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Constructing Free Energy Approximations and
Generalized Belief Propagation Algorithms

Jonathan S. Yedidia †, William T. Freeman ‡, and Yair Weiss §

Abstract— Important inference problems in statistical physics,
computer vision, error-correcting coding theory, and artificial
intelligence can all be reformulated as the computation of
marginal probabilities on factor graphs. The belief propagation
(BP) algorithm is an efficient way to solve these problems that
is exact when the factor graph is a tree, but only approximate
when the factor graph has cycles.

We show that BP fixed points correspond to the stationary
points of the Bethe approximation of the free energy for a
factor graph. We explain how to obtain region-based free energy
approximations that improve the Bethe approximation, and
corresponding generalized belief propagation (GBP) algorithms.

We emphasize the conditions a free energy approximation must
satisfy in order to be a “valid” or “maxent-normal” approxima-
tion. We describe the relationship between four different methods
that can be used to generate valid approximations: the “Bethe
method,” the “junction graph method,” the “cluster variation
method,” and the “region graph method.”

Finally, we explain how to tell whether a region-based
approximation, and its corresponding GBP algorithm, is likely
to be accurate, and describe empirical results showing that GBP
can significantly outperform BP.

Index Terms—Belief propagation, Bethe free energy, cluster
variation method, generalized belief propagation, Kikuchi free
energy, message passing, sum-product algorithm.

I. INTRODUCTION

Problems involving probabilistic inference using graphical
models are important in a wide variety of disciplines, including
statistical physics, signal processing, artificial intelligence, and
digital communications [1], [2]. Message-passing algorithms
are a practical and powerful way to solve such problems. The
centrality of such problems and the utility of message-passing
algorithms for solving them is an explanation for the fact that
equivalent or very closely-related message-passing algorithms
have now been independently invented many times. They are
well-known by names like the forward-backward algorithm
for Hidden Markov Models [3], the Viterbi algorithm [4], [5],
Gallager’s sum-product algorithm for decoding low-density
parity check codes [6], the “turbo-decoding” algorithm [7],
[8], Pearl’s “belief propagation” algorithm for inference on
Bayesian networks [9], the “Kalman filter” for signal process-
ing [10], [11], and the “transfer matrix” approach in statistical
mechanics [12].
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In this list of “standard” belief propagation (BP) algorithms,
we have blurred a distinction between two different objectives
that one might have, and the slightly different algorithms that
result. Sometimes, one might be interested in obtaining the
one global state of a system that is most probable or otherwise
optimal. In other cases, one is interested in obtaining marginal
probabilities for some subset of the nodes of the system, given
evidence about other nodes in the system. In this paper, we
will focus exclusively on this latter problem.

In all standard BP algorithms, messages are sent from
one node in a graphical model to a neighboring node. The
algorithms are exact when the graphical model is free of
cycles. Thus, a common approach for dealing with graphical
models that do have cycles is to try to convert them to
equivalent cycle-free graphical models, and then to use the
standard BP algorithm [13]. In some cases, this is possible, but
for many other cases of practical interest, such an approach is
intractable, and one must settle for approximate methods.

Fortunately, the standard BP algorithms are well-defined,
and often give surprisingly good approximate results, for
graphical models with cycles. Nevertheless, in such cases there
are no guarantees, and sometimes the results are quite poor, or
the algorithm fails to give any result at all because it does not
converge [14]. Two major goals of this paper are to explain
why the standard BP algorithm often works so well even for
graphical models with cycles, and to use that understanding to
develop improved algorithms for cases when it does not work
well.

The class of algorithms that we will describe, which we
call generalized belief propagation (GBP) algorithms, all have
the characteristic that sets or regions of nodes will send
messages to other regions of nodes. The regions of nodes that
communicate with each other can be easily visualized in terms
of a region graph. The standard BP algorithm is a special
case of a GBP algorithm, with a particular choice of regions.
Different choices of region graphs will give different GBP
algorithms, and the user can choose to trade off complexity
for accuracy.

In practice, GBP algorithms can often dramatically out-
perform BP algorithms in terms of either their accuracy or
their convergence properties, for minimal computational cost,
if one makes an intelligent choice of regions. However, how
to optimally choose regions for a GBP algorithm remains at
this point an open research problem. We hope that this paper
contributes to this problem by delineating what classes of
constructions are likely to give good results.

We shall give a theoretical justification of GBP algorithms
by showing that their fixed points are identical to the stationary
points of a region-based free energy, which is an approxima-



tion to another free energy that can be justified by a rigorous
variational principle. The first specialized examples of such
free energies were introduced long ago in the physics literature
by by Bethe [15] and Kikuchi [16]. For the important special
case of the standard BP algorithm, we show that its fixed points
are the same as the stationary points of the Bethe free energy,
thus establishing an important basic link between a classical
algorithm and a classical approximation from physics.

One must be careful in constructing a region graph in order
to ensure that the resulting approximations are accurate. In our
original work introducing GBP algorithms [17], we focused
on a sub-class of GBP algorithms that were equivalent to free
energy approximations based on Kikuchi’s cluster variation
method [16], [18], [19], [20]. We shall show that this method
is only one of a variety of methods to generate region graphs
and their corresponding free energies and message-passing
algorithms.

In our original work, we also focused on graphical models
defined in terms of pair-wise or higher-order Markov ran-
dom fields (MRFs). In this paper, we shall instead focus
on graphical models defined in terms of factor graphs. All
our results can be re-expressed for other graphical models
without difficulty. Using factor graphs has certain practical
advantages–in particular we can refer the neophyte reader to
the excellent review by Kschischang et.al. [21]. That review
explains the equivalence to factor graphs of other graphical
models such as Bayesian networks, Tanner graphs for error-
correcting codes, or pair-wise MRFs, and explains the standard
BP algorithm in its various guises as an algorithm that operates
on factor graphs.

There have been a number of other recent papers that have
tried to explain, reformulate, or generalize the standard belief
propagation algorithm in a variety of ways. We point the
interested reader to [22], [23], [24], [25], [26], [27], [28].

After our original work which introduced region-based free
energies and GBP algorithms based on the cluster variation
method, other works appeared which explored parallel ideas
[29], [30], [31], [32]. In fact, one of the goals of this paper
is to unify our previous approach with the one that Aji
and McEliece presented based on junction graphs [29]. We
also recommend the elegant exposition of generalized belief
propagation presented by McEliece and Yildirim in [30].

We have also previously released a number of technical
reports [33], [34], [35] that are largely superseded by this
paper, as well as a somewhat more popular introduction [36].

The outline for the rest of the paper is as follows. In section
II, we review and introduce our notation for factor graphs and
the standard BP algorithm. In sections III and IV, we introduce
and explain the physical intuition behind variational free
energies and region-based approximations to them. In section
V, we consider the Bethe Method which can be used to obtain
particularly simple region-based free energy approximations.
In section VI we show that the standard BP algorithm has
fixed points corresponding to the stationary points of the
Bethe approximation to the free energy. In section VII, we
describe the Region Graph Method, a very general method
for generating “valid” region graphs and their associated free
energies. In section VIII we explain how to determine whether

a particular region-based free energy approximation is likely
to give accurate answers. In section IX, we introduce GBP
algorithms, and show that there are actually a variety of ways
to define GBP algorithms for any given region graph, all of
which have identical fixed points. We focus on one particular
type of GBP algorithm, which we call the parent-to-child
algorithm. In section X, we give a detailed example of the
implementation of the parent-to-child GBP algorithm. Finally,
in section XI, we give some empirical results showing how
GBP algorithms can improve upon the accuracy of standard
BP.

We have chosen to put a large amount of material in the
appendices of this paper. The appendices describe a variety of
other methods to generate region graphs and GBP algorithms
which could easily prove to be as important in practice as the
methods described in the main text.

II. FACTOR GRAPHS AND BELIEF PROPAGATION

Let {X1, X2, ..., XN} be a set of N discrete-valued random
variables and let xi represent the possible realizations of
random variable Xi. We consider the joint probability mass
function p(X1 = x1, X2 = x2, ..., XN = xN ), which
we shall write more succintly as p(x), where x stands for
{x1, x2, ..., xN}. We suppose that p(x) factors into a product
of functions. That is, we suppose that p(x) has the very general
form

p(x) =
1

Z

∏

a

fa(xa). (1)

Here a is an index labeling M functions fA, fB, fC , ..., fM ,
where the function fa(xa) has arguments xa that are some
subset of {x1, x2, ..., xN}. We assume that the functions
fa(xa) are non-negative and finite, so that p(x) is a well-
defined probability distribution. Z is a normalization constant.

A factor graph [21] is a bipartite graph that expresses the
factorization structure in equation (1). A factor graph has a
variable node (which we draw as a circle) for each variable
xi, a factor node (which we draw as a square) for each function
fa, with an edge connecting variable node i to factor node a
if and only if xi is an argument of fa. (We shall always index
variable nodes with letters starting with i, and factor nodes
with letters starting with a.) As an example, the factor graph
corresponding to

p(x1, x2, x3, x4) =
1

Z
fA(x1, x2)fB(x2, x3, x4)fC(x4) (2)

in shown in figure 1.

We shall focus on the problem of computing marginal
probability distributions. We call the possible values of Xi

the states of variable node i. We use qi to denote the number
of possible states of variable node i. If S is a set of variable
nodes, we use xS to denote the states of the corresponding
variable nodes. pS(xS) will denote the marginal probability
function obtained by marginalizing p(x) onto the set of
variable nodes S, i.e.,

pS(xS) =
∑

x\xS

p(x). (3)
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Fig. 1. A small factor graph representing the joint probability distribution
p(x1, x2, x3, x4) = 1

Z
fA(x1, x2)fB(x2, x3, x4)fC(x4).

Here the sum over x\xS indicates that we sum over the states
of all the variable nodes not in the set S. We shall write pi(xi)
for the marginal probability function when the set S consists
of the single node i.

The belief propagation (BP) algorithm is a method for com-
puting marginal probability functions. One should note that
the problem of computing marginal probability functions is in
general hard because it can require summing an exponentially
large number of terms. We describe the BP algorithm in terms
of operations on a factor graph. As we already mentioned in
the introduction, the computed marginal probability functions
will be exact if the factor graph has no cycles, but the BP
algorithm is still well-defined and empirically often gives good
approximate answers even when the factor graph does have
cycles.

To define the BP algorithm, we first introduce messages
between variable nodes and their neighboring factor nodes
and vice versa. The message ma→i(xi) from the factor node
a to the variable node i is a vector over the possible states
of xi. This message can be interpreted as a statement from
factor node a to variable node i about the relative probabilities
that i is in its different states, based on the function fa. The
message ni→a(xi) from the variable node i to the factor node
a may in turn be interpreted as a statement about the relative
probabilities that node i is in its different states, based on all
the information that node i has except for that based on the
function fa.

The messages are updated according to the following rules:

ni→a(xi) :=
∏

c∈N(i)\a

mc→i(xi). (4)

and

ma→i(xi) :=
∑

xa\xi

fa(xa)
∏

j∈N(a)\i

nj→a(xj) (5)

Here, N(i)\a denotes all the nodes that that are neighbors of
node i except for node a, and

∑

xa\xi
denotes a sum over

all the variables xa that are arguments of fa except xi. This
standard BP algorithm is sometimes called the “sum-product”
algorithm because of the sum and product that occurs on the
right-hand-side of equation (5).

The messages are usually initialized to ma→i(xi) = 1 and
ni→a(xi) = 1 for all factor nodes a, variable nodes i, and
states xi. In fact, other initializations are also possible, and
the overall normalization of the messages can also be chosen

arbitrarily. The only important normalization condition is on
the beliefs, introduced below, which must sum to one in order
to properly represent probabilities. The messages should be
initialized to be positive, which implies, because of the non-
negativity of the factors in the message-update rules, that the
messages remain non-negative at every iteration.

The message-update rules may initially appear quite myste-
rious, and a major goal of this paper will be to explain, justify,
and ultimately improve upon them. First though, to complete
our preliminary description of the standard BP algorithm, we
introduce the belief bi(xi) at a variable node i, which is the
BP approximation to the exact marginal probability function
pi(xi). The belief bi(xi) can be computed from the equation

bi(xi) ∝
∏

a∈N(i)

ma→i(xi), (6)

where we have used the proportionality symbol ∝ to indicate
that one must normalize the beliefs so that they sum to
one. The BP message-update equations are iterated until they
(hopefully) converge, at which point the beliefs can be read
off from equation (6).

We can also use the BP algorithm to compute joint beliefs
bS(xS) over sets of variable nodes S that may contain more
than one node. Consider the important case when the set S
consists of all the variable nodes attached to the ath function
fa(xa). We denote the corresponding belief by ba(xa), which
will be given within the BP approximation by

ba(xa) ∝ fa(xa)
∏

i∈N(a)

ni→a(xi)

∝ fa(xa)
∏

i∈N(a)

∏

c∈N(i)\a

mc→i(xi). (7)
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Fig. 2. This figure illustrates how the message update rules can be derived
using the belief equations and the marginalization conditions. The one-node
belief over node i (upper left) is equal to a multi-node belief over nodes
including i, which in this case is a two-node belief (upper right), when it is
marginalized over all nodes except i. We denote marginalization by using a
hatched pattern on the marginalized variable node. If we cancel out equivalent
messages on the two sides of the equation, we obtain the message-update rules
(lower).
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We can directly derive the message update rules (4) and
(5) from the belief equations (6) and (7), along with the
marginalization condition

bi(xi) =
∑

xa\xi

ba(xa) (8)

which holds when xi is one of the arguments in the set xa.
Thus, the belief equations (6) and (7) can be considered to
define the BP algorithm, a point of view that will prove useful
later. In figure 2, we explain this point in more detail, using
diagrams to show how the message update rules follow from
the belief equations and the marginalization conditions.

The BP algorithm is normally justified as being an exact
algorithm when the factor graph has no cycles (i.e., it has the
topology of a tree.) We shall not prove that property here, but
instead simply give a small example: consider the joint proba-
bility distribution given by equation (2) as illustrated in figure
1. Suppose that we would like to compute p1(x1), the marginal
probability distribution at variable node 1. Repeatedly using
the BP equations, we find

b1(x1) ∝ mA→1(x1)

∝
∑

x2

fA(x1, x2)n2→A(x2)

∝
∑

x2

fA(x1, x2)mB→2(x2)

∝
∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)n3→B(x3)n4→B(x4)

∝
∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)mC→4(x4)

∝
∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)fC(x4) (9)

which is exactly the desired marginal probability function. We
could similarly demonstrate that equation (7) would give exact
multi-node marginal probabilities for graphs with no cycles.
We can already see from this example that for graphs with
no cycles, the BP algorithm is essentially a dynamic program-
ming algorithm that organizes the computations necessary to
compute marginal probability distributions in such a way that
they become tractable.

The BP algorithm was introduced into the coding liter-
ature by Gallager as a sub-optimal probabilistic decoding
algorithm for linear block error-correcting codes, and some
readers may be most familiar with the BP algorithm in that
context [6]. Pearl [9] introduced and popularized a version
of the algorithm, along with the widely adopted terminology
of “belief propagation,” in the context of the problem of
probabilistic inference in Bayesian networks. Readers who are
more familiar with the BP algorithm written in one of these
forms may want to consult the review by Kschischang et.al.
[21], which explains the equivalence between these forms of
the BP algorithm and the one we have chosen to use here.

III. FREE ENERGIES

In this section, we turn from simply describing the BP
algorithm to explaining its success. In section II, we saw

that the BP algorithm can be defined in terms of the be-
lief equations (6) and (7). We shall eventually show that
these belief equations correspond to the stationarity conditions
for a function of the beliefs called the Bethe free energy,
FBethe(bi, ba). This fact serves in some sense to justify the
BP algorithm even when the factor graph it operates on has
cycles, because minimizing the Bethe free energy is a sensible
approximation procedure that has a long and successful history
in physics. It also points to a variety of ways to improve
upon or generalize BP, especially by improving upon the
approximations used in the Bethe free energy. In the rest of
the paper, we will discuss all of these issues, but we first turn
to an explanation of the notion of a free energy.

Suppose that one has a system of N particles, each of which
can be in one of a discrete number of states, where the states
of the ith particle are labeled by xi. (As an example, one
might make a variety of simplifications and characterize the
states of the atoms in a magnetic crystal by whether a given
electron in each atom has an “up” spin or a “down” spin.) The
overall state of the system will be denoted by the vector x =
{x1, x2, ..., xN}. Each state of the system has a corresponding
energy E(x). A fundamental result of statistical mechanics is
that, in thermal equilibrium, the probability of a state will be
given by Boltzmann’s Law

p(x) =
1

Z(T )
e−E(x)/T . (10)

Here, T is the temperature, and Z(T ) is simply a normaliza-
tion constant, known as the partition function:

Z(T ) =
∑

x∈S

e−E(x)/T (11)

where S is the space of all possible states x of the system.
A substantial part of statistical mechanics theory is devoted

to the justification of Boltzmann’s Law. On the other hand,
if one begins with a joint probability distribution p(x) for
some non-physical system, one can view Boltzmann’s law as a
postulate that serves to define an energy for the system, where
the temperature can be set arbitrarily, as it simply sets a scale
for the units in which one measures energy. We shall take this
point of view and set T = 1 throughout the rest of this paper.
For the case of a factor graph probability distribution function
p(x) = (1/Z)

∏M
a=1 fa(xa), we therefore define the energy

E(x) of a state x to be

E(x) = −
M
∑

a=1

ln fa(xa) (12)

in order to be consistent with Boltzmann’s Law.
Note that if one or more of the factors fa(xa) are equal

to zero for particular configurations of xa, then the over-
all probability of states x which contain these forbidden
configurations is zero. The corresponding energy of states
containing forbidden configurations is infinite. A particularly
important class of factors that have forbidden configurations
are deterministic functions such as exclusive-or functions,
which are used for example in defining error-correcting codes.

The Helmholtz free energy FH of a system is

FH = − ln Z. (13)
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This free energy is a fundamentally important quantity in
statistical mechanics, because if one can calculate the func-
tional dependence of FH on quantities like a macroscopic
magnetic field H or temperature T , then it is easy to compute
experimentally measurable quantities like the response of the
system to a change in H or T . Physicists have therefore
devoted considerable energy to developing techniques which
give good approximations to FH .

One important technique is based on a variational approach.
Suppose again that p(x) is the true probability distribution of
the system, and obeys Boltzmann’s Law p(x) = e−E(x)/Z. It
may be that even if we know p(x) exactly, it is of a form that
makes the computation of FH difficult. We therefore introduce
a “trial” probability distribution b(x), which should of course
be normalized and obey 0 ≤ b(x) ≤ 1 for all x, and a
corresponding variational free energy (this quantity is also
sometimes called the Gibbs free energy) defined by

F (b) = U(b) − H(b). (14)

where U(b) is the variational average energy:

U(b) =
∑

x∈S

b(x)E(x) (15)

and H(b) is the variational entropy:

H(b) = −
∑

x∈S

b(x) ln b(x). (16)

(Note that we measure entropy using the natural logarithm
instead of the base-2 logarithm in order to be consistent with
the physics literature.)

It follows directly from our definitions that

F (b) = FH + D(b||p) (17)

where

D(b||p) ≡
∑

x∈S

b(x) ln
b(x)

p(x)
(18)

is the Kullback-Leibler divergence between b(x) and p(x).
Since there exists a theorem (e.g. Theorem 2.6.3 in [37]) that
D(b||p) is always non-negative and is zero if and only if
b(x) = p(x), we see that F (b) ≥ FH , with equality precisely
when b(x) = p(x).

Minimizing the variational free energy F (b) with respect to
trial probability functions b(x) is therefore an exact procedure
for computing FH and recovering p(x). Of course, as N
becomes large, this procedure is also totally intractable, as
b(x) will take exponentially large memory just to store. A
more practical possibility is to upper-bound FH by minimizing
F (b) over a restricted class of probability distributions. This
is the basic idea underlying the mean field approach.

One very popular mean-field form for b(x) is the factorized
form:

bMF (x) =

N
∏

i=1

bi(xi), (19)

where each bi(xi) is a normalized trial probability function
over the single variable i. Using this bMF (x), and an energy
function E(x) of the factor graph form given in equation (12),

we can easily compute the mean field free energy FMF =
UMF − HMF for an arbitrary factor graph:

UMF ({b1, ..., bN}) = −

M
∑

a=1

∑

xa

ln fa(xa)
∏

i∈N(a)

bi(xi),

(20)

HMF ({b1, ..., bN}) = −

N
∑

i=1

∑

xi

bi(xi) ln bi(xi). (21)

Minimizing FMF (b1, ..., bN ) over the bi will give us self-
consistent equations for the bi, which can be solved numer-
ically to obtain a mean-field approximation for the beliefs
bi(xi).

Instead of a factorized form, one might consider other
more complicated forms for b(x) which still lead to tractable
approximations. This is the idea behind the “structured mean-
field” approach [38]. We will not follow that path, and will
instead describe a quite different approach to approximating
F (b) in the next section; one which underlies the BP algo-
rithm.

IV. REGION-BASED FREE ENERGY APPROXIMATIONS

Kikuchi and the other physicists who further developed the
so-called cluster variation method [16], [18], [19], [20] intro-
duced a class of approximations to the variational free energy
F (b). The idea behind these approximations is similar, but
slightly different from the mean field approximation. Whereas
the factorized mean-field free energy FMF is a function of
single-node beliefs bi(xi), in a Kikuchi approximation the
approximate free energy FK will be a function of beliefs
bS(xS) over larger sets S of variable nodes.

One drawback of the cluster variation method is that in
contrast with the mean-field approach, one cannot normally
explicitly construct an overall “trial” belief vector b(x) that is
consistent with the multi-node beliefs bS(xS), and therefore
one does not normally obtain any upper bound on F [39]. On
the other hand, one can make approximations that are much
more accurate than the factorized mean-field approximation,
and there is a great deal of flexibility in the exact choice
of approximation. As we shall also see in further detail,
these approximations can be exploited to yield message-
passing algorithms, and a particularly simple version–the
Bethe approximation–will give results that are equivalent to
the standard BP algorithm.

We shall actually describe here a class of approximations
that generalize those generated by the cluster variation method
as it has been described in the physics literature, and will
therefore refer to such approximations as region-based ap-
proximations. We refer to the sub-class of approximations
specifically generated using the cluster variation method as
Kikuchi approximations.

A. Region-based Approximations

Until this point, we have essentially reviewed notions and
definitions that were developed by others. We shall now begin
to define concepts that did not appear in the previous literature;
to mark this break we now explicitly indicate important

5
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Fig. 3. An illustration of the definition of a region. Regions are sets of
variable and factor nodes in a factor graph such that all variable nodes
connected to any included factor nodes are included. Thus, the sets of nodes
{1, 2} and {B, C, 2, 3, 4} could be regions, but {B, 3} could not be a region
(since factor node B was included, variable nodes 2 and 4 should also be
included.)

new definitions and theorems. In order to aid the reader in
distinguishing the most important results in this paper, we label
those as “theorems,” while the results of lesser importance are
called “propositions.”

Definition: We define a region R of a factor graph to be a
set VR of variable nodes and a set AR of factor nodes, such
that if a factor node a belongs to AR, all the variable nodes
neighboring a are in VR.

We give examples of sets of nodes that would or would not
be considered regions in figure 3. Note that the set AR may
be empty, and that a factor a need not be included in AR even
if all its neighboring variable nodes are in VR.

We define the state xR of a region R to be the collective set
of variable node states {xi|i ∈ VR}. The marginal probability
function over a region R will be denoted by pR(xR), by
which we mean a marginalization of p(x) onto the variable
nodes in VR. The corresponding belief bR(xR) will be an
approximation to the true pR(xR).

Definition: We define the region energy ER(xR) to be

ER(xR) = −
∑

a∈AR

ln fa(xa). (22)

Note that because all the variable nodes neighboring a factor
node a ∈ AR are guaranteed to be in the region R, we can
always determine any needed state xa from the state xR.

Definitions: For any region R, we define the region average
energy UR(bR), the region entropy HR(bR), and the region
free energy FR(bR), by

UR(bR) =
∑

xR

bR(xR)ER(xR) (23)

HR(bR) = −
∑

xR

bR(xR) ln bR(xR) (24)

and
FR(bR) = UR(bR) − HR(bR). (25)

The intuitive idea behind a region-based free energy approx-
imation is that we will try to break up the factor graph into
a set of large regions that include every factor and variable

node, and say that the overall free energy is the sum of the
free energies of all the regions. Of course, if some of the large
regions overlap, then we will have erred by counting the free
energy contributed by some nodes two or more times, so we
then need to subtract out the free energies of these overlap
regions in such a way that each factor and variable node is
counted exactly once. Let us make these notions more precise.

Definitions: We define a region-based approximate entropy
HR by

HR({bR}) =
∑

R∈R

cRHR(bR) (26)

and the region-based average energy UR by

UR({bR}) =
∑

R∈R

cRUR(bR) (27)

where the chosen set of regions R, and the associated set of
counting numbers cR instantiate the approximation. We define
the region-based free energy by

FR({bR}) = UR({bR}) − HR({bR}). (28)

Note, in passing, that we could generalize these approxi-
mations by allowing for different counting numbers for the
average energy and entropy. In fact, constructing such ap-
proximations, starting with the regions used in the Bethe
approximation, but modifying the entropic counting numbers
to differ from those given in the Bethe approximation, is one
way of deriving the “fractional belief propagation algorithm”
[40] and the essentially equivalent “convexified Bethe free
energy” [41] approximation. In this paper, we will always
assume just one set of counting numbers.

In fact, not all region-based approximations to the varia-
tional free energy are equally good. At this point, we introduce
the notion of a valid region-based approximation. Later, we
shall narrow our focus even further to a sub-set of valid
approximations that we call maxent-normal region-based ap-
proximations.

Definition: We say that a set of regions R and counting
numbers cR give a valid region-based approximation when,
for every factor node a and every variable node i in the factor
graph,

∑

R∈R

cRIAR
(a) =

∑

R∈R

cRIVR
(i) = 1 (29)

where IS(x) is the set-membership indicator function indicator
function equal to 1 if x ∈ S and equal to 0 otherwise.

These conditions ensure that every factor and variable node
will be counted exactly one time in the approximation to the
free energy. If a given factor or variable node is added into
the free energy in two different regions, then there must be
another region where it is subtracted back out.

We now are in a position to prove two propositions that help
explain our interest in valid region-based approximations.

Proposition 1: (Exactness of the average energy)
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If the beliefs {bR(xR)} are equal to the corresponding exact
marginal probabilities {pR(xR)}, then the average energy

UR({bR}) =
∑

R∈R

cRUR(bR) (30)

of a valid region-based approximation will be exact.
Proof: Compare the region-based average energy

UR({bR}) = −
∑

R∈R

cR

∑

xR

bR(xR)
∑

a∈AR

ln fa(xa) (31)

with the exact average energy

U =
∑

x∈S

p(x)E(x) = −

M
∑

a=1

∑

xa

pa(xa) ln fa(xa) (32)

and note that the overcounting numbers cR guarantee that each
factor is counted exactly once in equation (31). The region-
based average energy is linear in the beliefs, so if all the {bR}
are exact in equation (31), they will properly marginalize into
the terms pa(xa) in equation (32).

On the other hand, the region-based entropy

HR({bR}) =
∑

R∈R

cRHR(bR)

= −
∑

R∈R

cR

∑

xR

bR(xR) ln bR(xR) (33)

will typically only be an approximation even if the beliefs
bR(xR) are exactly equal to the true marginal probabilities.
Nevertheless, the condition that each variable node is counted
once lets us prove the following proposition, which says that
the entropy is at least counting the total number of degrees of
freedom correctly.

Proposition 2: (Correct counting of degrees of freedom)
If the true joint probability distribution is an equiproba-

ble distribution over all possible states, and if the beliefs
{bR(xR)} are equal to the corresponding exact marginal
probabilities {pR(xR)}, then the entropy of a valid region-
based approximation is exact.

Proof: For a uniform joint probability distribution, the
entropy is just the logarithm of the number of possible
configurations,

H = ln

N
∏

i=1

qi. (34)

On the other hand, using the fact that each marginal probability
over a region, and therefore each belief over a region, will also
be a uniform distribution, the region-based entropy will be

HR =
∑

R∈R

cR ln
∏

i∈VR

qi. (35)

Because the counting numbers in a valid region-based approx-
imation guarantee that each variable node is counted exactly
once, this entropy reduces to the exact entropy.

Although these propositions, particularly the proposition
about the entropy, may not seem like very strong results, they
still provide some justification for our focus on valid region-
based approximations, in that choices of counting numbers

that did not satisfy our validity conditions would not even
give exact results for the average energy or entropy under the
restricted conditions of the propositions.

B. Constrained Region-based Free Energies

In the end, we want to find the minimum of the region-
based free energy with respect to the set of region beliefs.
More precisely, we will try to minimize the region-based free
energy with respect to the region beliefs, subject to a set of
constraints on those region beliefs.

Definition: We define a constrained region-based free energy,
entropy, or average energy to be an approximate region-
based free energy, entropy or average energy subject to the
following constraints on the region beliefs. Each region belief
bR(xR) has the form of a probability function; that is, it
must normalize to one and obey 0 ≤ bR(xR) ≤ 1 for any
state xR. Moreover, the marginal region beliefs b(xS) must
be consistent for pairs of regions if the set of variable nodes
S is included in both regions. (As we shall see, the particular
pairs of regions that we demand consistency across can change
according to the approximation.)

Because the constrained region-based free energy must be
minimized, we are most interested in the accuracy of the
constrained region-based entropy near its maximum. Of course,
the maximum of the true entropy occurs when the joint
probability distribution is uniform. We would like for a similar
property to hold for constrained region-based entropies. This
motivates the following definition.

Definition: We say that a constrained region-based free en-
ergy approximation is maxent-normal if it is valid and the
corresponding constrained region-based entropy HR({bR}
achieves its maximum when all the beliefs bR(xR) are uni-
form.

As we shall see, important classes of region-based approx-
imations, including the Bethe approximation, are provably
maxent-normal. On the other hand not all possible Kikuchi ap-
proximations, for example, are maxent-normal. We emphasize
that a region-based approximation that is not maxent-normal
cannot be expected to give good results, because it will give
wrong answers even when there is no energy term.

How does one go about selecting a set of regions R,
counting numbers cR, and consistency constraints for a given
factor graph that give a valid, or better yet, maxent-normal
approximation? There are in fact an infinite number of ways
to do that. In the next section we will describe a very
straightforward approach which we call the Bethe method,
which is guaranteed to give a maxent-normal region-based
approximation. In section VI, we then prove (in broad terms,
to be made more precise later) that the fixed points of the
standard BP algorithm correspond to stationary points of the
constrained Bethe approximation to the free energy.

In section VII, we introduce the region graph method, which
is a very general approach for constructing valid region-based
approximations, using a region graph. Region graphs play
a central role in the description both of the region graph
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free energy, and in the construction of corresponding GBP
algorithms, and provide the clear way of visualizing and
understanding a region-based approximation.

The Bethe method is an important special case of the much
more general region graph method. In appendices A and B,
we discuss two other important methods that are also special
cases of the region graph method: the junction graph method
and the cluster variation method. In appendix C, we discuss
in detail the relationship between the different methods.

1 2 3

4 5 6

7 8 9

A B

C D

E F

Fig. 4. A factor graph which we use to illustrate a variety of region-based
free energy approximations.

V. THE BETHE METHOD

The origins of the Bethe method date back to 1935 and
Bethe’s famous approximation method for magnets [15]. In
his 1951 paper that pioneered the cluster variation method
[16], Kikuchi recognized that Bethe’s approximation was the
simplest example of an approximation that could be generated
using that method. From the modern point of view, these early
papers focused on very special graphical models, and we warn
the reader who wants to read the original papers that our
description of Bethe’s and Kikuchi’s methods will bear little
resemblance to their expositions.

First, we make a small preliminary definition: if R1 and R2

are two regions, we say that R1 is a sub-region of R2 and R2

is a super-region of R1 if the set of variable and factor nodes
in R1 are a subset of those in R2.

Definition: In the region-based approximation generated by
the Bethe method, we take the set of regions included in R
to be of two types. First, we have a set of large regions RL

such that the M regions in RL each contain exactly one factor
node and all the variable nodes neighboring that factor node.
Second, we have a set of small regions RS , such that the
N regions in RS each contain a single variable node. The
counting numbers cR for each region R ∈ R are given by

cR = 1 −
∑

S∈S(R)

cS (36)

where S(R) is the set of regions that are super-regions of R.

We take as an example the factor graph shown in figure
4, which has six factor nodes which we label A through F
and nine variable nodes which we label 1 through 9. For

this example, we would have the following large regions
in RL: {A, 1, 2, 4, 5}, {B, 2, 3, 5, 6}, {C, 4, 5}, {D, 5, 6},
{E, 4, 5, 7, 8}, and {F, 5, 6, 8, 9}, and the following small
regions in RS : {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, and
{9}. The complete set of regions RBethe included in the Bethe
approximation is RBethe = RL ∪ RS .

Using our definition we see that for every region R ∈ RL,
cR = 1, while for every region R ∈ RS , cR = 1 − di,
where di is the degree (number of neighboring factor nodes)
of the variable node i. It is easy to confirm that the Bethe
approximation will always be a valid approximation, as each
factor and variable node will clearly be counted once as
required in equation (29). We can use our expressions for the
counting numbers cR to obtain the Bethe approximation to the
free energy, entropy, and average energy.

Definition: The Bethe free energy is FBethe = UBethe −
HBethe, where the Bethe average energy is

UBethe = −

M
∑

a=1

∑

xa

ba(xa) ln fa(xa) (37)

and the Bethe entropy is

HBethe = −
M
∑

a=1

∑

xa

ba(xa) ln ba(xa)

+

N
∑

i=1

(di − 1)
∑

xi

bi(xi) ln bi(xi). (38)

The Bethe free energy is sometimes justified in the physics
literature by some version of the following proposition, which
states that it would be exact if the factor graph had no cycles.

Proposition 3: The exact variational free energy is equal
to the Bethe free energy when the factor graph has no cycles.

Proof: The exact average energy reduces to the Bethe
average energy by the argument used in proposition 1. The
Bethe entropy will also be exact if the factor graph has no
cycles, because in that case we have the exact formula [13]

p(x) =

∏M
a=1 pa(xa)

∏N
i=1 (pi(xi))

di−1
, (39)

which we can substitute into the formula for the variational
entropy to recover HBethe.

The Bethe free energy, entropy, and average energy are all
functions of the beliefs bi(xi) and ba(xa). The constrained
Bethe free energy is defined by enforcing that the beliefs obey
the normalization constraints

∑

xi

bi(xi) =
∑

xa

ba(xa) = 1, (40)

the consistency constraints
∑

xa\xi

ba(xa) = bi(xi), (41)

and the inequality constraints

0 ≤ bi(xi) ≤ 1 (42)
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and
0 ≤ ba(xa) ≤ 1. (43)

Definition: We refer to the Bethe free energy, subject to the
above constraints on the beliefs, as the constrained Bethe free
energy, and similarly for the constrained Bethe entropy and
the constrained Bethe average energy.

We now prove that the Bethe method gives maxent-normal
region-based approximations.

Theorem 1: (Bethe approximations are maxent-normal.)
The global maximum of the constrained Bethe entropy is

achieved when the beliefs bi(xi) and ba(xa) are all uniform.
Proof: Rewrite the Bethe entropy as

HBethe =

N
∑

i=1

H(bi) −

M
∑

a=1

I(ba) (44)

where
H(bi) ≡ −

∑

xi

bi(xi) ln bi(xi) (45)

and

I(ba) ≡





∑

xa

ba(xa) ln ba(xa) −
∑

i∈N(a)

H(bi)



 (46)

The maximum of H(bi), subject to the constraints on bi(xi), is
achieved when bi(xi) has a uniform distribution. The mutual
information I(ba) must be greater than or equal to zero,
and it equals zero if all the beliefs involved have uniform
distributions (see, e.g. theorem 2.6.4 in [37]). Since H(bi)
achieves its maximum and I(ba) achieves its minimum when
the beliefs are uniform, the theorem is proved.

It is a simple corollary of this theorem and Proposition 2
that the constrained Bethe entropy is exact at its maximum.

At this point we wish to re-emphasize that free energies ob-
tained using a region based approach are only approximations
to the true variational free energy, and that in particular the en-
tropy obtained is incorrect. This can give rise to some strange-
looking problems, which can already be illustrated with some
very simple factor graphs when the Bethe approximation is
used.

A. Unrealizability of Beliefs

First, the constrained Bethe free energy may be minimized
by a set of beliefs ba(xa) and bi(xi) which are not be the
marginals of any global probability function b(x).

A very simple example, first pointed out in [39], consists
of a factor graph with three binary variable nodes, where each
pair of nodes is connected by a factor node. Let us take the
factor connecting nodes 1 and 2 to be

fA(x1, x2) =

(

0.4 0.1
0.1 0.4

)

, (47)

the factor connecting nodes 1 and 3 to be

fB(x1, x3) =

(

0.4 0.1
0.1 0.4

)

, (48)

and the factor connecting nodes 2 and 3 to be

fC(x1, x3) =

(

0.1 0.4
0.4 0.1

)

. (49)

Note that the factor connecting nodes 1 and 2, and the factor
connecting nodes 1 and 3 prefer that the connected variables
to be in the same state, while the factor connecting nodes 2
and 3 prefers them to be in different states. Not all of these
factors can be satisfied simultaneously; this is thus a very
simple example of what statistical physicists call a “frustrated”
system [42].

The beliefs ba(xa) and bi(xi) that minimize the constrained
Bethe free energy for this model are

bA(x1, x2) = bB(x1, x3) =

(

0.4 0.1
0.1 0.4

)

, (50)

bC(x1, x2) =

(

0.1 0.4
0.4 0.1

)

, (51)

and

b1(x1) = b2(x2) = b3(x3) =

(

0.5
0.5

)

. (52)

For this problem, these beliefs are also the ones that are
obtained as stable fixed points of the BP update equations,
with messages equal to

ma→i(xi) =

(

1
1

)

(53)

for all a and i, as one would expect from the theorems that
we prove later. However, one can also prove that this set of
beliefs cannot be obtained as the marginals of any three-node
belief b(x1, x2, x3) [39].

Wainwright and Jordan have emphasized this problem and
proposed new variational inference techniques, closely related
to our region-based approximations, but differentiated by a
requirement that the set of beliefs used must be marginals of
some global belief [43]. They call the set of beliefs realizable
from a global belief the “marginal polytope.”

B. Negative Entropies

Because some of the terms in the Bethe entropy have a sign
that is flipped from the normal form of the entropy, for some
factor graphs it is actually possible to find sets of beliefs that
satisfy all our constraints, but for which the Bethe entropy is
negative. Of course, the true entropy can never be negative for
any global probability distribution.

For example, consider a factor graph with four binary
variable nodes, where all pairs of nodes are connected by a
factor. There are six pairs of nodes, and four single nodes.
Each large region is assigned a counting number of 1, and
each small region containing a single variable node is assigned
an overcounting number of −2 in the Bethe approximation. If
we consider the set of beliefs (that satisfy all the constraints)

ba(xi, xj) =

(

1/2 0
0 1/2

)

, (54)

for all pairs i, j, and

bi(xi) =

(

1/2
1/2

)

(55)
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for all i, we find that each pair of nodes contributes ln 2 to the
Bethe entropy, but that each single node contributes −2 ln 2, so
that the total Bethe entropy for this set of beliefs is HBethe =
(6 − 8) ln 2 = −2 ln 2.

For this example, it does not seem to be possible to construct
a set of factors such that this set of beliefs is a local minimum
of the constrained Bethe free energy. More generally, we
conjecture that the Bethe entropy must in fact be non-negative
at all local minima of the constrained Bethe free energy.

Notice for this example, that if all the factors had the form

fa(xi, xj) =

(

1 0
0 1

)

, (56)

then the beliefs given above would actually be equal to
the corresponding exact marginal probabilities, so the correct
beliefs would give a negative Bethe entropy. However, the
minimum of the Bethe free energy would occur for beliefs
that had the form

ba(xi, xj) =

(

1 0
0 0

)

, (57)

for all pairs i, j, and

bi(xi) =

(

1
0

)

(58)

or the set obtained by favoring the second state instead of
the first, and these beliefs give a non-negative (zero) Bethe
entropy.

VI. CORRESPONDENCE BETWEEN THE BETHE

APPROXIMATION AND STANDARD BP

The logic behind region-based free energy approximations
tells us that we should ultimately minimize the constrained
Bethe free energy. We now establish the nature of the connec-
tion between the minima, or more generally, the stationary
points of the constrained Bethe free energy, and the fixed
points of the BP algorithm. We exploit Lagrange multiplier
theory, which can be used to identify the stationary points of
functions subject to linear equality and inequality constraints.

A. Review of Lagrangian Formalism

We first briefly review some necessary background about
the Lagrangian formalism for constrained optimization. An
excellent textbook containing more information is [44].

Consider a function f(x1, x2, ..., xN ) of N variables xi,
where the variables may be subject to equality constraint(s)
(written as hj(x1, ..., xN ) = 0) and inequality constraint(s)
(written as gk(x1, ..., xN ) ≤ 0). We will assume throughout
that the equality and inequality constraints are linear in the xi,
because the constraints that we will later deal with are always
of this form, and for such constraints, it is straightforward to
prove the existence of Lagrange multipliers (see proposition
3.3.7 of [44]).

An inequality constraint is said to be active if it is satisfied
with equality, and it is inactive otherwise. A point x =
(x1, ..., xN ) is said to be an edge point if one or more of
the inequality constraints is active; otherwise it is an interior
point.

A point x̂ = (x̂1, ..., x̂N ) is a local interior minimum
if it is an interior point, such that an infinitesmal variation
away from the point in any direction that satisfies the equality
constraints would increase the value of the function. Local
interior maxima are similarly defined, although we will drop
the modifier “local” and presume all maxima and minima
to be local unless explicitly specified otherwise. An interior
stationary point x̂ is an interior point such that the gradient is
zero in the direction of all variations that satisfy the equality
constraints. Of course, such stationary points may be minima,
maxima, or saddle-points, depending on the second derivatives
of the function.

At an edge point, one or more inequality constraints must be
active. An edge-maintaining variation is a variation that keeps
all active inequality constraints active, while also satisfying
all the equality constraints. A point x̂ is an edge stationary
point if it is an edge point whose gradient is zero in the
direction of all edge-maintaining variations. Note that an edge
stationary point may have gradients not equal to zero in the
direction of allowed variations that are not edge-maintaining.
Edge stationary points may be minima, maxima, or saddle-
points.

The Lagrangian formalism can be used to recover all
constrained stationary points, whether they be interior or edge
stationary points. Let us review how this works. Lagrange mul-
tipliers λj are constructed corresponding to each of the equal-
ity constraints hj(x1, ..., xN ), and other Lagrange multipliers
πk are constructed corresponding to each of the inequality
constraints gk(x1, ..., xN ). One defines a Lagrangian

L(x, {λj}) ≡ f(x) +
∑

j

λjhj(x) +
∑

k

πkgk(x). (59)

One next obtains a set of conditions on the constrained
stationary points, which we will call the Lagrangian stationary
point conditions, by setting equal to zero the derivative of
L with respect to all xi and all λj , and by imposing the
so-called complementary slackness conditions which enforce
that πkgk(x̂) = 0. The complementary slackness conditions
enforce that either an inequality constraint must be active at
a constrained stationary point, or the corresponding Lagrange
multiplier must be zero (or both). All solutions of the La-
grangian stationary point conditions will correspond to interior
or edge stationary points, and all interior or edge stationary
points will correspond to solutions of the Lagrangian station-
ary point conditions.

B. Application to the Constrained Bethe Free Energy

We now apply the Lagrangian formalism to the constrained
Bethe free energy.

Theorem 2: Interior stationary points of the constrained
Bethe free energy must be BP fixed points with positive beliefs
and vice versa.

Proof: The idea of the proof is to show that the
Lagrangian stationary point conditions which must hold at
interior stationary points of the constrained Bethe free energy
are the same as the BP message update rules at BP fixed points.
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We will begin by assuming that we have an interior stationary
point of the constrained Bethe free energy and showing that
it is also a BP fixed point with positive beliefs, and then we
will prove the theorem in the opposite direction.

Note that we will omit from consideration the small regions
consisting of a single variable node that is only connected
to a single factor node (i.e. it has degree di = 1). These
regions have counting number of zero, which means that they
do not contribute to the Bethe free energy. The beliefs bi(xi) at
these variable nodes will not be arguments of our Lagrangian,
nor will they figure in the BP fixed point equations that we
ultimately derive.

We will need to enforce the the normalization con-
straints that

∑

xa
ba(xa) = 1 for every factor node a and

∑

xi
bi(xi) = 1 for every variable node i with degree di ≥ 2,

the marginalization constraints
∑

xa\xi
ba(xa) = bi(xi) for

every factor node a and all its neighboring variable nodes i
with degree di ≥ 2, and the inequality constraints ba(xa) ≥
0 for every factor node a. These are a sufficient set of
constraints; other constraints like 0 ≤ bi(xi) ≤ 1 can be
derived from the ones we have enforced.

We form Lagrange multipliers γa and γi for the nor-
maliziation constraints, Lagrange multipliers λai(xi) for the
marginalization constraints, and Lagrange multipliers πa(xa)
for the inequality constraints. These Lagrange multipliers
will necessarily exist because the equality and inequality
constraints are all linear in the beliefs (see Proposition 3.3.7
in [44].) In fact, because for this theorem we are assuming
an interior stationary point, the inequality constraints will all
be inactive, and all the πa(xa) will equal zero, so we ignore
them hereafter.

We thus construct a Lagrangian of the form

L = FBethe

+
∑

a

γa[
∑

xa

ba(xa) − 1] +
∑

i

γi[
∑

xi

bi(xi) − 1]

+
∑

i

∑

a∈N(i)

∑

xi

λai(xi)[bi(xi) −
∑

xa\xi

ba(xa)]. (60)

where the sum over i extends over variable nodes with degree
di ≥ 2.

Setting the derivatives of the Lagrangian with respect to
the Lagrange multipliers equal to zero gives back the equality
constraints. Setting the derivatives of the Lagrangian with
respect to the beliefs equal to zero gives the equations for
the beliefs at the stationary points:

b̂a(xa) = fa(xa) exp



γa − 1 +
∑

i∈N(a)

λai(xi)



 (61)

and

b̂i(xi) = exp





1

di − 1



1 − γi +
∑

a∈N(i)

λai(xi)







 . (62)

If we make the identification

λai(xi) = ln ni→a(xi) = ln
∏

c∈N(i)6=a

mc→i(xi), (63)

then we find that we recover the standard BP fixed-point belief
equations

b̂a(xa) ∝ fa(xa)
∏

i∈N(a)

∏

c∈N(i)\a

mc→i(xi) (64)

and
b̂i(xi) ∝

∏

a∈N(i)

ma→i(xi), (65)

which, together with the marginalization and normalization
constraints already obtained, give us back the fixed point
equations of the BP algorithm.

Note that although we are missing the belief equations
for those single variable nodes that are only connected to a
single factor node, these equations are not necessary in the BP
algorithm in any case. Such variable nodes are “dead-ends” for
messages, and their beliefs can always be computed from the
beliefs ba(xa) at the factor node a to which they are connected.

To prove the theorem in the reverse direction, we start
with the BP belief update equations at the fixed point and
the marginalization and normalization constraints. We invert
equation (63) to obtain

ma→i(xi) = exp





2 − di

di − 1
λai(xi) +

1

di − 1

∑

c∈N(i)\a

λci(xi)



 .

(66)
Replacing the messages in the BP update equations with
Lagrange multipliers, we reverse the derivation given in the
proof of the previous theorem to obtain the Lagrangian sta-
tionary point conditions for an interior stationary point of the
constrained Bethe free energy.

C. Factor Graphs Containing only Soft Factors

It is not necessarily the case that all the beliefs are positive
at a BP fixed point. But there are large classes of factor graphs
for which this is indeed true, namely those factor graphs that
only contain “soft factors.”

Definition: We say that a factor fa(xa) is a “soft factor” if
fa(xa) is strictly positive for all xa. If fa(xa) = 0 for some
xa, we call it a “hard constraint.”

Because it helps us prove a variety of interesting results,
we will assume for the time being that all factors in our factor
graphs are soft, before returning to consider factor graphs that
also contain hard constraints.

Proposition 4: If all the factors fa(xa) in a factor graph
are soft, then all the beliefs at the BP fixed points are positive.

Proof: We denote the beliefs and messages that hold at
a BP fixed point by b̃a(xa), b̃i(xi), ñi→a(xi), etc. We will
show that all the BP fixed-point beliefs b̃a(xa) are positive,
from which one can use the marginalization conditions to show
that all the beliefs b̃i(xi) are also positive. From the fixed-point
belief-update equations

b̃a(xa) ∝ fa(xa)
∏

i∈N(a)

ñi→a(xi) (67)

11



one sees (using the assumption that all factors fa(xa) > 0)
that if all the messages ñi→a(xi) are positive, then so are the
beliefs b̃a(xa).

The messages ñi→a(xi) obey the fixed-point message equa-
tions

ñi→a(xi) ∝
∏

c∈N(i)\a

m̃c→i(xi). (68)

which tells us that they will all be positive if all the messages
m̃a→i(xi) are positive. However, the messages m̃a→i(xi) obey
the update rules

m̃a→i(xi) ∝
∑

xa\xi

fa(xa)
∏

j∈N(a)\i

ñj→a(xj). (69)

Recall that we assumed that all messages are initialized to
be non-negative in the BP algorithm, and that this implies that
they remain non-negative. We can therefore assume, without
loss of generality, that the messages ñj→a(xj) are all non-
negative and normalized to sum to one, so that at least one of
them (as a function of the possible states of xj ) is positive,
and none are negative. Given that, and the assumption that all
the factors are positive, the form of equation (69) implies that
all the messages m̃a→i(xi) are positive, so the proposition is
proved.

This proposition, combined with Theorem 2, gives the
following easy corollary.

Proposition 5: If all the factors fa(xa) are soft, then all
BP fixed points are interior stationary points of the constrained
Bethe free energy.

We can also prove the following proposition:

Proposition 6: If all the factors fa(xa) are soft, then all
local minima of the constrained Bethe free energy are interior
minima.

Proof: We wish to show that given that all the factors
are soft, one can decrease the Bethe free energy of any
configuration of beliefs {ba(xa), bi(xi)} that contains zero
beliefs by replacing those zero beliefs with very small positive
beliefs, while always satisfying the constraints on the beliefs.
For simplicity, we will give examples to clarify the proof that
use binary variable nodes and “large” regions that contain only
two variable nodes, but the examples can easily be extended
to the fully general case.

We first assume that all the one-node beliefs bi(xi) are
positive, so that the only zero beliefs are in the ba(xa). These
zero beliefs can be replaced with infinitesmally small positive
beliefs in such a way that the one-node beliefs are unchanged.
For example, if we have a set of beliefs such that

ba(xi, xj) =

(

A B
C 0

)

, (70)

where A, B, and C are some positive constants of O(1), then
we can keep all other beliefs unchanged and replace that belief
with

ba(xi, xj) =

(

A + ε B − ε
C − ε ε

)

. (71)

Doing this could possibly gain us an average energy of O(ε),
but we will also gain an entropy of O(ε ln ε), so the overall
free energy must decrease for small enough ε. (Note that if
some of the factors fa(xa) = 0, we could gain an infinite
average energy, so the proof would break down at this point.)

Suppose instead that some of the bi(xi) were zero. Let us
suppose, without loss of generality, that node 1 was a “culprit,”
with belief

b1(x1) =

(

1
0

)

. (72)

Then of course all the “larger” regions that contained node 1
must also have beliefs that contain zeros as well; that is, they
must be of the form

ba(x1, xj) =

(

A 1 − A
0 0

)

, (73)

or, if node j is also a “culprit,” the beliefs will be of the form

ba(x1, xj) =

(

1 0
0 0

)

. (74)

We can now increase the Bethe entropy by an amount of
O(ε ln ε) if we adjust the belief b1(x1) to be

b1(x1) =

(

1 − ε
ε

)

, (75)

while adjusting the beliefs of the connected “large” regions to
be

ba(x1, xj) =

(

A − ε/2 1 − A − ε/2
ε/2 ε/2

)

, (76)

or

ba(x1, xj) =

(

1 − ε 0
ε 0

)

. (77)

The point is that although this adjustment gives a negative
contribution to the Bethe entropy from the one-node terms,
it will always give a larger positive contribution to the Bethe
entropy from the “large” region terms. This is guaranteed by
the fact that the sum of the counting number of the “culprit”
one-node region plus the sum of the counting numbers of the
relevant larger regions must always be one.

Using these “adjustments,” we can systematically remove
all the zeros from the collections of the beliefs that we
started with, while always decreasing the constrained Bethe
free energy.

Theorem 2 and Proposition 6 can be combined to give the
following:

Theorem 3: If all the factors fa(xa) are soft, then all local
minima of the constrained Bethe free energy are BP fixed
points.

Although we have shown, assuming soft factors, that all
interior stationary points and local minima of the constrained
Bethe free energy are BP fixed points, one should note that it is
easy to construct edge maxima of the constrained Bethe free
energy that are not BP fixed points. For example, consider
a factor graph that is a tree, with constant soft factors that
weight all local configurations equally, and a set of beliefs
consistent with a single configuration where every variable
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node is completely biased to one of its states. This will be a
local maximum of the Bethe free energy, but it will certainly
not be a BP fixed point.

We can now prove that at least one BP fixed point must
exist, for any factor graph with soft factors.

Theorem 4: If all the factors fa(xa) are soft, then at least
one BP fixed point exists.

Proof: The constrained Bethe free energy is bounded
below. This is true because all the factors fa(xa) are non-
negative, so the average energy must be bounded below, while
the entropy clearly cannot diverge to positive infinity. The fact
that the constrained Bethe free energy is bounded below means
that there must be a global minimum, and using Theorem 3,
we know that the global minimum will be a BP fixed point.

Of course, the existence of a BP fixed point does not imply
that the BP algorithm will converge starting from arbitrary
initial conditions.

The conditions for the uniqueness of BP fixed points are also
clarified by the equivalence with the Bethe approximation. In
graphs with no more than a single cycle, it was known that if
all factors are soft, then there was a unique BP fixed point [45].
For general graphs, we can use the equivalence established
above to show that the same factor graph may sometimes have
a unique BP fixed point, and other times have more than one
BP fixed point, depending on the strength of the interactions
fa(xa).

To be more precise, we can imagine defining a sequence
of probability distributions where some or all of our original
functions are all raised by a power: fa(xa; T ) = fa(xa)1/T .
This is equivalent to changing the temperature T in a physical
system. Many systems, for example Ising ferromagnets, will
have different numbers of solutions above or below a critical
temperature Tc within the Bethe approximation [46]. Above
Tc, the constrained Bethe free energy has a unique stationary
point, while below Tc, there are multiple stationary points.
Using this equivalence it is easy to define small factor graphs
that show a similar behavior. Although the topology does not
change and the factors are always soft, as we smoothly change
the factors we go from a regime with a unique fixed point to
one with multiple fixed points.

As an explicit example, consider the factor graph containing
four binary variable nodes, where every pair of variable nodes
are connected by a factor node, as shown in figure 5. We
assume that the factors connecting any two variable nodes are
identical and “ferromagnetic,” that is, they have the form

fa(xi, xj) =

(

exp(1/T ) exp(−1/T )
exp(−1/T ) exp(1/T

)

, (78)

where T is a temperature-like parameter. These factors have
the effect of making neighboring variable nodes prefer to be
in the same binary state, and the effect is stronger at lower T .

Given the symmetry of this example, it makes sense to
search for fixed points of the BP message update rules where
all messages are identical. It is relatively straightforward to
work out (see the analysis of the Bethe approximation in [46]

Fig. 5. A factor graph with four variable nodes, each connected by a factor
node to all the other variable nodes.

for a similar computation) that above the critical temperature
Tc = 2/(ln 3), there is only one such solution, and that
solution gives all variable nodes equal beliefs to be in their
two states. Above Tc this fixed point is stable, but below Tc,
it becomes unstable, and two new stable fixed points appear.
At the new fixed points, all the variable nodes have identical
beliefs, but at one of the fixed points, the beliefs are biased
towards the first binary state, while at the other fixed point,
the beliefs are biased towards the second binary state.

Tatikonda and Jordan [47] have explored the question of
uniqueness of BP fixed points in detail. They used the con-
nection to the Bethe free energy to obtain a set of sufficient
conditions on the strength of the factors fa(xa) to ensure
unique BP fixed points for arbitrary Markov random fields.
More recently, Heskes [48] has analyzed the same question
using the connection to the Bethe free energy, but his sufficient
conditions for uniqueness also take into consideration the
topology of the factor graph.

While we have shown that standard BP converges to station-
ary points of the constrained Bethe free energy, we emphasize
that BP does not perform constrained minimization of the
Bethe free energy; that is, it does not decrease the constrained
Bethe free energy at every iteration. Indeed, the marginal-
ization constraints are typically not satisfied at intermediate
iterations of BP; it is only at a BP fixed point that the beliefs
necessarily obey all the consistency constraints. Based on the
correspondence between BP fixed points ane Bethe free energy
stationary points, first noted in our earlier work [17], others
have devised algorithms that directly minimize the free energy
on the feasible set of beliefs [49], [50], [51]. Such free energy
minimizations are somewhat slower than the BP algorithm,
but they are guaranteed to converge.

D. Factor Graphs Containing Hard Constraints

We now return to consider the more general situation of
factor graphs that also contain hard constraints. Such hard
constraints are ubiquitious for example in factor graph rep-
resentations of parity check codes.
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In contrast to the situation when all the factors are soft, if
one has hard constraints, it is possible for the local minima of
the constrained Bethe free energy to be edge minima, and it is
possible for some of the beliefs at BP fixed points to be zero.
We now give a small example to illustrate these statements.

Consider again the factor graph with four binary variable
nodes, and factors which connect each pair of variable nodes
(see figure 5). Assume now that all the factors are hard parity
checks over two variables of the form

fa(xi, xj) =

(

1 0
0 1

)

. (79)

For this factor graph, there is an unstable BP fixed point
with all messages and one-node beliefs given by

ma→i(xi) = bi(xi) =

(

1/2
1/2

)

, (80)

and all two-node beliefs given by

ba(xi, xj) =

(

1/2 0
0 1/2

)

. (81)

There are also two stable BP fixed points; one with the
messages and beliefs

ma→i(xi) = bi(xi) =

(

1
0

)

, (82)

and

ba(xi, xj) =

(

1 0
0 0

)

, (83)

and one with the messages and beliefs

ma→i(xi) = bi(xi) =

(

0
1

)

, (84)

and

ba(xi, xj) =

(

0 0
0 1

)

. (85)

From the point of view of the constrained Bethe free energy,
the only set of beliefs that satisfy the marginalization and
normalization constraints, and do not have an infinite Bethe
average energy, are beliefs of the form

ba(xi, xj) =

(

α 0
0 1 − α

)

(86)

and

bi(xi) =

(

α
1 − α

)

, (87)

where the constant α is the same for all the beliefs.
For the factor graph that we are considering, these sets of

beliefs all give a Bethe average energy that is zero, and a
Bethe entropy which is maximized at α = 0 or α = 1, and
minimized at α = 1/2.

Based on this example, one might guess that there is a
correspondence between Bethe free energy edge minima, and
BP fixed points with zero beliefs. We believe and argue
below that such a correspondence indeed exists. Unfortunately,
there are technical issues that make our arguments for this
correspondence less than completely rigorous.

The first issue results from the fact that if one uses the
Lagrangian formalism to identify edge stationary points of

the constrained Bethe free energy, some of the Lagrange
multipliers will diverge logarithmically at edge points. One
can already see that such a phenomenon must exist from
the form of equation (63), which relates the marginalization
Lagrange multipliers to the logarithm of the BP messages.
If a BP message is zero, as it will be at an edge point, the
corresponding Lagrange multiplier diverges logarithmically.

The following trivial example demonstrates how inescapable
this issue is, and also makes clear that the issue arises because
the derivative of the entropy function diverges logarithmically
at its edges. Consider a single binary variable, with no factor
at all. We denote the belief that the variable is in its two states
by b1 and b2, so that the free energy is just

f(b1, b2) = b1 ln b1 + b2 ln b2 (88)

with the equality constraint b1 + b2 = 1, and the inequality
constraint b1 ≥ 0, and b2 ≥ 0. The minimum of this free
energy obviously occurs when b̂1 = b̂2 = 1/2, and f = − ln 2,
and two maxima occur at the edge of the region of allowed
beliefs, when b̂1 = 0 and b̂2 = 1, or when b̂1 = 1 and b̂2 = 0.
The free energy at the maxima is zero.

To recover these results using the Lagrangian formalism, we
introduce a Lagrange multiplier γ to enforce the normalization
equality constraint, and the Lagrange multipliers π1 and π2 for
the inequality constraints. Our Lagrangian is then

L = b1 ln b1 + b2 ln b2 − γ(b1 + b2 − 1)− π1b1 − π2b2. (89)

Taking derivatives of the Lagrangian with respect to b1, b2

and γ, and imposing the complementary slackness conditions,
we find the five Lagrangian stationary point conditions:

ln b̂1 + 1 − γ − π1 = 0 (90)

ln b̂2 + 1 − γ − π2 = 0 (91)

b̂1 + b̂2 = 1 (92)

π1b̂1 = 0 (93)

π2b̂2 = 0 (94)

These equations have one solution which is completely
unobjectionable, when b̂1 = b̂2 = 1/2, π1 = π2 = 0,
and γ = 1 − ln 2, corresponding to the free energy interior
minimum. They also have two solutions corresponding to the
free energy edge maxima, but only if one accepts Lagrange
multipliers that are logarithmically divergent. Thus, we have
the solution b̂1 = 0, b̂2 = 1, π1 = ln(0), π2 = 0, and γ = 1,
and the solution b̂1 = 1, b̂2 = 0, π1 = 0, π2 = ln(0). Note that
the complementary slackness conditions πibi = 0 are always
satisfied if we assume that 0 ln 0 = 0.

Following the lessons of this simple example, we would
like to assume the legitimacy of all logarithmically divergent
Lagrange multipliers in identifying edge stationary points.
Readers willing to accept such Lagrange multipliers should
upgrade the status of the following “conjecture” to that of a
“theorem.”

Conjecture 1: BP fixed points with some beliefs equal to
zero are edge stationary points of the constrained Bethe free
energy.
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Argument: We need to show that the BP fixed point
conditions can be rewritten in a way that guarantees that
all the Lagrangian stationary point conditions are satisfied,
including those resulting from inequality constraints. We will
use inequality Lagrange multipliers πa(xa) to enforce the in-
equality constraints b̂a(xa) ≥ 0. The complementary slackness
conditions that will need to be satisfied will be

πa(xa)b̂a(xa) = 0. (95)

The other Lagrangian stationary conditions that will need
to be satisfied will be the marginalization and normalization
conditions on the beliefs, and the belief equations

b̂a(xa) = fa(xa) exp



πa(xa) + γa − 1 +
∑

i∈N(a)

λai(xi)





(96)
and (for variable nodes with degree di ≥ 2)

b̂i(xi) = exp





1

di − 1



1 − γi +
∑

a∈N(i)

λai(xi)







 . (97)

Starting with the BP fixed point conditions, and making the
identification between messages and marginalization Lagrange
multipliers

λai(xi) = ln ni→a(xi) = ln
∏

c∈N(i)6=a

mc→i(xi), (98)

we recover the Lagrangian stationary conditions with
πa(xa) = 0, which will be consistent with the complementary
slackness conditions. Note the the marginalization Lagrange
multipliers corresponding to zero messages will be logarithmi-
cally divergent. Thus, assuming that such Lagrange multipliers
are legitimate, we have shown that BP fixed points, even with
some of the beliefs equal to zero, are always stationary points
of the constrained Bethe free energy.

We emphasize that the converse of this conjecture certainly
does not hold; as we described previously, edge maxima of the
constrained Bethe free energy need not be BP fixed points.

On the other hand, we argue now that edge minima of
the constrained Bethe free energy are indeed always BP
fixed points. However, we again do not claim the following
argument is a proof, this time because the argument depends
on continuity arguments, that, while reasonable, could be
questioned.

Conjecture 2: Edge minima of the constrained Bethe free
energy are BP fixed points.

Argument: Recall from Proposition 6 that if all the factors
fa(xa) are positive, then all local minima of the constrained
Bethe free energy must necessarily be interior minima. That
means that if we have edge minima, they necessarily result
from a factor graph that includes factors fa(xa) that equal
zero for some state of their arguments xa.

Let us consider a transformation of the factor graph that
adds an infinitesmal positive term to each zero factor. We
expect the edge minima to be mapped, under this transfor-
mation, to interior minima that are infinitesmally far away. By

Theorem 3, all these minima correspond to BP fixed points
with all beliefs positive. Making the inverse transformation
back to a factor graph with hard constraints, we expect these
BP fixed points to be mapped to BP fixed points where
some of the beliefs equal zero. Thus, assuming our continuity
expectations are indeed met, the original edge minima of the
constrained Bethe free energy should be BP fixed points.

To complete the general picture of the relation between BP
fixed points and the stationary points of the constrained Bethe
free energy, we refer the reader to a paper by Heskes [52],
which argues that stable BP fixed points must be local minima
of the constrained Bethe free energy, but gives a counter-
example that shows that the converse is not true.

VII. THE REGION GRAPH METHOD

We now introduce region graphs, which are central to
the region graph method for generating valid free energy
approximations, and also will provide a graphical framework
for GBP algorithms. We will first focus on generating valid
free energy approximations, and then turn our attention in the
next section to question of when a region graph free energy
approximation will be maxent-normal.

It is possible to construct valid, or even maxent-normal,
free energy approximations that do not correspond to a region
graph. The region graph method has the virtue, though, of
generalizing other methods, including the Bethe method, the
junction graph method, and the cluster variation method. In
appendices A and B, we discuss the junction graph method
and the cluster variation method in detail. In appendix C,
we fully describe the relationship between all the different
methods considered in this paper.

Definitions: Let I be the set of indices for the factor and
variable nodes in a factor graph. A region graph is a labeled,
directed graph G = (V, E, L) in which each vertex v ∈ V
(corresponding to a region) is labeled with a subset of I . We
denote the label of vertex v by l(v) ∈ L. A directed edge (or
arc) e ∈ E may exist pointing from vertex vp to vertex vc if
l(vc) is a subset of l(vp). If such an arc exists, we say that
vc is a child of vp, that vp is a parent of vc. If there exists a
directed path from vertex va to vertex vd, we say that va is
an ancestor of vd, and vd is a descendant of va.

Note that because of the transitivity of the subset relationship,
a region graph must be a directed acyclic graph, in the sense
that the arrows cannot loop around.

A region graph is closely related to the Hasse diagram
for a partially ordered set, or poset [53], if we consider
our regions to be organized into a poset, with the ordering
relationship between the regions to be given by the ancestor-
descendant relationship [30], [31]. There are, however, some
differences between region graphs and Hasse diagrams. First,
region graphs are labeled graphs, and we will insist on some
“region graph conditions,” described below, that the labels
must satisfy. Second, region graphs can include an arc between
two regions that are also connected by a path of length two
or greater, which is forbidden for Hasse diagrams.
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Definitions: The counting number cv for every vertex in the
region graph is given by

cv = 1 −
∑

u∈A(v)

cu, (99)

where A(v) is the set of vertices that are ancestors of v. For a
graph G to qualify as a region graph, we insist on the region
graph condition, which requires that for every i ∈ I (whether
it is the index of a factor node or a variable node), the subgraph
G(i) = (V (i), E(i), L(i)) formed by just those vertices whose
labels include i is a connected graph that satisfies the condition

∑

v∈V (i)

cv = 1. (100)

Having defined region graphs, it is almost trivial to define
a corresponding region graph method for generating valid
region-based free energy approximations. We simply create
a region graph such that the vertices correspond to regions,
with labels corresponding to the factor and variable nodes in
a region, and we require that every factor and variable node
be contained in at least one region. We associate the counting
numbers cR for regions directly with the counting numbers cv

for the region graph, and the region graph free energy FRG

will be given by FRG =
∑

R cRFR, where FR is the free
energy of the region R.

Finally, to obtain a constrained region graph free energy, we
enforce the constraints that every region belief is normalized,
and that for each pair of regions connected by an arc in the
region graph, the beliefs for the variable nodes in both regions
are consistent.

We have now presented enough definitions, so that the
following proposition is true by inspection:

Proposition 7: Region based free energy approximations
created using the region graph method will be valid.

C,E,4,5,7,8

C,4,5

A,C,1,2,4,5 B,D,2,3,5,6

F,5,6,8,9

5,65

2

6

8

1=c

1=c

1=c

1=c

1−=c

1−=c

1−=c

0=c1−=c 2−=c

Fig. 6. An example of a region graph. We have listed the counting number
cR next to each region.

In figure 6, we give an example of a region graph for
the factor graph that we already introduced in figure 4. This
region graph was constructed to demonstrate what is and is
not permitted in a legal region graph, rather than what would
likely give good results. Note that a region graph enforce any
clear delineation of “generations” (region {8} is a child of

both regions {C, E, 4, 5, 7, 8} and regions {F, 5, 6, 8, 9}, while
region {5} is a grand-child of region {C, E, 4, 5, 7, 8} and a
child of region {F, 5, 6, 8, 9}.) Note also that regions may have
counting number equal to zero (e.g. region {5, 6}), and that
the fact that a region is a sub-set of another region need not
imply that it is also a descendant of that region (e.g. regions
{F, 5, 6, 8, 9} and {5, 6}).

What is essential is that the region graph conditions that
we described above are obeyed. We insist on these conditions
for the following reasons. First, to reiterate the results of the
propositions previously proved about valid region-based free
energy approximations, the condition that every factor node in
the factor graph is counted once when we do the weighted sum
over all regions ensures that the region graph average energy is
exact if the region beliefs are exact (recall Proposition 1); and
the condition that every variable node is counted once ensures
that the region graph entropy correctly counts degrees of
freedom (recall Proposition 2). The condition that the regions
containing a particular variable node form a connected sub-
graph will ensure that the marginal probability at any node is
consistent irrespective of which region’s beliefs one uses to
compute it. Empirically, we have found that if one attempts to
run a GBP algorithm (as described later) on graphs that do not
satisfy all the region graph conditions, the results are likely to
be poor.

C,E,4,5,7,8

C,4,5

A,C,1,2,4,5 B,D,2,3,5,6

D,F,5,6,8,9

D,5,6

2,5

5,8

1=c

1=c

1=c

1=c

1−=c

1−=c

1−=c1−=c

Fig. 7. An example of a graph of regions that is not a region graph because
the sum of the counting numbers of regions containing variable node 5 is not
one.

An example of a “false region graph” or graph of regions
that does not satisfy the region graph conditions is shown in
figure 7. The problem with this plausible-looking construction
is that the sum of the counting numbers of the regions
containing variable node 5 is zero, rather than one. We could
modify this false region graph in a variety of ways to obtain a
real region graph. For example, we could simply remove node
5 from the region {2, 5}. The resulting region graph would be
an example of a junction graph; see appendix A. Alternatively,
we could add a region {5} which just contained variable node
5, and connect the regions {2, 5}, {C, 4, 5}, {D, 5, 6}, and
{5, 8} to it (the result of using the cluster variation method;
see appendix B).

We can generalize Proposition 3, which states that the Bethe
free energy is exact when the factor graph has no cycles, to
the following proposition about region graphs:
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Proposition 8: The exact variational free energy will equal
the region graph free energy if the region graph has no cycles.

Proof: The exact average energy reduces to the region
graph average energy by the argument used in Proposition 1.
The exact entropy reduces to the region graph entropy after
recursively applying the following junction graph formula for
the probability distribution of a factor graph divided into large
regions RL, and small regions RS which separate the large
regions (see Appendix A for more details):

p(x) =

∏

R∈RL
pR(xR)

∏

R∈RS
pR(xR)dR−1

. (101)

We illustrate this proposition with an example, that has the
factor graph given in figure 8, and the region graph given
in figure 9. We will recursively break down the full joint
probability distribution and show that it is equal to a product
of marginal probability distributions over regions that has
precisely the form necessary to make the region graph free
energy be exact.

1 2

3 4 5

6 7

A B

C D

Fig. 8. A factor graph that has a tree region graph shown in figure 9.

Note that for this region graph, the region {4} separates the
left part of the tree and the right part of the tree. That means
that we have

p(x1, ..., x7) =
p(x1, x3, x4, x6)p(x2, x4, x5, x7)

p(x4)
. (102)

The marginal probability distributions p(x1, x3, x4, x6) and
p(x2, x4, x5, x7) can in turn be written in terms of marginal
probabilities of smaller regions. For example, we see that
the region {3, 4} separates the regions {A, 1, 3, 4} and
{C, 3, 4, 6}, so that

p(x1, x3, x4, x6) =
p(x1, x3, x4)p(x3, x4, x6)

p(x3, x4)
. (103)

Expanding everything out, we obtain that the joint probability
distribution p(x1, ..., x7) equals

p(x1, x3, x4)p(x3, x4, x6)p(x2, x4, x5)p(x4, x5, x7)

p(x3, x4)p(x4, x5)p(x4)
. (104)

A,1,3,4 C,3,4,6 B,2,4,5 D,4,5,7

3,4 4,5

4

Fig. 9. A region graph with no cycles that has a corresponding region graph
free energy approximation which is exact.

Notice that equation (104) is the product of seven local
kernels, where each kernal has an exponent corresponding to
the counting number of the associated region. Substituting this
result into the formula for the exact entropy, we recover the
region graph entropy. Since the region graph average energy
is always exact when the region beliefs are, this demonstrates
that the approximation is exact in this case.

VIII. MAXENT-NORMAL REGION GRAPH

APPROXIMATIONS

The region graph method is not very restrictive, and a
natural question to ask is whether there are any criteria that
one can use to choose between different region graphs. In this
section, we focus on the notion of maxent-normal free energy
approximations previously defined in section IV.

Recall that the approximation in all region-based free ener-
gies originates from the entropy term. A natural requirement
that one can make on the entropy approximation is that it
should at least give the correct answer when there are no
interactions, that is, that it should achieve its global maximum
when all the beliefs bR(xR) are uniform. We defined free
energy approximations that obey this criterion to be maxent-
normal, and proved in Theorem 1 that the Bethe approximation
is always maxent-normal. On the other hand, some region
graph free energy approximations are provably not maxent-
normal, as shown by the following example.

A. Example of an Approximation that is Not Maxent-Normal

Consider a factor graph which consists of N binary variable
nodes, where every pair of nodes is connected by a factor. (A
version of this factor graph with random factors is known in
the physics literature as the Sherrington-Kirpatrick Ising spin
glass [54].)

Now take, as the regions to include in the region graph,
every triplet of nodes (and all three factors that connect them),
every pair of nodes (and the factor that connects them), and
every single node. To complete the definition of the region
graph, draw an arc from each triplet region to each of the
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three pair regions that are sub-sets of it, and an arc from each
pair region to each of the two single node regions that are
sub-sets of it. This is the region graph that would be obtained
using the cluster variation method (see appendix B), starting
with all the triplet regions as the largest regions.

We can compute the counting numbers as follows. There are
N(N −1)(N −2)/6 “triplet” regions, each having a counting
number of c3 = 1. There are N(N − 1)/2 “pair” regions,
each having a counting number of c2 = 3−N (because each
pair of variable nodes belongs to N −2 triplet regions). There
are N single node regions, each having a counting number of
c1 = (N − 2)(N − 3)/2 (this can be computed from the fact
that each single variable node belongs to (N − 1)(N − 2)/2
triplet regions and N − 1 pair regions).

Now consider the consistent set of beliefs where each single
node region had the beliefs

b(xi = 0) = b(xi = 1) = 1/2, (105)

each pair node region had the beliefs

b(xi = 0, xj = 0) = b(xi = 1, xj = 1) = 1/2; (106)

with other pair beliefs equal to zero, and each triplet node
region had the beliefs

b(xi =0, xj =0, xk =0) = b(xi =1, xj =1, xk =1) = 1/2
(107)

with all other triplet beliefs equal to zero. These beliefs are
the beliefs that one would obtain from marginalizing a global
probability distribution that only allowed two states with equal
probability: the all-zeros state and the all-ones state.

For these beliefs, the entropy of every region, whether it
be a triplet, pair, or single node region, will be ln 2. So the
overall entropy is just determined by the sum of the counting
numbers for all the regions, and is given by

H

ln 2
=

N(N − 1)(N − 2)

6
+

N(N − 1)(3 − N)

2
+

+
N(N − 2)(N − 3)

2
(108)

Using this formula, it is easy to determine that these beliefs
give an entropy greater than N ln 2, which is the result of
using a uniform distribution, for all N ≥ 6.

Thus we see that the approximation derived from the cluster
variation method using triplet regions as the largest regions,
will surely give poor results, because even if there are no
interactions at all, the approximation will disfavor the (correct)
uniform distribution. It is therefore no surprise that other
researchers have noticed that this approximation gives poor
results for the Sherrington-Kirpatrick model [51], [55].

B. Example of an Approximation that is Maxent-Normal

Fortunately, it is not too hard to find examples of region
graph approximations that are maxent-normal, besides those
based on the Bethe approximation. We now present a non-
trivial example of an approximation that is provably maxent-
normal.

Consider an L by L square lattice of binary variable nodes,
where each variable node is connected by pair-wise factors

to its nearest neighbors. Of course we would normally be
interested in cases where L is large, but for the sake of example
we consider a small 3 by 3 version, shown in figure 10.

1 2 3

4 5 6

7 8 9

A B

C D E

F G

H I J

K L

Fig. 10. A 3 by 3 version of a square lattice factor graph.

We can construct a region graph for such square lattice
factor graphs by using the cluster variation method (see
Appendix B), starting with small 2 by 2 clusters as the largest
regions. For our small example, the resulting region graph is
shown in figure 11.

1,2,4,5 
A,C,D,F

2,3,5,6 
B,D,E,G

4,5,7,8 
F,H,I,K

5,6,8,9 
G,I,J,L

2,5 
D

4,5 
F

5,6 
G

5,8 
I

5 

c=1 c=1 c=1 c=1

c=1

c=-1 c=-1 c=-1 c=-1

Fig. 11. A region graph for the factor graph in figure 10 obtained using the
cluster variation method, starting with 2 by 2 clusters. The counting number
for each region is listed next to the region.

We can prove that this particular region graph gives a free
energy approximation that is maxent-normal by following the
idea of the proof that the Bethe appoximations will be maxent-
normal (see the proof of Theorem 1).

Proposition 9: The free energy approximation for the re-
gion graph shown in figure 11 is maxent-normal.

Proof: We need to show that the entropy of this free
energy approximation attains its maximum when all the beliefs
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are uniform. Rewrite the region graph entropy as

HRG =

N
∑

i=1

H(bi) − I (1, 2, {4, 5})− I (3, 6, {2, 5})

− I (8, 9, {5, 6})− I (4, 7, {5, 8}) (109)

where
H(bi) ≡ −

∑

xi

bi(xi) ln bi(xi) (110)

and, for example,

I(1, 2, {4, 5}) ≡ −H(b1245)+H(b1)+H(b2)+H(b45) (111)

The maximum of H(bi), subject to the constraints on bi(xi), is
achieved when bi(xi) has a uniform distribution. The mutual
informations like I(1, 2, {4, 5}) must be greater than or equal
to zero, and will equal zero if all the beliefs involved have
uniform distributions (see, e.g. theorem 2.6.4 in [37]). Since
H(bi) achieves its maximum and the mutual informations
achieve their minimum when the beliefs are uniform, the
proposition is proved.

This proposition, and its proof, can easily be generalized to
the general case of an L by L lattice of q-ary variables:

Proposition 10: For the factor graph consisting of an L by
L lattice of q-ary variables, connected by pair-wise factors
to their nearest neigbhors, the free energy approximation
obtained by using the cluster variation method, starting with
2 by 2 overlapping clusters as the largest regions, is maxent-
normal.

Proof: Left as an exercise for the reader.

C. Discussion and Heuristics

In general, the problem of how to generate region graph
approximations that give highly accurate marginals is still very
much an open research problem. While the notion of maxent-
normal region graph approximations is helpful, it is not the
complete story. In this sub-section we further discuss this
issue, and suggest some heuristics that should prove useful.

First, we point out that we have been focusing on the
accuracy of the free energy approximation, while in the end,
we are actually usually most interested in the accuracy of the
approximate marginals that we compute. The two are related,
but we will not discuss this point further in this paper. Instead,
we refer the interested reader to work of Wainwright, et.al.
[24], which develops bounds on the approximation error for
the marginals for any algorithm that minimizes the Bethe free
energy or its generalizations.

Although we do not here propose a systematic approach to
choose promising region graph approximations, we do suggest
the following “common-sense” heuristics. First, as we have
already emphasized, a region graph approximation should be
maxent-normal. Secondly, to improve upon the ordinary Bethe
approximation, one should try to include at least the shortest
cycles in a factor graph inside regions.

Finally, we have observed that region graph approximations
that obey the following heuristic tend to be very accurate:

namely, that the sum of the counting numbers of all regions
equals one:

∑

R∈R

cR = 1. (112)

To avoid any confusion, we emphasize that this heuristic is
different from the validity condition given in equation (29)
that ensures that each variable node and factor node is counted
once.

This heuristic can be rationalized by considering a factor
graph with binary variable nodes (the following argument
can also be easily generalized to q-ary variable nodes), and
considering the global probability distribution that allows just
two states with equal probability: the state where all nodes
are zeros, and the state where all nodes are ones. (The reader
may be growing familiar with this distribution, which we
already used in the examples of approximations that can give
negative entropies, and the examples of approximations that
are provably not maxent-normal.) The exact entropy of this
probability distribution is obviously just ln 2.

If we marginalize this distribution, we find that every region
also has a marginal probability that allows only the all-
zeros or all-ones state for its variable nodes. Therefore, every
region will also have a region entropy of ln 2. Thus, for any
region-based approximation to give the correct entropy for
beliefs corresponding to this global distribution, the sum of
the counting numbers, over all regions, must be one.

This heuristic is not normally satisfied by Bethe approx-
imations, with the exception of exact Bethe approximations
when the factor graph has no cycles. However, some more
complicated region graph approximations do indeed satisfy
the heuristic, including, for example, the maxent-normal ap-
proximation discussed in the previous sub-section for square
lattices based on two by two clusters.

Clearly, it would be worthwhile to develop a method that
would accept arbitrary factor graphs, and automatically con-
struct maxent-normal region graph approximations that also
satisfied our heuristics. We do not know of any such method,
but we refer the reader to an interesting paper by Welling [56],
who developed a “bottom-up” approach to generating region
graph approximations starting from the Bethe approximation.

IX. GENERALIZED BELIEF PROPAGATION ALGORITHMS

We have already seen that the stationary points of the Bethe
approximation to the free energy are equivalent to the fixed
points of the standard BP algorithm, which operates on a
factor graph. We now introduce generalized belief propagation
algorithms which operate on region graphs, and demonstrate
that their fixed points correspond to the stationary points of
the region graph free energy.

One can construct generalized belief propagation (GBP)
algorithms corresponding to any region graph free energy
approximation. In fact, there are many ways to construct
message-passing algorithms whose fixed points are equivalent
to the stationary points of a region graph free energy. In all
these algorithms, messages of some sort are sent between
regions on a region graph.
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Note first that we can obtain different GBP algorithms cor-
responding to the same free energy by using different region
graphs that have the same free energy. For example, if we
modified a region graph by connecting a grandparent region
directly to a grandchild region, then the GBP algorithms that
we describe below would be correspondingly modified, but the
approximate free energy would not be changed, and the new
constraints would be redundant. Making such a modification
will thus alter the dynamics of a GBP algorithm, but not its
fixed points. Pakzad and Anantharam [31], [32] have focused
on the problem of constructing the minimal region graph for a
free energy approximation; we will not focus on that problem,
and instead refer the interested reader directly to their papers.

Even if we fix attention on a particular region graph, there
are still a variety of different GBP algorithms that we can
create. In the main text of this paper, we will describe one pos-
sible approach, which we call the parent-to-child algorithm.
In appendices D and E, we describe two other approaches (the
child-to-parent algorithm and the two-way algorithm) which
give algorithms with equivalent fixed points, and which have
their own advantages. An main advantage of the parent-to-
child algorithm, in comparison with the other algorithms, is
that the message-passing rules make no reference to region
counting numbers, just as in the standard BP algorithm. The
standard BP algorithm is a special case of all three algorithms
when the region graph is obtained using the Bethe method.

A. The Parent-to-Child Algorithm

Recall that the standard BP message-passing equations can
be derived from the fact that the belief at a single variable node
is just the product of all the messages bearing information
from neighboring factor nodes, while the belief at the region
of variable nodes adjoining a single factor node is the product
of that internal factor, multiplied by all the messages coming
into the group of nodes from factor nodes outside the region.

The parent-to-child algorithm generalizes this idea. In this
algorithm (which in a previous exposition we called the
“canonical” GBP algorithm [17]) the belief at any region R
will be the product of all the local factors in that region,
multiplied by all the messages coming into region R from
outside regions. There is one complication, however: to ensure
that the algorithm is equivalent to minimizing the region graph
free energy, we need to include additional messages into
regions which are descendants of R from other parent regions
that are not themselves descendants of region R.

Definitions: In the parent-to-child algorithm, we only have
one kind of message mP→R(xR) from a parent region to a
child region. Each region R has a belief bR(xR) given by

bR(xR) ∝
∏

a∈AR

fa(xa)





∏

P∈P(R)

mP→R(xR)



 .

.





∏

D∈D(R)

∏

P ′∈P(D)\E(R)

mP ′→D(xD)



 .(113)

Here P(R) is the set of regions that are parents to region R,
D(R) is the set of all regions that are descendants of region R,

E(R) ≡ R∪D(R) is the set of all regions that are descendants
of R and also region R itself, and P(D)\E(R) is the set of all
regions that are parents of region D except for region R itself
or those those regions that are also descendants of region R.

The message-update rules in the parent-to-child algorithm
will be

mP→R(xR) :=
∑

xP\R

∏

a∈FP\R
fa(xa)

∏

(I,J)∈N(P,R) mI→J(xJ )
∏

(I,J)∈D(P,R) mI→J(xJ )
(114)

where the sets N(P, R) and D(P, R) can be calculated in
advance. N(P, R) is the set of all connected pairs of regions
(I, J) such that J is in E(P ) but not E(R) while I is not
in E(P ). D(P, R) is the set of all connected pairs of regions
(I, J) such that J is in E(R), while I is in E(P ), but not
E(R).

A B

R C

D E F

G H

Fig. 12. A region graph used to illustrate the parent-to-child GBP algorithm.
Note that we do not explicitly give the variable and factor node labels for
each region, as for our purposes, we are only interested in the topology of
the region graph.

An example should help make these definitions much
clearer. Consider the example shown in figure 12. The be-
lief bR(xR) at region R is the product of its local factors
∏

a∈AR
fa(xa), the messages from its parents mA→R(xR) and

mB→R(xR), and the messages into descendants from other
parents who are not descendants: mC→E(xE), mC→H(xH ),
and mF→H(xH).

One obtains self-consistent message-update rules by requir-
ing consistency between the beliefs between every pair of
parent and child regions. Thus in figure 12, we might focus on
the region R and its child E. The belief at region R is given
by

bR ∝ mA→R mB→R mC→E mC→H mF→H

∏

a∈AR

fa(xa)

(115)
(where we have lightened the notation by removing the obvi-
ous functional dependencies of the messages) and the belief
at region E is given by

bE ∝ mR→E mC→E mD→G mC→H mF→H

∏

a∈AE

fa(xa)

(116)
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Using the marginalization constraint

bR(xR) =
∑

xA\xR

bA(xA), (117)

we obtain a relation between messages that we can interpret
as the message update rule

mR→E(xE)mD→G(xG) :=
∑

xR\xE

mA→R(xR)mB→R(xR)
∏

a∈AR\AE

fa(xa). (118)

Of course, similar message update rules would be obtained
for all the pairs of parent and children regions. There will be
enough conditions to determine every message.

B. GBP Fixed Points are Free Energy Stationary Points

We now prove that the fixed points of the parent-to-child
GBP algorithm using a given region graph correspond to the
stationary points of the region-based free energy for the same
region graph. To simplify the presentation, we will restrict
our attention to interior stationary points. (For an alternative
exposition of the following theorem, we refer the reader to the
proof of Theorem 3 in [30] and Proposition 18 in [32].)

Theorem 5: Interior stationary points of the constrained
region-based free energy for a valid region graph must be
fixed points with positive beliefs of the parent-to-child GBP
algorithm for that region graph, and vice versa.

Proof: The region graph free energy is

FR({bR}) =
∑

R∈R

cRFR(bR). (119)

To derive the stationarity conditions, we need to create a
Lagrangian L for the free energy which enforces consistency
between the beliefs in every pair of connected regions. To that
end, we add Lagrange multipliers λPC(xC) which enforce that

bC(xC) =
∑

xP \xC

bP (xP ) (120)

for every pair of parent and child regions P and C. We also
need to include Lagrange multipliers γR which enforce the
normalization of the beliefs:

∑

xR
bR(xR) = 1. We can ig-

nore the Lagrange multipliers corresponding to the inequality
constraints bR(xR) ≥ 0, because for interior stationary points,
these constraints are inactive and the Lagrange multipliers are
zero.

Setting the derivatives of L with respect to the beliefs
bR(xR) equal to zero gives us the following stationarity
conditions:

cR ln bR(xR) = γR + cR

∑

a∈AR

ln fa(xa)

−
∑

P∈P(R)

λPR(xR) +
∑

C∈C(R)

λRC(xC), (121)

where P(R) is the set of regions that are parents of region R,
and C(R) is the set of regions that are children of region R.
In this expression, xa and xC are entirely determined by the
value of xR.

Our proof will now work backwards from the belief equa-
tions that we want to derive. We want to show that there
exists a “rotation” from our Lagrange multipliers λ to another
set of Lagrange multipliers µ such that the stationary point
conditions can be re-written as

cR ln bR(xR) = γR + cR

∑

a∈AR

ln fa(xa) + (122)

cR

∑

P∈P(R)

µPR(xR) + cR

∑

D∈D(R)

∑

P ′∈P(D)\E(R)

µP ′D(xD).

Clearly, if we can show this, then by identifying the message
mP→R(xR) = exp(µPR(xR)), we will recover our desired
belief equations.

So what do the Lagrange multipliers µPR(xR) constrain?
The answer is that they impose the constraint

cRbR(xR) +
∑

A∈A(R)\(P∪A(P ))

cA

∑

xA\xR

bA(xA) = 0. (123)

In words, the Lagrange multiplier µPR constrains the weighted
belief in region R plus the sum of the weighted beliefs in all
the ancestor regions of region R, except for regions P and all
its ancestors, to be equal to zero. If we make a Lagrangian
using these Lagrange multipliers, it is straightforward to work
out that its stationary points are given by equation (122).

So now to prove the theorem in both its directions we need
to show that we can derive the constraints given by the µ
Lagrange multipliers from those given by the λ Lagrange
multipliers and vice versa.

We first note that because cR +
∑

A∈A(R) cA = 1, and
cP +

∑

A∈A(P ) cA = 1, we can subtract these two equations
and obtain

cR +
∑

A∈A(R)\(P∪A(P ))

cA = 0 (124)

If we start with the λPC(xC) constraints that bC(xC) =
∑

xP \xC
bP (xP ) for every pair of parent and child regions, we

can use equation (124) as a basis for deriving the constraints
associated with the µ Lagrange multipliers.

To prove that we can derive the λ constraints from the µ
constraints, we use induction, starting with regions that have
no parents (“level 0” regions), then considering regions all
of whose parents are level 0 regions (“level 1”) regions, then
regions all of whose parents are level 0 or level 1 regions
(“level 2” regions), and so on. For each region R, we will
want to show that the λ constraint with respect to all of its
parents holds, and, because it helps the inductive procedure,
we will also want to show that the condition

(cR − 1)bR(xR) +
∑

A∈A(R)

cA

∑

xA\xR

bA(xA) = 0 (125)

holds.
For the level 0 regions, with counting number cR = 1, there

is nothing to prove. Let us now consider a level 1 region R
whose NP parents all have no parents. If we consider one
particular parent P1, then from the µP1R constraint, we have

cRbR(xR) +
∑

P∈P(R)\P1

cP

∑

xA\xR

bP (xA) = 0. (126)
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Choosing any other parent P2, we obtain an analogous equa-
tion, so subtracting any two such equations, we obtain

∑

xP1
\xR

bP1
(xP1

) =
∑

xP2
\xR

bP2
(xP2

) (127)

for any two parents of R.
If we now replace all terms of the form

∑

xP
bP (xP ) for

parents who are not P1 in equation (126) with equivalent terms
using P1, and remember that cR = 1 − NP and cP = 1
(because at this level we know that parents have no parents),
then we obtain

bR(xR) =
∑

xP1
\xR

bP1
(xP1

). (128)

Obviously, we can obtain a similar equation for any other
parent P . We also can now simply subtract equation (128)
from equation (126) to show that equation (125) holds for any
region R at level 1.

Consider now a region R at level X , where we have shown
that equation (125) holds for all regions at lower levels. We
consider a particular parent P1, and use the µP1R constraint

cRbR(xR) +
∑

A∈A(R)\P1

cA

∑

xA\xR

bA(xA) = 0 (129)

together with equation (125) applied to P1 to obtain

cRbR(xR)+
∑

A∈A(R)

cA

∑

xA\xR

bA(xA)−
∑

xP1
\xR

bP1
(xP1

) = 0.

(130)
Of course, we can obtain an analogous equation for any parent
P of R, and subtracting any two such equations, we again
obtain equation (127).

Now we are able to follow the procedure used previously,
using the already derived equalities to replace in equation
(129) all terms of the form

∑

xA\xR
bA(xA) for ancestors A

that are not P1 with equivalent terms using P1, and using the
counting number definition cR +

∑

A∈A(R) cA = 1 to finally
obtain the desired λ constraint between R and P1. Of course,
we can obtain the same result for every parent of R, and use
these results to obtain the condition of equation (125), which
will enable us to proceed to the next level of induction.

Note that we have not given a general formula relating
the µ Lagrange multipliers to the λ Lagrange multipliers.
Fortunately, such a formula is not actually necessary for our
proof, as we only need to show there always exists such a
rotation to a new set of Lagrange multipliers, even though
we do not specify it explicitly. It is very difficult to derive a
general formula relating the two sets of Lagrange multipliers,
but for region graphs with only two “generations” of regions
like those constructed using the junction graph method (see
appendix A), we can in fact give the relationship explicitly in
both the forward and inverted directions:

λPR(xR) =
∑

P ′∈P(R)\P

µP ′R(xR), (131)

µPR(xR) =
1 − cR

cR
λPR(xR) +

1

cR

∑

P ′∈P(R)\P

λP ′R(xR).

(132)
Also note that this technical difficulty does not arise at all for
the child-to-parent and two-way GBP algorithms described in
Appendix D, because in those algorithm, the messages are
directly exponentiated Lagrange multipliers.

We will not here investigate the issue of edge stationary
points and active inequality constraints for general constrained
region graph free energies. One might expect that the general
picture that emerged for the Bethe/BP case to be reproduced
here, but the existence of valid constrained region-based
free energy approximations that are nevertheless not maxent-
normal makes the problem quite intricate.

X. DETAILED EXAMPLE OF A GBP ALGORITHM

21 3 4 5 6 7

Af Bf Cf

1f 2f 3f 4f 5f 6f 7f

Fig. 13. A factor graph that we will use for our detailed example of how to
construct a GBP algorithm.

We will now give a detailed example of how to construct
a GBP algorithm. Consider the factor graph drawn in figure
13, which has seven variable nodes and ten factor nodes. For
this factor graph, it is convenient to slightly alter our labeling
conventions so that some of the factor nodes (the ones attached
to a single variable node) are labeled with a number rather than
a letter. This factor graph corresponds to the joint probability
distribution

p(x1, x2, ..., x7) =
1

Z

(

7
∏

i=1

fi(xi)

)

... (133)

fA(x1, x2, x3, x5)fB(x1, x2, x4, x6)fC(x1, x3, x4, x7)

We will work out a GBP algorithm making no assumptions
about the actual forms of the functions, but we note that this
particular factor graph can be used to represent the probability
distribution that occurs when decoding a block error-correcting
code [21]. In particular, if each of the variable nodes is binary,
with possible states 0 or 1, and the functions fA, fB , and
fC are parity-check functions (equal to 1 if the sum of their
arguments are even, and 0 otherwise), then this factor graph
corresponds to the linear block (7, 4, 3) Hamming code with
parity check matrix

H =





1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1



 . (134)
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For the decoding problem, the functions fi(xi) represent the
likelihoods of the possible states of the bits, in light of the
received block from the channel and the assumed channel
model.
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Fig. 14. A region graph obtained for the factor graph of figure 13 using the
cluster variation method.

To obtain a GBP algorithm, we first need to
create a region graph. We use the cluster variation
method, with largest regions {fA, f1, f2, f3, f5, 1, 2, 3, 5},
{fB, f1, f2, f4, f6, 1, 2, 4, 6} and {fC , f1, f3, f4, f7, 1, 3, 4, 7}.
Following the cluster variation method prescription for finding
intersection regions detailed in appendix B, we obtain the
region graph shown in figure 14.

Now that we have a region graph, we need to choose what
kind of GBP algorithm we want to use and then write down
the belief and message equations for the GBP algorithm. We
choose to use the parent-to-child algorithm.

Note that although the region graph free energy is useful
for theoretically justifying a GBP algorithm, it will not be
necessary for constructing the algorithm. Instead, we can work
directly with the belief equations.

Recall that in the parent-to-child algorithm, we only have
one kind of message mP→R(xR) from a parent region to a
child region. Each region R has a belief bR(xR) given by
equation (113) which we re-write here:

bR(xR) ∝
∏

a∈AR

fa(xa)





∏

P∈P(R)

mP→R(xR)



 .

.





∏

D∈D(R)

∏

P ′∈P(D)\E(R)

mP ′→D(xD)



 .(135)

In words, this equation says that the belief at each region is a
product of the local factors in that region, the messages from
parents, and the messages into descendant regions from other
parents who are not also descendants.

In our region graph, we have seven regions that can be
grouped into three types of regions: the three regions exem-
plified by {fA, f1, f2, f3, f5, 1, 2, 3, 5} that contain five factor
nodes and four variable nodes; the three regions exemplified

by {f1, f2, 1, 2} that contain two factor nodes and two variable
nodes; and the single region {f1, 1} that contains one factor
node and one variable node.

We will use an abbreviated notation, dropping explicit xR

dependence, for beliefs and messages and factor functions. The
notation is best explained with some examples: we write b1235,
b12 and b1 for the beliefs at the regions listed in the previous
paragraph; we write m35→12 for the message from region
{fA, f1, f2, f3, f5, 1, 2, 3, 5} to region {f1, f2, 1, 2}, m2→1 for
the message from region {f1, f2, 1, 2} to region {f1, 1}, and
we abbreviate fA(x1, x2, x3, x5) as fA.

In this abbreviated notation, the belief equations for the
largest regions will be

b1235 ∝ fAf1f2f3f5m46→12m47→13m4→1, (136)

b1246 ∝ fBf1f2f4f6m35→12m47→14m3→1, (137)

and

b1347 ∝ fCf1f3f4f7m25→13m26→14m2→1. (138)

Note that since these regions do not have parents, all the
relevant messages are into descendant regions from other
parents who are not descendants.

The belief equations for the intermediate-sized regions will
be

b12 ∝ f1f2m35→12m46→12m3→1m4→1, (139)

b13 ∝ f1f3m25→13m47→13m2→1m4→1 (140)

and
b14 ∝ f1f4m26→14m37→14m2→1m3→1. (141)

Finally, the belief equation for the region {f1, 1} will be

b1 ∝ f1m2→1m3→1m4→1. (142)

The message-update rules are obtained by combining these
belief equations with the marginalization conditions between
parent and child regions:

bC(xC) =
∑

xP \xC

bP (xP ). (143)

For example, requiring consistency between the beliefs at the
region {f1, 1} and the region {f1, f2, 1, 2} tells us that

b1(x1) =
∑

x2

b12(x1, x2) (144)

from which we obtain

m2→1 :=
∑

x2

f2m35→12m46→12. (145)

The other message-update rules, obtained in the same way
(or equivalently by using equation (114), will be

m3→1 :=
∑

x3

f3m25→13m47→13, (146)

m4→1 :=
∑

x4

f4m26→14m37→14, (147)

m3→1m35→12 :=
∑

x3,x5

fAf3f5m47→13, (148)

23



m2→1m25→13 :=
∑

x2,x5

fAf2f5m46→12, (149)

m4→1m46→12 :=
∑

x4,x6

fBf4f6m37→14, (150)

m2→1m26→14 :=
∑

x2,x6

fBf2f6m35→12, (151)

m4→1m47→13 :=
∑

x4,x7

fCf4f7m26→14, (152)

and
m3→1m37→14 :=

∑

x3,x7

fCf3f7m25→13. (153)

In practice, it often helps convergence to only step the
messages part-way to their newly computed values. This
simple heuristic can eliminate “over-shooting” problems.

We emphasize here one potential practical pitfall to avoid
when using this “inertia” heuristic. Let us suppose that we
have a set of old messages {mold}, which we use in the
update equations to calculate a set of messages {mupdate},
and that we want to set our new messages to be half-
way between the old messages and the updated messages:
{mnew} = 1

2{m
old} + 1

2{m
update}. We strongly recommend

that when using an update equation with more than one
message on the left hand side, that all those messages are
mupdate equations. Mixing in mnew or mold messages on the
left hand side empirically often results in poor convergence
properties. For example, the update equation (148) given above
should explicitly be

mupdate
3→1 mupdate

35→12 :=
∑

x3,x5

fAf3f5m
old
47→13. (154)

Fortunately, it is always possible to schedule the message
updates so that one computes the updated messages into the
smallest regions first (e.g. messages like mupdate

3→1 ), so that they
are available when needed to compute the updated messages
into larger regions.

There are many other details that can be handled in dif-
ferent ways in iterating the message update equations. For
example, the messages can be initialized in any way one
likes; two reasonable choices are random or uniform messages.
The algorithm typically terminates after a fixed number of
iterations, or after some convergence criterion is satisfied,
but other termination conditions are possible. In a decoding
application, one typically checks at each iteration whether the
thresholded beliefs correspond to a code-word, and terminates
the decoding algorithm if they do, stopping otherwise when
some fixed number of iterations has passed.

XI. ACCURACY OF GBP ALGORITHMS

We naturally are interested in GBP algorithms, and their
corresponding region-based free energy approximations, only
to the extent that they improve upon the standard BP/Bethe
approach. Fortunately, maxent-normal region-based free en-
ergy approximations, particularly those that satisfy the heuris-
tics described in section VIII, do indeed reliably give more

accurate estimates of marginal probabilities than the Bethe
approximation.

Consider, as an example, the square lattice Ising ferro-
magnet. This is a model where N binary variable nodes are
arranged in an L by L square lattice, and each variable node
is connected to its nearest neighbors by a pairwise factor of
the form

fa(xi, xj) =

(

exp(J/T ) exp(−J/T )
exp(−J/T ) exp(J/T )

)

. (155)

In this model, neighboring variable nodes (“spins”) prefer to
be in the same state. The parameter J measures the strength of
this preference, and T is the temperature. In the limit of large
L, this model has a phase transition at a critical temperature Tc,
above which it is a in a paramagnetic state, and below which it
is in a ferromagnetic state. (For more discussion of this model,
see any textbook on statistical mechanics, e.g. [46].)

Because of the translational symmetry of the model, it is
easy to construct Bethe or Kikuchi approximations, treat them
analytically, and compare with known exact results. Already
in 1951, Kikuchi studied the approximation obtained using
the cluster variation method, starting with 2 by 2 overlapping
clusters. As we stated in section VIII, this approximation is
maxent-normal, and satisfies our heuristics that the shortest
loops are contained in regions, and that the sum of the counting
numbers of all regions equals one.

One finds that for this model, the exact critical temperature
Tc is approximately 2.2692J , compared to the mean field
theory prediction of 4.0J , the Bethe approximation prediction
of 2.8854J , and the Kikuchi prediction (using 2 by 2 clusters)
of 2.4257J [16], [57].

Qualitatively similar results are available in the physics
literature for a wide variety of models of magnetic sys-
tems with translationally invariant interactions. However, when
considering probabilistic inference for Bayesian networks or
decoding an error-correcting code, we are more interested in
studying the accuracy of the predictions for marginals made
by these approximations for factor graphs that do not have any
symmetries.

Besides the results that we now discuss, which were first re-
ported in [17], the interested reader can find similar empirical
results for GBP algorithms in references [58], [59], [56], [33],
[49]. Readers who are more interested in rigorous bounds on
the accuracy of marginals will want to consult the work of
Wainwright et.al. [24].

We studied factor graphs known in the physics literature as
square lattice Ising spin glasses in a random magnetic field.
The variable nodes were arranged in an L by L square lattice,
and connected to their nearest neighbors by factors of the form

fa(xi, xj) =

(

exp(Jij/T ) exp(−Jij/T )
exp(−Jij/T ) exp(Jij/T )

)

. (156)

where the parameters Jij are chosen independently for each
factor from a Gaussian probability distribution. In addition,
each variable node was connected to a “local random field”
factor node fi(xi) of the form

fi(xi) =

(

exp(hi/T
exp(−hi/T )

)

, (157)
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where the parameters hi are also chosen independently from
a Gaussian probability distribution.

We focused on the case where the Jij parameters were
chosen from a zero-mean Gaussian distribution with standard
deviation of 1.0, while the hi parameters were chosen from
a zero-mean Gaussian distribution with standard deviation
of 0.1. This highly frustrated model was chosen because it
highlights the weaknesses of ordinary BP, which performs
perfectly well for many other factor graphs. For all our
algorithms, we used “inertia” (see section X, and also [58],
[59]) to help convergence.

For L = 10, we found, over dozens of samples, that the
parent-to-child GBP algorithm always converged to accurate
answers, while ordinary BP usually did not usually converge at
all. For L sufficiently small, we could compute exact marginals
by re-writing the factor graph as a chain of L by 1 “super-
nodes,” which could each take on 2L different states. To give
a qualitative feel for the results, we compare ordinary BP,
parent-to-child GBP, and the exact results for one L = 10
lattice where ordinary BP did converge. We plot the results
for the “local magnetization” (the belief of the node that the
node is in the first state minus the belief that it is in the second
state) for the ten variable nodes in one row of the lattice in
figure 15. Note that the GBP algorithm is much more accurate
than ordinary BP, which tends to correctly predict the direction
of the magnetization, but is highly “over-confident.”
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Fig. 15. The local magnetization for 10 variable nodes in a 10 by 10 spin
glass with random magnetic fields, as computed exactly, and using ordinary
BP or GBP.

ACKNOWLEDGEMENTS

We thank Dave Forney, Robert McEliece, and Erik Sudderth
for helpful and encouraging discussions, and David MacKay,
Erik Sudderth, and Max Welling for their comments on
previous drafts of this paper. We also thank the anonymous
referees for their criticisms and suggestions.

APPENDIX A: THE JUNCTION GRAPH METHOD

A natural idea to generalize the Bethe Method is to keep
the notion that R should be the union of a set of large regions
RL and a set of small regions RS , but to let the regions in
RL or RS contain more nodes. The junction graph method,
that we describe here, exploits this idea, and is based on a
generalization of the “junction graphs” that were introduced
by Aji and McEliece [29].

We define a junction graph to be a labeled bipartite
graph G = (VL, VS , E, L) in which there are large vertices
(corresponding to large regions) vl ∈ VL, small vertices
(corresponding to small regions) vs ∈ VS , and directed edges
(or arcs) e ∈ E connecting large vertices to small vertices.
The vertices in the junction graph are labeled, and the label
of vertex vi is denoted l(vi) ∈ L. The labels will be subsets
of a set of indices I representing factor or variable nodes of
a factor graph.

For the graph G to be considered a junction graph, we insist
upon two conditions. First, if vs is a small vertex neighboring
the k large vertices vl1 , vl2 , ..., vlk , then we require that l(vs)
is a subset of each of l(vl1), l(vl2), ...., l(vlk ), or equivalently,
that

l(vs) ⊆ l(vl1) ∩ l(vl2) ∩ ... ∩ l(vlk ). (A-1)

Secondly, we require that for any index i ∈ I , the subgraph
of G consisting only of the vertices which contain i in their
labels, is a connected tree.

The “junction graphs” introduced by Aji and McEliece [29]
are a special case of those described here. In their junction
graphs, small vertices were restricted to have precisely two
neighboring large vertices, so that the small vertices can be
interpreted as labeled “edges” between the large vertices. They
further required that small region labels not include any indices
representing factor nodes.

Given a set of regions RJG = RL ∪RS that are organized
into a junction graph, we can always obtain a valid region-
based approximation by defining a set of counting numbers
cR as follows. For all regions R ∈ RL, we let cR = 1, while
for all region R ∈ RS , we let cR = 1 − dR where dR is
the degree (numbering of neighboring large regions) of region
R. It is through this prescription that the arcs the junction
graph become relevant–a small region’s contribution to the free
energy is subtracted out from that of a large region only if the
two regions are connected by an arc. It is straightforward to
confirm that this prescription for the counting numbers gives us
a valid region-based free energy approximation, as the junction
graph condition that the sub-graph for each variable or factor
node is a tree guarantees that each variable and factor node
will be counted once as required in equation (29).

Aji and McEliece proved a theorem that tells us that given
any set of large regions RL that contain all the factor and
variable nodes in a factor graph, we can find a corresponding
set of small regions RS and organize the regions in RJG =
RL ∪ RS into a junction graph. Their theorem generalizes
without difficulty to our version of junction graphs.

As an example, consider the factor graph which we in-
troduced in the main text and re-draw in figure 16. We
could take as our set of large regions RL the four re-
gions {A, C, 1, 2, 4, 5}, {B, D, 2, 3, 5, 6}, {C, E, 4, 5, 7, 8},
and {F, 5, 6, 8, 9}. An acceptable set of corresponding small
regions RS would be {2, 5}, {C, 4, 5}, {5, 6}, and {8}, with
a junction graph as shown in figure 16. Because in this case
each of the small regions is connected to two large regions,
they would each have a counting number of −1.

The set of regions given by the Bethe method can also
always be organized into a junction graph (though not neces-
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Fig. 16. A junction graph (on the right) for the factor graph on the left.

1 2 3

4 5 6

7 8 9

A,1,2,4,5 B,2,3,5,6

C,4,5 D,5,6

E,4,5,7,8 F,5,6,8,9

Fig. 17. A junction graph for the factor graph shown in figure 4 generated
using the Bethe method. Note the isomorphism between this junction graph
and the original factor graph.

sarily the restricted Aji-McEliece version of a junction graph);
using as an example the same factor graph, the resulting
junction graph is shown in figure 17. It is obvious from this
example that there will always be a one-to-one isomorphism
between the original factor graph and the corresponding junc-
tion graph obtained from the Bethe method.

The junction graph approximation for the variational free
energy is

FJG({bR}) = UJG({bR}) − HJG({bR}), (A-2)

where

UJG({bR}) =
∑

R∈RL

UR(bR)+
∑

R∈RS

(1−dR)UR(bR), (A-3)

and

HJG({bR}) =
∑

R∈RL

HR(bR) +
∑

R∈RS

(1 − dR)HR(bR).

(A-4)
Junction graphs are a special case of region graphs, where

there are only two “generations” of regions. It follows that
minimizing the junction graph free energy FJG will once again
give beliefs {bR} that are equivalent to those obtained from a
message-passing BP algorithm. That algorithm is sometimes
known as the generalized distributive law [25]. Again it
follows as a corollary of our more general results for region
graphs that the junction graph approximation to the variational
free energy will be exact, and the generalized distributive law
will give exact results, when the junction graph is a tree. In that

case, the junction graph is a junction tree, and the generalized
distributive law reduces to the famous junction tree algorithm.

We can apply the well-known result [13] for the joint
probability function in junction trees to our case and obtain

p(x) =

∏

R∈RL
pR(xR)

∏

R∈RS
pR(xR)dR−1

. (A-5)

To obtain this result, we note that while we have described
region graphs and junction graphs as directed graphs, from
the point of view of statistical graphical models, they are
equivalent to undirected graphs. In particular, one can re-write
the full joint probability distribution p(x) for a factor graph
in the form

p(x) =
1

Z

∏

(RS)

ΨRS(xR,xS)
∏

R

ΦR(xR) (A-6)

where (RS) denotes pairs of connected regions in a given
region graph for that factor graph. Specifically, when we set
ΦR(xR) =

(
∏

a∈AR
fa(xa)

)cR and ΨRS(xR,xS) equal to 1
if xR is consistent with xS and equal to 0 otherwise, this
form of the joint probability distribution will be equivalent to
the one in the original factor graph form. Since the formula
(A-5) is true for pairwise Markov Random Fields when the
set of nodes in RL are separated by the set of nodes in RS ,
and we have shown how to convert a region graph into an
equivalent pairwise Markov Random Field, we have justified
using formula (A-5) for region graphs as well.

APPENDIX B: THE CLUSTER VARIATION METHOD

Another method for selecting a valid set of regions R and
counting numbers cR is the cluster variation method intro-
duced by Kikuchi in 1951 and further developed in the physics
literature since then [20]. The main feature distinguishing this
method from the junction graph method is that R may be the
union of more than just two generations of regions.

In the cluster variation method, we begin with a set of
distinct large regions R0 such that every factor node a and
every variable node i in our factor graph is included in at least
one region R ∈ R0. We also require that no region R ∈ R0 be
a subregion of any other region in R0. We then construct the
set of regions R1 by forming all possible intersections between
regions in R0, but discarding from R1 any intersection regions
that are sub-regions of other intersection regions. If possible,
we then construct in the same way the set of regions R2 from
the intersections between regions in R0 ∪ R1, but discarding
any intersection regions that already appeared in R1 or that
are sub-regions of other intersection regions in R2. As long
as there continue to be intersection regions, we construct
sets of regions R3,R4, ...RK in the same way. Finally, the
set of regions used in the cluster variation method will be
R = R0 ∪ R1 ∪ ... ∪ RK .

To form a region graph using the cluster variation method,
we draw connections between the regions obtained in R =
R0 ∪R1 ∪ ...∪RK in the following way. For regions in R1,
we connect them to all regions in R0 that are super-regions.
For a region R in R2, we connect it to all regions in R0

and R1 that are super-regions of R, except for those regions
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in R0 that do not need a direct connection, because they are
super-regions of regions in R1 that are also super-regions of
R. Similar rules are followed for regions in R3 and so on.

We define the counting numbers in the cluster variation
method to be

cR = 1 −
∑

S∈S(R)

cS (B-1)

where S(R) is the set of all regions which are super-regions
of region R.

Returning to our example factor graph drawn in figure 4,
we can choose the base set of regions R0 to consist of the four
regions {A, C, 1, 2, 4, 5}, {B, D, 2, 3, 5, 6}, {C, E, 4, 5, 7, 8},
and {D, F, 5, 6, 8, 9}. Once the set of base regions R0 is
chosen, there is no further choice in the cluster variation
method. In our case, the set of intersection regions R1 would
be the regions {2, 5} {C, 4, 5}, {D, 5, 6}, {5, 8}, and the set
of intersection regions R2 would be {5}.

Each of the regions R ∈ R0 would have an counting number
cR = 1. Because each of the regions R ∈ R1 is the subregion
of two regions in R0, they each have an counting number of
cR = 1−2 = −1. Finally since every region in R0 and R1 is
a super-region of {5}, its counting number is 1 − 4 + 4 = 1.

We can represent this set of regions and counting numbers
with the region graph shown in figure 18.

A,C,1,2,4,5 B,D,2,3,5,6 C,E,4,5,7,8 D,F,5,6,8,9

2,5 C,4,5 D,5,6 5,8

5

Fig. 18. A region graph generated using the cluster variation method.

Note that the Bethe approximation will be a special case
of the cluster variation method if and only if no factor node
shares more than one variable node with another factor node
(or equivalently, there are no cycles of length four in the factor
graph.) The factor graph shown in figure 18 is therefore one
example of a factor graph for which the Bethe approximation
can not be generated by the cluster variation method.

We remark that in the physics literature, the cluster vari-
ation method has normally been applied to a restricted class
of factor graphs that are particularly relevant as models of
magnetic materials. In particular, the factor graph normally
represents a translationally invariant crystal lattice, and the
factor nodes normally have degree two, corresponding to two-
body interactions. Translational symmetry in the factor graph
often dramatically simplifies the problem of minimizing the

Kikuchi free energy, and when the factor nodes have degree
two, the Bethe method will always be a special case of the
cluster variation method.

APPENDIX C: RELATIONSHIPS BETWEEN DIFFERENT

METHODS

In this appendix, we summarize the relationships between
the different methods for generating valid sets of regions for a
region-based free energy approximation. First of all, as is clear
from its definition, a junction graph will always be a region
graph (though the converse is not true). The sets of regions and
counting numbers generated by the cluster variation method
can also always be represented by a region graph. We already
saw one example in figure 18.

We emphasize that one can construct region graph approx-
imations that cannot be generated with either the junction
graph or cluster variation methods. We already saw such an
example when we introduced region graphs in the main text
in section VII. Constructions that are more general than those
constructed using the cluster variation method or the junction
graph method may be useful for a variety of reasons, including
reducing the computational complexity of a GBP algorithm.

BA

C

1

2

4

3

5

6

Fig. 19. For this factor graph, the choice of regions {A, 1, 2, 4}, {B, 1, 3, 5},
{C, 2, 3, 6}, and {1, 2, 3}, with corresponding counting numbers of 1,1,1,and
−1, will give a valid region-based approximation that cannot be represented
by a region graph.

Note, however, that although the region graph method is the
most general method we have introduced, there do exist valid
region-based free energy approximations that do not have a
region graph representation. We demonstrate an example in
figure 19.

In summary, we have the following relationships, as il-
lustrated in the Venn diagram of figure 20. For a given
factor graph, the cluster variation method and the generalized
junction graph method each generate valid region-based free
energy approximations that are subclasses of all the possible
valid approximations. Neither the cluster variation method nor
the generalized junction graph method is more general than the
other, and both are subsumed by the more general region graph
method. The set of regions generated by the Bethe method is
always an examplar of those generated by the junction graph
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(Kikuchi)

Junction graphs
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Region Graphs
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Junction trees

Valid Region-based Approximations

Fig. 20. A Venn diagram illustrating the relationships between different
methods of generating valid region-based free energy approximations. The
Bethe method is always an exemplar of the junction graph method, but is
only a special case of the cluster variation method if the factor graph has
no pair of factor nodes that share more than one variable node, and is only
a special case of Aji and McEliece’s junction graph method if the relevant
factor graph is a Forney “normal” graph (no variable node is connected to
more than two factor nodes).

method, and will be an examplar of those generated by the
cluster variation method if and only if the factor graph has no
cycles of length four. In general, the Bethe method will not
be a special case of the Aji-McEliece junction graph method,
though it will be for factor graphs such that each variable
node is adjacent to no more than two factor nodes (Forney’s
so-called “normal” factor graphs [22]).

In addition to being a more general method than the cluster
variation method or the junction graph method, we feel that
the region graph method is easier to understand on an intuitive
level. We simply select a set of regions and counting numbers
such that every variable and factor node gets counted once,
and we enforce consistency for the beliefs between connected
regions. Region graphs also have the important advantage of
being a natural graphical structure for describing generalized
belief propagation algorithms.

Pakzad and Anantharam have suggested strengthening the
region graph requirements described in section VII so that for
every sub-set of variable nodes in the factor graph, the sub-
graph of regions containing that sub-set must be connected
and must have a sum of counting numbers equal to one [31].
Such a strengthening would ensure that the beliefs computed
for any sub-set of nodes would always be consistent, no matter
which regions were used to compute it. The cluster variation
method produces region graphs that satisfy these stronger
requirements, but we chose not to insist on these stronger
requirements in general, because region graphs created using
the Bethe Method will not necessarily satisfy them.

APPENDIX D: THE CHILD-TO-PARENT ALGORITHM

The observation underlying the “child-to-parent algorithm”
is that when we minimize the Bethe free energy, the Lagrange
multipliers enforcing the marginalization constraints corre-
spond exactly (after exponentiation) to the ni→a(xi) messages
from variable nodes to factor nodes in the BP algorithm.
Considering these messages as messages from child regions to

parent regions in a region graph, we can try to generalize the
approach to arbitrary region graphs. Thus, we construct a GBP
algorithm by simply minimizing a region graph free energy
and identifying Lagrange multipliers that enforce consistency
between beliefs with messages from child regions to parent
regions. Such an approach was considered in detail by Kappen
and Wiegerinck for region graphs constructed using the cluster
variation method [51].

We begin with the Lagrangian stationary point equation
(again assuming interior stationary points) obtained by differ-
entiating the Lagrangian with respect to beliefs. We obtained
this equation previously (see equation (121)), and re-write it
here:

cR ln bR(xR) = γR + cR

∑

a∈AR

ln fa(xa)

−
∑

P∈P(R)

λPR(xR) +
∑

C∈C(R)

λRC(xC), (D-1)

where P(R) is the set of regions that are parents of region
R, and C(R) is the set of regions that are children of region
R, and λPR(xR) are the Lagrange multipliers that enforce
consistency between the beliefs in region P and those in region
R.

For cR 6= 0, we can re-write this equation as

bR(xR) ∝
∏

a∈AR

fa(xa)

(
∏

C∈C(R) nC→R(xC)
∏

P∈P(R) nR→P (xR)

)1/cR

,

(D-2)
where nC→P (xC) = exp(λPC(xC)) is a “message” from
a child region C to a parent region P , in analogy with the
messages ni→a(xi) in standard BP. If cR = 0, we do not get
a condition on bR(xR) (bR(xR) can still be determined from
beliefs in super-regions via the marginalization conditions);
instead we obtain the following condition on the messages
into and out of region R:

(
∏

C∈C(R) nC→R(xC)
∏

P∈P(R) nR→P (xR)

)

= 1. (D-3)

The message update rules are then obtained by applying the
marginalization conditions bC(xC) =

∑

xP \xC
bP (xP ).

A small example might help clarify the meaning of these
equations for the reader. Consider the probability distribution

p(x1, x2, x3) =
1

Z
fA(x1, x2)fB(x2, x3). (D-4)

We use the Bethe approximation, which should be exact in this
case because the factor graph is a tree. Thus, we obtain large
regions {A, 1, 2} and {B, 2, 3}, with counting numbers 1, and
small regions {1}, {2}, and {3}, with counting numbers 0, 1,
and 0 respectively. We obtain the following belief equations
for the regions with cR 6= 0:

bA(x1, x2) ∝ fA(x1, x2)n1→A(x1)n2→A(x2), (D-5)

bB(x2, x3) ∝ fB(x2, x3)n2→B(x2)n3→B(x3), (D-6)

b2(x2) ∝ n2→A(x2)n2→B(x2), (D-7)
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and the following conditions on messages for the regions with
cR = 0:

n1→A(x1) = 1, (D-8)

and
n3→B(x3) = 1. (D-9)

Using these conditions and the marginalization conditions, we
find that

n2→A(x2) =
∑

x3

fB(x2, x3), (D-10)

and
n2→B(x2) =

∑

x1

fA(x1, x2). (D-11)

We can now easily check that in this example, the computed
beliefs give back the desired marginal probabilities exactly.

The child-to-parent algorithm, by its construction, clearly
gives a generalized BP algorithm whose fixed points corre-
spond to the stationary points of the region graph free energy.
On the other hand, it might be considered inelegant both
because it focuses only on the messages from child regions to
parent regions and because the message update equations will
inevitably be complicated and involve the counting numbers
cR. The two-way algorithm described in Appendix E and the
parent-to-child described in the main text in section IX-A
are different GBP algorithms that attempt to ameliorate these
flaws.

APPENDIX E THE TWO-WAY ALGORITHM

To motivate the two-way algorithm, we return to the stan-
dard BP algorithm, where we recall that the belief equations
can be written in the form

bi(xi) =
∏

a∈N(i)

ma→i(xi) (E-1)

and
ba(xa) = fa(xa)

∏

i∈N(a)

ni→a(xi) (E-2)

where
ni→a(xi) =

∏

c∈N(i)\a

mc→i(xi). (E-3)

Given these equations, it is natural to aim for a generaliza-
tion where the belief equations will have the form

bR(xR) = f̃R(xR)
∏

C∈C(R)

nC→R(xC)
∏

P∈P(R)

mP→R(xP ).

(E-4)
In other words, we aim to write the belief equations so

that the belief in a region is a product of local factors and
messages arriving from all the connected regions, whether they
are parents or children. It will turn out that we can do this, but
in order that the GBP algorithm correspond to the region graph
free energy, we will need to use modified factors and a rather
complicated relation between the nC→P (xC) messages and
mP→C(xP ) messages generalizing the relation for standard
BP given in equation (E-3).

It will be convenient to denote the number of parents of
region R by pR, and define the numbers qR ≡ (1 − cr)/pr

and βR ≡ 1/(2 − qr). When a region has no parent so that
pR = 0 and cR = 1, we take qR = βR = 1. Note that within
the Bethe approximation, qR = βR = 1 for all regions. We
will assume that qR 6= 2 so that βR is well-defined (normally,
if one has a region graph with a region such that qR = 2, one
should be able to change the connectivity of R to avoid this
problem).

We first define the set of pseudo-messages for all regions
R and their parents P and children C:

n0
R→P (xR) = (E-5)

f̃R(xR)
∏

P ′∈P(R)\P

mP ′→R(xR)
∏

C∈C(R)

nC→R(xC)

and

m0
R→C(xC) = (E-6)
∑

xR\xC

f̃R(xR)
∏

P∈P(R)

mP→R(xR)
∏

C′∈C(R)\C

nC′→R(xC′),

where f̃R(xR) ≡
(
∏

a∈Ar
fa(xa)

)cR .
Aside from the fact that we raised the product of the local

factors to a power of cR, these pseudo-messages are what
one would naively expect the message updates to look like.
To obtain the true message updates, however, one needs to
combine the pseudo-messages going in the two directions of
a link as follows:

nR→P (xR) =
(

n0
R→P (xR)

)βR
(

m0
P→R(xR)

)βR−1
(E-7)

and

mP→R(xR) =
(

n0
R→P (xR)

)βR−1 (
m0

P→R(xR)
)βR (E-8)

Note that when βR = 1, the messages are precisely the same
as the pseudo-messages.

The two-way algorithm is completed by the belief equations,
which have the form already given in equation (E-4). We are
now in position to prove the following theorem:

Theorem 6: The interior stationary points of the region
graph free energy are the same as the fixed points of two-
way GBP (defined by the message and belief equations given
above) that have strictly positive beliefs.

Proof: We form a Lagrangian from the region graph
energy as already indicated in the previous section on the
child-to-parent algorithm. If we exponentiate equation (121)
derived there, we obtain the equation

bR(xR)cR ∝ f̃R(xR)
∏

C∈C(R)

eλRC(xC)





∏

P∈P(R)

eλP R(xR)





−1

.

(E-9)
Suppose that we are given a set of λ and bR that satisfy

these stationary conditions of the Lagrangian. Now we define

nR→P (xR) = eλP R(xR) (E-10)

and
mP→R(xR) = bR(xR)qRe−λP R(xR) (E-11)

Of course, we have one m message and one n message for
every Lagrange multiplier λ, so for these definitions to hold,
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we also need to have constraints relating the m’s and n’s.
The constraints will be given by the definitions of the pseudo-
messages and the relations between the messages and the
pseudo-messages that we defined above. We want to show that
these relations, as well as the two-way GBP belief equations
previously defined, must hold.

First, we show that the belief equations (E-4) hold. We have

bR(xR)cR ∝ f̃R(xR)
∏

C∈C(R)

eλRC(xC)
∏

P∈P(R)

e−λP R(xR)

∝ f̃R(xR)
∏

C∈C(R)

nC→R(xC)
∏

P∈P(R)

(

fR(xR)

bR(xR)

)qR

mP→R(xR)

∝ (bR(xR))−qRpR f̃R(xR)
∏

C∈C(R)

nC→R(xC)
∏

P∈P(R)

mP→R(xR)

∝ (bR(xR))cR−1 f̃R(xR)
∏

C∈C(R)

nC→R(xC)
∏

P∈P(R)

mP→R(xR)

so that indeed bR(xR) is product of local potentials and
incoming messages.

Turning to the constraints, we have from the definition of
n0

R→P (xR), that

n0
R→P (xR) mP→R(xR) = bR(xR) (E-12)

=
∑

xP \xR

bP (xP ) (E-13)

= nR→P (xR)m0
P→R(xR). (E-14)

Equations (E-10) and (E-11) imply that

nR→P (xR)mP→R(xR) = bR(xR)qR (E-15)

=
(

n0
R→P (xR)mP→R(xR)

)qR

. (E-16)

Together these equations give us two equations for the two
unknowns mP→R(xR) and nR→P (xR):

mP→R(xR)

nR→P (xR)
=

m0
P→R(xR)

n0
R→P (xR)

fR(xR)−qR (E-17)

and

nR→P (xR)mP→R(xR)1−qR =
(

n0
R→P (xR)

)qR (E-18)

The unique solution of these equations is given by equations
(E-7) and (E-8). Thus, we have shown that the message
passing algorithm previously defined has fixed points that are
equivalent to the stationary points of the region graph free
energy.

The two-way algorithm will be particularly elegant when
f̃R(xR) = fR(xR) and when βR = 1 for all regions. In that
case, each region will send messages to all adjacent regions,
and the message update rules will be the natural generalization
of the ordinary BP rules written with two kinds of messages. It
is interesting to note that the condition that f̃R(xR) = fR(xR)
can be ensured by requiring that only regions with no parents
contain factor nodes, while the condition that βR = 1 for
all regions can be ensured by requiring that the sub-graph
obtained by taking any region and all of its ancestor regions
must always form a tree.

When βR = 1 for all regions, the two-way GBP algorithm
is equivalent to Pearl’s method of clustering [9]: we form new

nodes from clusters of variables in the original graph (these are
the regions) and run an ordinary BP algorithm on the resulting
graph. It is important to bear in mind that this equivalence only
holds for a subset of possible region graphs: if one uses the
method of clustering on a set of regions that does not satisfy
the region graph conditions, or on a region graph for which
βr 6= 1 for some regions, the resulting beliefs will generally
be a poor approximation.
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