Kernel-PCA and Kernel-Fisher Methods

Recently nonlinear principal component analysis has been revived with the
“kernel eigenvalue” method of Schölkopf et al. [32]. The basic methodology
of KPCA is to apply a nonlinear mapping to the input Ψ(x) : R

N → R
L and

then solve for a linear PCA in the resulting feature space R
L, where L is larger

than N and possibly infinite. Because of this increase in dimensionality, the
mapping Ψ(x) is made implicit (and economical) by the use of kernel functions
satisfying Mercer’s theorem [7]

k(xi,xj) = (Ψ(xi) · Ψ(xj)), (20)

where kernel evaluations k(xi,xj) in the input space correspond to dot-
products in the higher dimensional feature space. Because computing covari-
ance is based on dot-products, performing a PCA in the feature space can be
formulated with kernels in the input space without the explicit (and possibly
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prohibitively expensive) direct computation of Ψ(x). Specifically, assuming
that the projection of the data in feature space is zero-mean (“centered”), the
covariance is given by

ΣK = < Ψ(xi) , Ψ(xi)
T > (21)

with the resulting eigenvector equation λV = ΣKV. Since the eigenvectors
(columns of V) must lie in the span of the training data Ψ(xi), it must be
true that for each training point

λ(Ψ(xi) ·V) = (Ψ(xi) · ΣKV) for i = 1, ... T , (22)

and that there must exist coefficients {wi} such that

V =

T
∑

i=1

wiΨ(xi) . (23)

Using the definition of ΣK , substituting the above equation into (22) and
defining the resulting T -by-T matrix K by Kij = (Ψ(xi) · Ψ(xj)) leads to
the equivalent eigenvalue problem formulated in terms of kernels in the input
space:

Tλw = Kw , (24)

where w = (w1, ..., wT )T is the vector of expansion coefficients of a given
eigenvector V as defined in (23). The kernel matrix Kij = k(xi,xj) is then
diagonalized with a standard PCA9. Orthonormality of the eigenvectors, (Vn ·
Vn) = 1, leads to the equivalent normalization of their respective expansion
coefficients, λn(wn · wn) = 1.

Subsequently, the KPCA principal components of any input vector can be
efficiently computed with simple kernel evaluations against the dataset. The
n-th principal component yn of x is given by

yn = (Vn · Ψ(x)) =

T
∑

i=1

wn
i k(x,xi), (25)

where Vn is the n-th eigenvector of the feature space defined by Ψ . As with
PCA, the eigenvectors Vn can be ranked by decreasing order of their eigen-
values λn and an d-dimensional manifold projection of x is y = (y1, ..., yd)

T ,
with individual components defined by (25).

A significant advantage of KPCA over neural network and principal curves
is that KPCA does not require nonlinear optimization, is not subject to over-
fitting and does not require prior knowledge of network architecture or the
number of dimensions. Furthermore, unlike traditional PCA, one can use more

9 However, computing ΣK in (21) requires “centering” the data by computing
the mean of Ψ(xi). However, since there is no explicit computation of Ψ(xi), the
covariance matrix K must be centered instead (for details see [32]).
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eigenvector projections than the input dimensionality of the data (since KPCA
is based on the matrix K, the number of eigenvectors or features available
is T ). On the other hand, the selection of the optimal kernel (and its as-
sociated parameters) remains an “engineering problem.” Typical kernels in-
clude Gaussians exp(−‖xi − xj‖)

2/σ2), polynomials (xi · xj)
d and sigmoids

tanh(a(xi · xj) + b), all of which satisfy Mercer’s theorem [7].
Similar to the derivation of KPCA, one may extend the Fisherfaces method

(see Section 2.3) by applying the FLD in the feature space. In [42] Yang
derives the Kernel Fisherfaces algorithm, that maximizes the between-scatter
to within-scatter ratio in the feature space through the use of the kernel matrix
K. In experiments on two data sets that contained images from 40 and 11
subjects, respectively, with varying pose, scale and illumination, this algorithm
showed performance clearly superior to that of ICA, PCA and KPCA and
somewhat better than that of the standard Fisherfaces.

4 Empirical Comparison of Subspace Methods

In [23] Moghaddam reports on an extensive evaluation of many of the sub-
space methods described above on a large subset of FERET dataset [31] (see
also Chapter 13). The experimental data consisted of a training “gallery”
of 706 individual FERET faces and 1,123 “probe” images containing one or
more views of every person in the gallery. All these images were aligned and
normalized as described in [27]. The multiple probe images reflected different
expressions, lighting and with glasses on/off, etc. The study compared the
Bayesian approach described in Section 2.4 to a number of other techniques,
and tested the limits of the recognition algorithms with respect to image res-
olution or equivalently the amount of visible facial detail: since the Bayesian
algorithm was independently evaluated in DARPA’s 1996 FERET face recog-
nition competition [31] with medium resolution images (84-by-44 pixels) —
achieving an accuracy of ≈ 95% on O(103) individuals — it was decided to
lower the resolution (the number of pixels) by a factor 16. Therefore, the
aligned faces in the dataset were downsampled to 21-by-12 pixels, yielding
input vectors in a R

N=252 space. Several examples are shown in Figures 10(a)
and 10(b).

The reported results were obtained with a 5-fold Cross-Validation (CV)
analysis. The total dataset of 1829 faces (706 unique individuals and their
collective 1123 probes) was randomly partitioned into 5 subsets with unique
(non-overlapping) individuals and their associated probes. Each subset con-
tained both gallery and probe images of ≈ 140 unique individuals. For each of
the 5 subsets, the recognition task was correctly matching the multiple probes
to the ≈ 140 gallery faces using the other 4 subsets as training data. Note
that with N = 252 and using 80% of the entire dataset for training, there are
nearly 3 times as many training samples than the data dimensionality, thus
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(a) (b)

(c) (d)

Fig. 10. Experiments on FERET data. (a) Several faces from the gallery. (b) Mul-
tiple probes for one individual, with different facial expressions, eye-glasses, variable
ambient lighting and image contrast, etc. (c) Eigenfaces. (d) ICA basis images.

parameter estimations (for PCA, ICA, KPCA and the Bayesian method) were
properly over-constrained.

The resulting 5 experimental trials were pooled to compute the mean and
standard deviation of the recognition rates for each method. The fact that the
training and testing sets had no overlap in terms of individual identities led to
an evaluation of the algorithms’ generalization performance — the ability to
recognize new individuals which were not part of the manifold computation
or density modeling with the training set.

The baseline recognition experiments used a default manifold dimensional-
ity of k = 20. This choice of k was made for two reasons: it led to a reasonable
PCA reconstruction error of MSE = 0.0012 (or 0.12% per pixel with a nor-
malized intensity range of [0,1]) and a baseline PCA recognition rate of ≈ 80%
(on a different 50/50 partition of the dataset) thus leaving a sizeable margin
for improvement. Note that since the recognition experiments were essentially
a 140-way classification task, chance performance was approximately 0.7%.

4.1 PCA-based Recognition

The baseline algorithm for these face recognition experiments was standard
PCA (Eigenface) matching. The first 8 principal eigenvectors computed from
a single partition are shown in Figure 10(c). Projection of the test set probes
onto the 20-dimensional linear manifold (computed with PCA on the training
set only) followed by nearest-neighbor matching to the ≈ 140 gallery images
using a Euclidean metric yielded a mean recognition rate of 77.31% with
the highest rate achieved being 79.62% as shown in Table 1. The full image-
vector nearest-neighbor (template matching) — i.e., on x ∈ R

252 — yielded a
recognition rate of 86.46% (see dashed line in Figure 11). Clearly, performance
is degraded by the 252 → 20 dimensionality reduction, as expected.
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4.2 ICA-based Recognition

For ICA-based recognition (Architecture II, see Section 2.5) two different al-
gorithms based on 4th-order cumulants were tried: the “JADE” algorithm of
Cardoso [5] and the fixed-point algorithm of Hyvärinen & Oja [15]. In both
algorithms a PCA whitening step (“sphering”) preceded the core ICA decom-
position. The corresponding non-orthogonal JADE-derived ICA basis is shown
in Figure 10(d). Similar basis faces were obtained with Hyvärinen’s method.
These basis faces are the columns of the matrix A in (14) and their linear
combination (specified by the ICs) reconstructs the training data. The ICA
manifold projection of the test set was obtained using y = A−1x. Nearest-
neighbor matching with ICA using Euclidean L2 norm resulted in a mean
recognition rate of 77.30% with the highest rate being 82.90% as shown in
Table 1. We found little difference between the two ICA algorithms and noted
that ICA resulted in the largest performance variation in the 5 trials (7.66%
std. dev.). Based on the mean recognition rates it is unclear whether ICA
provides a systematic advantage over PCA and whether “more non-Gaussian”
and/or “more independent” components result in a better manifold for recog-

nition purposes with this dataset.
Note that the experimental results of Bartlett et al. [1] with FERET faces

did favor ICA over PCA. This seeming disagreement can be reconciled if one
considers the differences in the experimental setup and in the choice of the
similarity measure. First, the advantage of ICA was seen primarily with more
difficult time-separated images. In addition, compared to [1] the faces in this
experiment were cropped much tighter, leaving no information regarding hair
and face shape, and also were much lower in resolution; factors which when
combined make the recognition task much harder.

The second factor is the choice of the distance function used to measure
similarity in the subspace. This matter was further investigated by Draper et

al. in [10]. They found that the best results for ICA are obtained using the
cosine distance, while for Eigenfaces the L1 metric appears to be optimal; with
L2 metric, which was also used in the experiments in [23], the performance of
ICA (Architecture II) was very similar to that of Eigenfaces.

4.3 KPCA-based Recognition

For KPCA, the parameters of Gaussian, polynomial and sigmoidal kernels
were first fine-tuned for best performance with a different 50/50 partition val-
idation set, and Gaussian kernels were found to be the best for this dataset.
For each trial, the kernel matrix was computed from the corresponding train-
ing data. Both the test set gallery and probes were projected onto the kernel
eigenvector basis (25) in order to obtain the nonlinear principal components
which were then used in nearest-neighbor matching of test set probes against
the test set gallery images. The mean recognition rate was found to be 87.34%
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Table 1. Recognition accuracies (in %) with k = 20 subspace projections using
5-fold Cross-Validation.

Partition PCA ICA KPCA Bayes

1 78.00 82.90 83.26 95.46

2 79.62 77.29 92.37 97.87

3 78.59 79.19 88.52 94.49

4 76.39 82.84 85.96 92.90

5 73.96 64.29 86.57 93.45

Mean 77.31 77.30 87.34 94.83

Std. Dev. 2.21 7.66 3.39 1.96

Table 2. Comparison of various techniques across multiple attributes (k = 20).

PCA ICA KPCA Bayes

Accuracy 77% 77% 87% 95%

Complexity 108 109 109 108

Uniqueness yes no yes yes

Projections linear linear nonlinear linear

with the highest rate being 92.37% as shown in Table 1. The standard devi-
ation of the KPCA trials was slightly higher (3.39) than that of PCA (2.21)
but Figure 11 indicates that KPCA does in fact do better than both PCA
and ICA, hence justifying the use of nonlinear feature extraction.

4.4 MAP-based Recognition

For Bayesian similarity matching, appropriate training ∆s for the two classes
ΩI (Figure 10(b)) and ΩE (Figure 10(a)a) were used for the dual PCA-based
density estimates P (∆|ΩI) and P (∆|ΩE), which were both modeled as single
Gaussians with subspace dimensions of kI and kE , respectively. The total
subspace dimensionality k was divided evenly between the two densities by
setting kI = kE = k/2 for modeling.10

With k = 20, Gaussian subspace dimensions of kI = 10 and kE = 10 were
used for P (∆|ΩI) and P (∆|ΩE), respectively. Note that kI + kE = 20, thus
matching the total number of projections used with the 3 principal manifold
techniques. Using the maximum a posteriori (MAP) similarity in (9), the
Bayesian matching technique yielded a mean recognition rate of 94.83% with
the highest rate achieved being 97.87% as shown in Table 1. The standard

10 In practice, kI > kE yields good results. In fact as kE → 0, one obtains a
maximum-likelihood similarity S = P (∆|ΩI) with kI = k, which for this dataset
is only few percent less accurate than MAP [24].
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Fig. 11. Recognition performance of PCA, ICA, and KPCA manifolds vs. Bayesian
(MAP) similarity matching with a k = 20 dimensional subspace (dashed line is
performance of nearest-neighbor matching with the full-dimensional image vectors).

deviation of the 5 partitions for this algorithm was also the lowest (1.96) —
see Figure 11.

4.5 Compactness of Manifolds

The performance of different methods with different size manifolds can be
compared by plotting their recognition rates R(k) as a function of the first
k principal components. For the manifold matching techniques, this sim-
ply means using a subspace dimension of k (the first k components of
PCA/ICA/KPCA), whereas for the Bayesian matching technique this means
that the subspace Gaussian dimensions should satisfy kI + kE = k. Thus all
methods used the same number of subspace projections. This test was the
premise for one of the key points investigated in [23]: given the same number
of subspace projections, which of these techniques is better at data modeling
and subsequent recognition? The presumption being that the one achieving
the highest recognition rate with the smallest dimension is preferred.

For this particular dimensionality test, the total dataset of 1829 images
was partitioned (split) in half: a training set of 353 gallery images (randomly
selected) along with their corresponding 594 probes and a testing set con-
taining the remaining 353 gallery images and their corresponding 529 probes.
The training and test sets had no overlap in terms of individuals’ identities.
As in the previous experiments, the test set probes were matched to the test
set gallery images based on the projections (or densities) computed with the
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Fig. 12. Recognition accuracy R(k) of PCA, KPCA and Bayesian similarity with
increasing dimensionality k of the principal subspace (ICA results, not shown, are
similar to PCA).

training set. The results of this experiment are shown in Figure 12 which plots
the recognition rates as a function of the dimensionality of the subspace k.
This is a more revealing comparison of the relative performance of the dif-
ferent methods since compactness of the manifolds — defined by the lowest
acceptable value of k — is an important consideration in regards to both
generalization error (over-fitting) and computational requirements.

4.6 Performance of Manifolds

The relative performance of the principal manifold techniques and Bayesian
matching is summarized in Table 1 and Figure 11. The advantage of proba-
bilistic matching over metric matching on both linear and nonlinear manifolds
is quite evident (≈18% increase over PCA and ≈8% over KPCA). Note that
the dimensionality test results in Figure 12 indicate that KPCA out-performs
PCA by a ≈10% margin, and even more so with only few principal components
(a similar effect is reported by Schölkopf [32] where KPCA out-performs PCA
in low-dimensional manifolds). However, Bayesian matching achieves ≈90%
with only four projections — 2 for each P (∆|Ω) — and dominates both PCA
and KPCA throughout the entire range of subspace dimensions in Figure 12.

A comparison of the subspace techniques with respect to multiple criteria
is shown in Table 2. Note that PCA, KPCA and the dual subspace density
estimation are uniquely defined for a given training set (making experimen-
tal comparisons repeatable), whereas ICA is not unique due to the variety
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of different techniques used to compute the basis and the iterative (stochas-
tic) optimizations involved. Considering the relative computation (of train-
ing), KPCA required ≈ 7× 109 floating-point operations compared to PCA’s
≈ 2 × 108 operations. On the average, ICA computation was one order of
magnitude larger than PCA. Since the Bayesian similarity method’s learning
stage involves two separate PCAs, its computation is merely twice that of
PCA (the same order of magnitude).

Considering its significant performance advantage (at low subspace dimen-
sionality) and its relative simplicity, the dual-eigenface Bayesian matching
method is a highly effective subspace modeling technique for face recogni-
tion. In independent FERET tests conducted by the US Army Laboratory
[31], the Bayesian similarity technique out-performed PCA and other sub-
space techniques such as Fisher’s Linear Discriminant (by a margin of at least
10%). Experimental results described above show that a similar recognition
accuracy can be achieved using mere “thumbnails” with 16 times fewer pixels
than in the images used in the FERET test. These results demonstrate the
Bayesian matching technique’s robustness with respect to image resolution,
thus revealing the surprisingly small amount of facial detail that is required
for high accuracy performance with this learning technique.

5 Methodology and Usage

In this section we discuss issues that require special care from the practitioner,
in particular, the approaches designed to handle database with varying imag-
ing conditions. We also present a number of extensions and modifications of
the subspace methods.

5.1 Multi-View Approach for Pose

The problem of face recognition under general viewing conditions (change
in pose) can also be approached using an eigenspace formulation. There are
essentially two ways of approaching this problem using an eigenspace frame-
work. Given M individuals under C different views, one can do recognition
and pose estimation in a universal eigenspace computed from the combination
of MC images. In this way, a single parametric eigenspace will encode both
identity as well as pose. Such an approach, for example, has been used by
Murase and Nayar [28] for general 3D object recognition.

Alternatively, given M individuals under C different views, we can build
a view-based set of C distinct eigenspaces, each capturing the variation of the
M individuals in a common view. The view-based eigenspace is essentially an
extension of the eigenface technique to multiple sets of eigenvectors, one for
each combination of scale and orientation. One can view this architecture as a
set of parallel observers, each trying to explain the image data with their set of
eigenvectors. In this view-based, multiple-observer approach, the first step is
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(a)
(b)

Fig. 13. Parametric vs. view-based eigenspace methods. (a) Reconstructions of the
input image (left) with parametric (middle) and view-based (right) eigenspaces.
Top - training image, bottom - novel (test) image. (b) Schematic illustration of the
difference in the way the two approaches span the manifold.

to determine the location and orientation of the target object by selecting the
eigenspace which best describes the input image. This can be accomplished
by calculating the likelihood estimate using each viewspace’s eigenvectors and
then selecting the maximum.

The key difference between the view-based and parametric representations
can be understood by considering the geometry of face space, schematically
illustrated in Figure 13(b). In the high-dimensional vector space of an input
image, multiple-orientation training images are represented by a set of C
distinct regions, each defined by the scatter of M individuals. Multiple views of
a face form non-convex (yet connected) regions in image space [3]. Therefore,
the resulting ensemble is a highly complex and nonseparable manifold.

The parametric eigenspace attempts to describe this ensemble with a pro-
jection onto a single low-dimensional linear subspace (corresponding to the
first k eigenvectors of the MC training images). In contrast, the view-based
approach corresponds to C independent subspaces, each describing a particu-
lar region of the face space (corresponding to a particular view of a face); The
principal manifold vc of each region c is extracted separately. The relevant
analogy here is that of modeling a complex distribution by a single cluster
model or by the union of several component clusters. Naturally, the latter
(view-based) representation can yield a more accurate representation of the
underlying geometry.

This difference in representation becomes evident when considering the
quality of reconstructed images using the two different methods. Fig. 13 com-
pares reconstructions obtained with the two methods when trained on images
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Fig. 14. An example of multi-view face image data used in the experiments de-
scribed in Section 5.1. From [27].

of faces at multiple orientations. In the top row of Fig. 13(a), we see first
an image in the training set, followed by reconstructions of this image using,
first, the parametric eigenspace, and then, the view-based eigenspace. Note
that in the parametric reconstruction, neither the pose nor the identity of
the individual is adequately captured. The view-based reconstruction, on the
other hand, provides a much better characterization of the object. Similarly,
in the bottom row of Fig. 13(a), we see a novel view (+68o) with respect
to the training set (-90o to +45o). Here, both reconstructions correspond to
the nearest view in the training set (+45o), but the view-based reconstruc-
tion is seen to be more representative of the individual’s identity. Although
the quality of the reconstruction is not a direct indicator of the recognition
power, from an information- theoretic point-of-view, the multiple eigenspace
representation is a more accurate representation of the signal content.

In [27] the view-based approach was evaluated on data similar to that
shown in Fig. 14 that consisted of 189 images — nine views of 21 people.
The viewpoints were evenly spaced from -90o to +90o along the horizontal
plane. In the first series of experiments, the interpolation performance was
tested by training on a subset of the available views 90o, 45o, 0o and testing
on the intermediate views 68o, 23o. A 90 percent average recognition rate was
obtained. A second series of experiments tested the extrapolation performance
by training on a range of views (e.g., -90o to +45o) and testing on novel views
outside the training range (e.g., +68o and +90o). For testing views separated
by 23o from the training range, the average recognition rates were 83 percent.
For 45o testing views, the average recognition rates were 50 percent.

5.2 Modular Recognition

The Eigenface recognition method is easily extended to facial features [30], as
shown in Figure 15(a). This leads to an improvement in recognition perfor-
mance by incorporating an additional layer of description in terms of facial
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(a)

(b)

Fig. 15. Modular eigenspaces. (a) The rectangular patches whose appearance is
modeled with Eigenfeatures. (b) Performance of Eigenfaces, Eigenfeatures and the
layered combination of both as a function of subspace dimension. From [30]

features. This can be viewed as either a modular or layered representation
of a face, where a coarse (low-resolution) description of the whole head is
augmented by additional (higher resolution) details in terms of salient fa-
cial features. Pentland et al. [30] called the latter component Eigenfeatures .
The utility of this layered representation (Eigenface plus Eigenfeatures) was
tested on a small subset of a large face database: a representative sample of
45 individuals with two views per person, corresponding to different facial
expressions (neutral vs. smiling). This set of images was partitioned into a
training set (neutral) and a testing set (smiling). Since the difference between
these particular facial expressions is primarily articulated in the mouth, this
feature was discarded for recognition purposes.

Fig. 15(b) shows the recognition rates as a function of the number of eigen-
vectors for Eigenface-only, Eigenfeature only, and the combined representa-
tion. What is surprising is that (for this small dataset at least) the Eigenfea-
tures alone were sufficient in achieving an (asymptotic) recognition rate of 95
percent (equal to that of the Eigenfaces).

More surprising, perhaps, is the observation that in the lower dimensions
of eigenspace, Eigenfeatures outperformed the Eigenface recognition. Finally,
by using the combined representation, one gains a slight improvement in the
asymptotic recognition rate (98 percent). A similar effect was reported by
Brunelli and Poggio [4], where the cumulative normalized correlation scores
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of templates for the face, eyes, nose, and mouth showed improved performance
over the face-only templates.

A potential advantage of the Eigenfeature layer is the ability to over-
come the shortcomings of the standard Eigenface method. A pure eigenface
recognition system can be fooled by gross variations in the input image (hats,
beards, etc.). However, the feature-based representation may still find the cor-
rect match by focusing on the characteristic non-occluded features, e.g. the
eyes and the nose.

5.3 Recognition with Sets

An interesting recognition paradigm involves the scenario in which the input
consists not of a single image but of a set of images of an unknown person.
The set may consist of a contiguous sequence of frames from a video, or of a
non-contiguous, and perhaps unordered, set of photographs, extracted from a
video or obtained from a individual snapshots. The former case is discussed in
Chapter 8 (recognition from video). In the latter case, which we consider here,
no temporal information is available. A possible approach, and in fact the one
often taken until recently, has been to apply standard recognition methods
to every image in the input set, and then combine the results - typically, by
means of voting.

However, a large set of images contains more information than every indi-
vidual image in it: it provides a clue not only on possible appearance on one’s
face, but also on the typical patterns of variation. Technically, just as a set
of images known to contain an individual’s face allows one to represent that
individual by an estimated intrinsic subspace, so the unlabeled input set leads
to a subspace estimate that represents the unknown subject. The recognition
task can then be formulated in terms of matching the subspaces.

One of the first approaches to this task has been the Mutual Subspace
Method (MSM) [41] which extracts the principal linear subspace of fixed di-
mension (via PCA), and measures the distance between subspaces by means of
principal angles – the minimal angle between any two vectors in the subspaces.
MSM has the desirable feature that it builds a compact model of the distribu-
tion of observations. However, it ignores important statistical characteristics
of the data, since the eigenvalues corresponding to the principal components,
as well as the means of the samples, are disregarded in the comparison. Thus
its decisions may be statistically sub-optimal.

A probabilistic approach to measuring subspace similarity has been pro-
posed in [33]. The underlying statistical model assumes that images of the
j-th person’s face have probability density pj ; the density of the unknown
subject’s face is denoted by p0. The task of the recognition system is then to
find the class label j∗ satisfying

j∗ = argmax
j

Pr(p0 = pj), (26)
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Therefore, given a set of images distributed by p0, solving (26) amounts to
optimally choosing between M hypotheses of the form which in statistics is
sometimes referred to as the two-sample hypothesis: that two sets of examples
come from the same distribution. A principled way of solving this task is to
choose the hypothesis j for which the Kullback-Leibler divergence between p0

and pj is minimized.
In reality the distributions pj are unknown and need to be estimated from

data, as well as p0. Shakhnarovich et al. model these distributions as Gaussians
(one per subject), which are estimated according to the method described in
Section 2.2 above; the KL divergence is then computed in closed form. In the
experiments reported in [33], this method significantly outperforms the MSM.

Modeling the distributions by a single Gaussian is somewhat limiting; in
[40], Wolf and Shashua extend this approach and propose a non-parametric
discriminative method: kernel principal angles. They devise a positive defi-
nite kernel that operates on pairs of data matrices by projecting the data
(columns) into a feature space of arbitrary dimension, in which principal an-
gles can be calculated by computing inner products between the examples (i.e.,
application of the kernel). Note that this approach corresponds to nonlinear
subspace analysis in the original space; for instance, one can use polynomial
kernels of arbitrary degree. In experiments that included face recognition task
on a set of 9 subjects, this method significantly outperformed both MSM and
the Gaussian-based KL-divergence model of [33].

6 Conclusion

Subspace methods have been shown to be highly successful in face recogni-
tion, as they have in many other vision tasks. The exposition in this chapter
roughly follows the chronological order in which these methods have evolved.
Two most notable directions in this evolution can be discerned: the transition
from linear to general, possibly non-linear and disconnected manifolds; and
the introduction of probabilistic and specifically Bayesian methods for deal-
ing with the uncertainty and with similarity. All of these methods share the
same core assumption: that such ostensibly complex visual phenomena such
as images of human faces, represented in a high-dimensional measurement
space, are often intrinsically low-dimensional. Exploiting this low dimension-
ality allows a face recognition system to simplify computations and to focus
the attention on the features of the data relevant for the identity of a person.
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