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Abstract

We study the performance of the newly invented rateless codes (LT and Raptor
codes) on noisy channels such as the BSC and the AWGNC. We find that Raptor
codes outperform LT codes, and have good performance on a wide variety of noisy
channels.

1 Introduction

In a recent landmark paper, Luby [1] designed a class of rateless codes called Luby
Transform (LT) codes. These are low density generator matrix codes which are decoded
using the same message passing decoding algorithm (belief propagation) that is used to
decode LDPC codes. Also, just like LDPC codes, LT codes achieve capacity on every
BEC. Unfortunately, LT codes also share the error floor problem endemic to capacity
achieving LDPC codes. Shokrollahi [2] showed that this problem can be solved using
Raptor codes, which are LT codes combined with outer LDPC codes.

The aim of this paper is to study the performance of LT and Raptor codes on channels
other than the BEC. Since LDPC codes designed for the BEC perform fairly well on other
channels, one might conjecture that such a result holds for LT codes as well. We test
this conjecture using simulation studies.

2 LT codes

The operation of an LT encoder is very easy to describe. From k given information bits,
it generates an infinite stream of encoded bits, with each such encoded bit generated as
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Figure 1: Tanner graph of (a) LDPC code (b) LT code.

follows:
1. Pick a degree d at random according to a distribution µ(d).
2. Choose uniformly at random d distinct input bits.
3. The encoded bit’s value is the XOR-sum of these d bit values.

The encoded bit is then transmitted over a noisy channel, and the decoder receives a
corrupted version of this bit. Here we make the non-trivial assumption that the encoder
and decoder are completely synchronized and share a common random number generator
i.e., the decoder knows which d bits are used to generate any given encoded bit, but not
their values. In other words, the decoder can reconstruct the LT code’s Tanner graph
without error. Having done that, the decoder runs a belief propagation algorithm on this
Tanner graph. The message passing rules are straightforward and resemble those of an
LDPC decoder. Clearly, for large block lengths, the performance of such a system depends
mostly on the degree distribution µ. Luby uses the Robust Soliton (RS) distribution
which is described in [1].

Luby’s analysis and simulation studies show that this distribution performs very well
on the erasure channel. The only disadvantage is the decoding complexity grows as
O(k ln k), but it turns out that such a growth in complexity is in fact necessary to
achieve capacity [2]. However, slightly sub-optimal codes called Raptor codes, can be
designed with decoding complexity O(k) [2].

3 LT codes on noisy channels

When the receiver tries decoding after picking up a finite number n of symbols from the
infinite stream sent out by the transmitter, it is in effect trying to decode an (n, k) code,
with a non-zero rate R = k/n. As R decreases, the decoding complexity goes up and the
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Figure 2: Performance on BSC with p = 0.11 of LT codes generated using (a) the
RS(k,0.01,0.5) distribution (b) the distribution in Eqn. 1.

probability of decoding error goes down. In this paper, we have studied the variation of
bit error rate (BER) and word error rate (WER) with the rate of the code on a given
channel.

In Figure 2(a), we show some results for LT codes on a BSC with 11% bit flip proba-
bility. Note that the results are similar in nature on other BSCs and other AWGNCs as
well. In this figure, we plot R−1 on the x-axis and BER/WER on the y-axis. The receiver
buffers up kR−1 bits before it starts decoding the LT code using belief propagation. On a
BSC with 11% bit flip probability, the Shannon limit is R−1 = 2 i.e., a little over 2k bits
should suffice for reliable decoding in the large k limit. We see from the figure that an LT
code with k = 10000 drawn using the RS(10000,0.1,0.5) distribution can achieve a WER
of 10−2 at R−1 = 2.5 (or n = 25000). While this may suffice for certain applications,
neither a 25% overhead nor a WER of 10−2 is particularly impressive. Moreover, the
WER and BER curves bottom out into an error floor, and achieving very small WERs
without huge overheads in nearly impossible. Going to higher block lengths is also not
practical because of the O(k ln k) complexity.

The error floor problem is not confined to LT codes generated using a robust soliton
distribution. Codes generated using distributions optimized by Shokrollahi for the BEC
[2] also exhibit similar behaviour (Figure 2(b)). In this paper, we discuss the performance
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of one such distribution1 from [2]:

µ(x) = 0.007969x + 0.493570x2 + 0.166220x3

+0.072646x4 + 0.082558x5 + 0.056058x8 + 0.037229x9

+0.055590x19 + 0.025023x65 + 0.0003135x66 (1)

The main advantage of such distributions is that the average number of edges per node
remains constant with increasing k, which means the decoding complexity grows only
as O(k) (assuming the number of iterations is fixed). On the minus side, there will
be a small fraction of information bit nodes that are not connected to any check node.
This means that even as k goes to infinity, the bit error rate does not go to zero and
consequently, the word error rate is always one. The density evolution [3] analysis shown
in Figure 2(b) supports this observation.

4 Raptor Codes

The error floors exhibited by LT codes suggest the use of an outer code. Indeed this
is what Shokrollahi does in the case of the BEC [2] where he introduces2 the idea of
Raptor codes, which are LT codes combined with outer codes. Typically these outer
codes are high rate LDPC codes. In this paper, we use the distribution in Eqn 1 for
the inner LT code. For the outer LDPC code, we follow Shokrollahi [2] and use a left
regular distribution (node degree 4 for all nodes) and right Poisson (check nodes chosen
randomly with a uniform distribution).

Simulation studies, such as the one shown in Figure 3 clearly indicate the superiority
of Raptor codes. Figure 3 shows a comparison between LT codes and Raptor codes on a
BSC with bit flip probability 0.11. The LT code has k = 10000 and is generated using
the distribution in Eqn. 1. The Raptor code has k = 9500 and uses an outer LDPC
code of rate 0.95 to get k′ = 10000 encoded bits. These bits are then encoded using an
inner LT code, again generated using the distribution in Eqn 1. Figure 3 clearly shows
the advantage of using the outer high-rate code.

Raptor codes not only beat LT codes comprehensively, but also have near-optimal
performance on a wide variety of channels as shown in Figure 4, which shows the perfor-
mance of the aforementioned Raptor code on four different channels. On each of these
channels, the Raptor code has a waterfall region close to the Shannon capacity, with no
noticeable error floors. Of course, this does not rule out error floors at lower WERs.

1Note that these distributions were not designed to be used directly in LT codes.
2We must mention here that Maymounkov [4] independently proposed the idea of using an outer

code.
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Figure 3: Comparing LT codes with Raptor codes on a BSC with p=0.11. The LT code
has k = 10000 and is generated using the distribution in Eqn. 1. The Raptor code has
k = 9500 and has two components: an outer rate-0.95 LDPC code and an inner rateless
LT code generated using the distribution in Eqn. 1.

Figure 5 shows a histogram of the number of noisy bits needed for decoding the
previously described Raptor code with k = 9500. We observe that the expected number
of noisy bits required for successful decoding (20737) is fairly close to the Shannon limit
(19000).
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Figure 4: Performance of Raptor code with k=9500 and k’=10000 on different channels:
(a) BSC with p = 0.11 and AWGNC with E

s
/N0 = −2.83dB. Both channels have

capacity 0.5 (b) on BSC with p = 0.2145 and AWGNC with E
s
/N0 = −6.81dB. Both

channels have capacity 0.25.
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Figure 5: Histogram of number of bits required for successful decoding of Raptor code
with k = 9500 on an AWGNC with E

s
/N0 = −2.83dB. The capacity of this channel

is 0.5. The receiver first attempts decoding after receiving 19000 noisy bits (Shannon
limit). Whenever decoding fails, the receiver waits for another 100 bits before attempting
to decode again.
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