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ABSTRACT

The particle filter is a popular tool for visual tracking. Usually,
the appearance model is either fixed or rapidly changing, and the
motion model is simply a random walk with fixed noise variance.
Also, the number of particles used is typically fixed. All these
factors make the visual tracker unstable. To stabilize the tracker,
we propose the following measures: an observation model arising
from an adaptive appearance model, a velocity motion model with
adaptive noise variance, and adaptive number of particles. The
adaptive-velocity is computed via a first-order linear predictor us-
ing the previous particle configuration. Tracking under occlusion
is accomplished using robust statistics. Experimental results on
tracking visual objects in long video sequences such as vehicles,
tank, and human faces demonstrate the effectiveness and robust-
ness of our algorithm.

1. INTRODUCTION

Particle filter [3] is an inference technique for estimating the un-
known motion state,θt, from a noisy collection of observations,
Y1:t = {Y1, ..., Yt} arriving in a sequential fashion. A state space
model is often employed to accommodate such a time series. Two
important components of this approach are state transition and ob-
servation models whose most general forms can be defined as

θt = Ft(θt−1, Ut), Yt = Gt(θt, Vt), (1)

whereUt is the motion noise,Ft(., .) characterizes dynamics,Vt

is the observation noise, andGt(., .) models the observer. The par-
ticle filter approximates the posterior distributionp(θt|Y1:t) by a
set of weighted particles{θ(j)

t , w
(j)
t }J

j=1. Then, the state estimate
θ̂t can either be a minimum mean square error (MMSE) estimate,

θ̂t = θmmse
t = E[θt|Y0:t] ≈ J−1

J
∑

j=1

w
(j)
t θ

(j)
t , (2)

or a maximum a posteriori (MAP) estimate,

θ̂t = θmap
t = arg max

θt

p(θt|Y1:t) ≈ arg max
θt

w
(j)
t , (3)

or other forms based onp(θt|Y1:t).
The state transition model characterizes the motion change be-

tween frames. It is ideal to have an exact motion model governing
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the kinematics of the object. In practice, however, approximate
models are used. There are two types of approximations com-
monly found in the literature. (i) One is to learn a motion model
directly from a training video [6]. However such a model may
overfit the training data and may not necessarily succeed with the
testing video where objects can move arbitrarily at different times
and places. Also one cannot always rely on the availability of train-
ing data in the first place. (ii) Secondly, a fixed constant-velocity
model with fixed noise variance is fitted for simplicity [12, 13].

θt = θt−1 + Ut, (4)

whereUt has a fixed noise variance, sayUt = R0 ∗ U0 whereR0

is a fixed constant measuring the noisy extent andU0 is a ‘stan-
dardized’ random variable/vector1. If R0 is small, it is very hard
to model the rapid movement; ifR0 is large, it is computationally
inefficient since many more particles are needed to accommodate
the large noise variance. All these factors make the use of such a
model ineffective. In this paper, we overcome this by introducing
an adaptive-velocity model.

While contour is the visual cue used in many tracking algo-
rithms [6], another class of tracking approaches [4, 10, 13] exploits
an appearance modelAt. In its simplest (yet mostly used) form,
we have the following observation equation2,

Zt = T {Yt; θt} = At + Vt, (5)

whereZt is the image patch of interest in the video frameYt, pa-
rameterized byθt. In [4], a fixed template,At = A0, is matched
with observations to minimize a cost function in the form of sum
of squared distance (SSD). This is equivalent to assuming that the
noiseVt is a normal random vector with zero mean and a diagonal
(isotropic) covariance matrix. At the other extreme, one could use
a rapidly changing model [10], say,At = Ẑt−1, i.e., the ‘best’
patch of interest in the previous frame. However, a fixed tem-
plate cannot handle the appearance changes in the video, while a
rapidly changing model is susceptible to drift. Recent research ef-
forts make a compromise. The approach proposed in [7] uses a
mixture appearance model, consisting of a slow-varying appear-
ance component, a fast-changing appearance component, and an
occlusion component as well. The mixture appearance model is
also recursively updated.

1Take scalar case for example. IfUt is distributed asN(0, σ2), we can
write Ut = σU0 whereU0 is standard normalN(0, 1). Similarly, this
applies to multivariate cases.

2For the sake of brevity in notation, we denote:Zt = T {Yt; θt},

Z
(j)
t = T {Yt; θ

(j)
t }, Ẑt = T {Yt; θ̂t}. Also, we can always vectorize

the 2-D image by a lexicographical scanning of all pixels and denote the
number of pixels byd.



Our approach to visual appearance tracking is to make both
observation and state transition models adaptive in the framework
of a particle filter, with occlusion handling embedded. It possesses
the following features:

(i) Adaptive observation model (Section 2). We adopt an appearance-
based approach using Eq. (5). To make the observation model
adaptive, we make the appearance modelAt in Eq. (5) adaptive,
i.e., the appearance model is updated incrementally with the in-
coming observations.

(ii) Adaptive state transition model (Section 3). Instead of us-
ing a fixed model, we use an adaptive-velocity model, where the
adaptive motion velocity is predicted using a first-order linear ap-
proximation and the particle configuration of the previous frame.
We also use an adaptive noise component, i.e,Ut = Rt ∗ U0,
whose magnitudeRt is a function of the prediction error, and vary
the number of particles based on the degree of uncertaintyRt in
the noise component.

(iii) Handling occlusion (Section 4). Occlusion is handled us-
ing robust statistics [5]. We robustify the likelihood measurement
and the velocity estimate by down-weighting the ‘outlier’ pixels.
If occlusion is declared, we stop updating the appearance model
and estimating motion velocity.

Section 5 presents our experimental results on tracking vehi-
cles, tank, and human faces and Section 6 concludes the paper.

2. ADAPTIVE OBSERVATION MODEL

The adaptive observation model arises from the adaptive appear-
ance modelAt inspired by [7]. In [7], the appearance model
is based on phase information derived from the image intensity
whose computation is quite time-consuming. The direct embed-
ding of such model in a particle filter further increase the compu-
tational burden. Thus, in this paper, we simply use the intensity-
based appearance model.

2.1. Mixture appearance model

The mixture appearance model assumes that the observations are
explained by different causes, thereby indicating the use of a mix-
ture density of components. In [7], three components are used,
namely theW -component characterizing the two-frame variations,
theS-component depicting the stable structure within all past ob-
servations (though it is slowly-varying), and theL-component ac-
counting for outliers such as occluded pixels. However, in our
implementation, we have not incorporated theL-component be-
cause (i) it is not easy to characterize the statistics of outlier pixels
if image intensities are used and (ii) we will model the occlusion
in a different manner as shown in Sec. 4.

As an option, in order to further stabilize our tracker one could
use anF -component which is a fixed template that we observe
most often. In the sequel, we derive the equations as if there is
an F -component. However, the effect of this component can be
ignored by setting its initial mixing probability to zero.

We now describe our mixture appearance model. The appear-
ance model at timet, At = {Wt, St, Ft}, is a time-varying one
that models the appearances present in all observations up to time
t − 1. It obeys a mixture of Gaussians, withWt, St, Ft as mix-
ture centers{µi,t; i = w, s, f} and their corresponding variances
{σ2

i,t; i = w, s, f} and mixing probabilities{mi,t; i = w, s, f}.
Notice that{mi,t, µi,t, σ

2
i,t; i = w, s, f} are ‘images’ consisting

of d pixels that are assumed to be is independent of each other. In
summary, the observation likelihood is written as

p(Yt|θt) =
d

∏

j=1

{
∑

i=w,s,f

mi,t(j)N(Zt(j); µi,t(j), σ
2
i,t(j))}, (6)

whereN(x; µ, σ2) is a normal density.

2.2. Model update and initialization

To make the paper self-contained, we show how to update the cur-
rent appearance modelAt to At+1 after framet has been tracked,
i.e., havingẐt available, we want to compute the new mixing prob-
abilities, mixture centers, and variances for timet + 1,
{mi,t+1, µi,t+1, σ

2
i,t+1; i = w, s, f}.

We assume that all past data observations are exponentially
‘forgotten’ with respect to their contributions to the current appear-
ance model. Denote the ‘forgetting’ factor byα. Below, we just
sketch the updating equations as follows and refer the interested
readers to [7] for technical details and justifications.

The EM algorithm is invoked. Firstly, the posterior responsi-
bility probabilities{oi,t(j); i = w, s, f} (with

∑

i oi,t(j) = 1)
are computed as

oi,t(j) ∝ mi,t(j)N(Ẑt(j); µi,t(j), σ
2
i,t(j)); i = w, s, f. (7)

Then, the mixing probabilities are updated as

mi,t+1(j) = α oi,t(j) + (1 − α) mi,t(j); i = w, s, f, (8)

and the first- and second-moment images{Mp,t+1; p = 1, 2} are
evaluated as

Mp,t+1(j) = α Ẑp
t (j)os,t(j)+(1−α) Mp,t(j); p = 1, 2. (9)

Finally, the mixture centers and the variances are updated as:

St+1(j) = µs,t+1(j) =
M1,t+1(j)

ms,t+1(j)
, σ2

s,t+1(j) =
M2,t+1(j)

ms,t+1(j)
−µ2

s,t+1(j).

(10)
Wt+1(j) = µw,t+1(j) = Ẑt(j), σ2

w,t+1(j) = σ2
w,1(j), (11)

Ft+1(j) = µf,t+1(j) = F1(j), σ2
f,t+1(j) = σ2

f,1(j). (12)

To initialize A1, we setW1 = S1 = F1 = T0 (with T0

supplied by a detection algorithm),{mi,1, σ
2
i,1; i = w, s, f},

M1,1 = ms,1T0, andM2,1 = ms,1(σ
2
s,1 + T 2

0 ).

3. ADAPTIVE STATE TRANSITION MODEL

3.1. Adaptive velocity

With the availability of the sample setΘt−1 = {θ(j)
t−1}J

j=1 and the

image patches of interestZt−1 = {Z(j)
t−1}J

j=1, for a new observa-
tion Yt, we can predict the shift in the motion vector (or adaptive
velocity) νt = θt − θ̂t−1 using a first-order linear approximation
[4, 8, 1].

The constant brightness constraint tells that there exists aθt

such thatT {Yt; θt} = Ẑt−1. ApproximatingT {Yt; θt} via a
first-order Taylor series expansion aroundθ̂t−1 yields

T {Yt; θt} ' T {Yt; θ̂t−1} + Ct(θt − θ̂t−1)

= T {Yt; θ̂t−1} + Ctνt, (13)



whereCt is the Jacobi matrix. SubstitutinĝZt−1 into (13) gives

Ẑt−1 ' T {Yt; θ̂t−1} + Ctνt, (14)

i.e.,
νt ' −Bt(T {Yt; θ̂t−1} − Ẑt−1), (15)

whereBt is the pseudo-inverse of theCt matrix, which can be
efficiently estimated from the available dataΘt−1 andZt−1.

Specifically, to estimateBt we stack into matrices the differ-
ences in motion vectors and image patches, usingθ̂t−1 andẐt−1

as pivotal points:

Θδ
t−1 = [θ

(1)
t−1 − θ̂t−1, . . . , θ

(J)
t−1 − θ̂t−1], (16)

Zδ
t−1 = [Z

(1)
t−1 − Ẑt−1, . . . , Z

(J)
t−1 − Ẑt−1]. (17)

The least square (LS) solution forBt is

Bt = (Θδ
t−1Zδ T

t−1)(Zδ
t−1Zδ T

t−1)
−1, (18)

where(.)T means matrix transposition.
However, it turns out that the matrixZδ

t−1Zδ T
t−1 is very often

rank-deficient due to the high dimensionality of the data (unless the
number of the particles exceeds the data dimension). To overcome
this, we use the singular value decomposition (SVD) ofZδ

t−1, say
Zδ

t−1 = USV T. It can be easily shown thatBt = Θδ
t−1V S−1UT.

Also, we can gain some computational efficiency by sacrificing
some accuracy, i.e., we can further approximateBt by retaining
the topq components:Bt = Θδ

t−1VqS
−1
q UT

q .
The following state transition model is the one we used,

θt = θ̂t−1 + νt + Ut. (19)

The choice ofUt is discussed below.

time t − 1 particles timet

Fig. 1. Particle configurations from (top row) adaptive velocity
model and (bottom row) zero-velocity model. Each particle con-
tributes one bounding box imposed on the images (central col-
umn).

3.2. Adaptive noise and adaptive number of particles

In practice, the above prediction cannot be exact and usually re-
sults in a prediction errorεt which determines the quality of pre-
diction. If εt is small, which implies a good prediction, we only
need tightly-supported noise to absorb the residual motion; ifεt is
large, which implies a poor prediction, we then need widespread
noise to cover potentially large jumps in the motion state.

To this end, we useUt of the formUt = Rt ∗U0, whereRt is
a function ofεt. In our algorithm, we computeεt as the average of

the square of the error residualT {Yt; θ̂t−1 + νt} − Ẑt−1, which
is a ‘variance’-type measure. Thus, we use

Rt = max(min(R0
√

εt, Rmax), Rmin), (20)

whereRmin is the lower bound to maintain a reasonable sample
coverage andRmax the upper bound to constrain computational
load.

If the noise varianceRt is large, we need more particles to
cover the spreading density, while conversely, fewer particles are
needed for noise with small varianceRt. Based on the principle
of asymptotical relative efficiency (ARE) [2], we should adjust the
particle numberJt in a similar fashion, i.e.,Jt = J0Rt/R0.

We demonstrate the necessity of the adaptive velocity model
by comparing it with the zero velocity model. Fig. 1 shows the
particle configurations created from the adaptive velocity model
(with Jt < J0 andRt < J0) and the zero velocity model (with
Jt = J0 andRt = R0). Clearly, the adaptive-velocity model
generates particles very efficiently, i.e, they are tightly centered
around the object of interest so that we can easily track the object
at timet; while the zero-velocity model generates more particles,
which leads to an unsuccessful tracking since widely distributed
particles could get trapped in local minima.

Initialize a sample set S0 = {θ
(j)
0 , 1/J0)}

J0
j=1 according to prior distribution

p(θ0) and the appearance model A1. Set R0 and J0. Let OCCF LAG = 0,
indicating no occlusion.
For t = 1, 2, . . .

If (OCCF LAG == 0)
Calculate the state estimate θ̂t−1 by Eq. (2) or (3), adaptive velocity νt by Eq.

(15), noise variance Rt by Eq. (20), and particle number Jt.
Else

Rt = Rmax, Jt = Jmax, νt = 0.
End
For j = 1, 2, . . . , Jt

Draw the sample U
(j)
t for Ut with variance Rt.

Construct the sample θ
(j)
t = θ̂t−1 + νt + U

(j)
t by Eq. (19).

Compute the transformed image Z
(j)
t .

Update the weight using w
(j)
t = p(Yt|θ

(j)
t ).

End
Normalize the weight using w

(j)
t = w

(j)
t /

∑ J
j=1 w

(j)
t .

Set OCCF LAG according to the number of outlier pixels in Ẑt.
If (OCCF LAG == 0)

Update the appearance model At+1 using Ẑt.
End

End

Fig. 2. The proposed algorithm.

4. HANDLING OCCLUSION

Occlusion is usually handled in two manners. One way is to use
joint probabilistic data associative filter (JPDAF) [9]; and the other
is to use robust statistics [5]. We use robust statistics here.

4.1. Robust statistics

We assume that occlusions produce large image differences which
can be treated as ‘outlier’ that cannot be explained by the under-
lying process or its influence on the estimation or measurement
process should be reduced. Robust statistics provides such mech-
anisms.



Frame no. 1 Frame no. 100 Frame no. 200 Frame no. 300 Frame no. 500

Fig. 3. The car sequence. Notice the fast scale change present in the video.Row 1: the tracking results obtained using the algorithm with
the adaptive motion and appearance models (‘adp’). Row 2: the tracking results obtained using the algorithm with an adaptive motion
model but a fixed appearance model (‘fa’). In this case, the inset shows the tracked region. Row 3: the tracking results obtained using the
algorithm with an adaptive appearance model but a fixed motion model (‘fm’).

We use theρ function defined as follows:

ρ(x) =

{

x2/2 if |x| ≤ c
cx − c2/2 if |x| > c

, (21)

wherex is normalized to have unit variance and the constantc
control the outlier rate. In our experiment, we setc = 1.435. If
|x| > c is satisfied, we declare the corresponding pixel an outlier.

4.2. Robust likelihood measure and adaptive velocity estimate

The likelihood measure defined in Eq. (6) invovles a multi-dimensional
normal density. Since we assume that each pixel is independent,
we can only consider the one-dimensional normal density. To ro-
bustify our likelihood measure, we replace the one-dimensional
normal densityN(x; µ, σ2) as

N̂(x; µ, σ2) = (2πσ2)−1/2 exp(−ρ(
x − µ

σ
)). (22)

Note that there is not a density function any more, but since we are
dealing with discrete approximation in the particle filter, normal-
ization makes it a probability mass function.

Existence of outlier pixels severely violates the brightness con-
stancy constraint, and hence affects our estimate of the adaptive
velocity. To downweight the influence of the outlier pixels in esti-
mating the adaptive velocity, we introduce ad×d diagonal matrix
L with its ith element beingLi = η(xi) wherexi is the pixel in-
tensity of the difference image(T {Yt; θ̂t−1}− Ẑt−1) normalized
by the variance of theWt component, and

η(x) =
1

x

dρ(x)

dx
=

{

1 if |x| ≤ c
c/|x| if |x| > c

, (23)

Eq. (15) becomes

νt ' −BtL(T {Yt; θ̂t−1} − Ẑt−1). (24)

This is similar in principle to the weighted least square algorithm.

4.3. Occlusion declaration

If the number of the outlier pixels in̂Zt (compared with the appear-
ance model), saydout, exceeds a certain threshold, i.e.,dout > λd
where0 < λ < 1 (we takeλ = 0.15), we declare an occlusion.
Since the appearance model has more than one components, we
count the number of the outlier pixels with respect to every com-
ponent and take the maximum.

If occlusion is declared, we stop updating the appearance model
and estimating the motion velocity. Instead, we (i) keep the cur-
rent appearance model, i.e.,At+1 = At and (ii) set the motion
velocity to zeros, i.e.,νt = 0 and use the maximum number of
particles sampled from the diffusion process with largest variance,
i.e.,Rt = Rmax, andJt = Jmax.

Finally, our adaptive particle filtering algorithm with occlusion
analysis is summarized in Fig. 2.

5. EXPERIMENTAL RESULTS

In our implementation, we used the following choices. We con-
sider affine transformations only. Specifically, the motion is char-
acterized byθ = (a1, a2, a3, a4, tx, ty) where{a1, a2, a3, a4}
are deformation parameters and{tx, ty} denote the 2-D translation
parameters. Even though significant pose/illumincation changes
are present in the video, we believe that our adaptive appearance
model can easily absorb them and therefore for our purposes the
affine transformation is a reasonable approximation. Regarding
photometric transformations, only a zero-mean-unit-variance nor-
malization is used to partially compensate for contrast variations.

We demonstrate the effectiveness of our algorithm by tracking
a disappearing car, and an arbitrarily-moving tank, and a moving
face under occlusion. Table 1 summarizes some statistics about
the video sequence, and the appearance mode size used. Accom-
panying video sequences with tracking results are available are
http://www.cfar.umd.edu/∼shaohua/research.html.

We initialize the particle filter and the appearance model with
a detector algorithm (The face detector [11] is used for the face



Frame no. 1 Frame no. 31 Frame no. 49 Frame no. 228 Frame no. 300

Fig. 4. The tank sequence.

sequence) or a manually specified image patch in the first frame.
R0 andJ0 are also manually set, depending on the sequence.

5.1. Car tracking

We first test our algorithm to track a vehicle with theF -component
but without the occlusion analysis. The tracking result of a fast
moving car is shown in Fig. 3 with a bounding box. We also show
the stable and wandering components separately (in a double-zoomed
size) at the corner of each frame. The video is captured by a cam-
era mounted on the car. In this footage the relative velocity of
the car with respect to the camera platform is very large, and the
target rapidly decreases in size. Our algorithm’s adaptive parti-
cle filters successfully tracked this rapid change in scale (where
scale is a function of all four affine parameters). Fig. 5(a) plots
the scale estimate recovered by our algorithm.3 It is clear that the
scale follows a decreasing trend as time proceeds. The size of the
image block containing the car in the final frame is about 12 by
15, which makes the vehicle almost invisible. In this sequence
we setJ0 = 50. The average number of particles used is about
40, which means that in this case we actually saved about 20%
in computation by using an adaptiveJt instead of a fixed particle
numberJ0. The algorithm’s Matlab implementation needs about
1.2 frames per second running on a PC with a PIII 650 CPU and
512M memory.
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Fig. 5. (a) The scale estimate for the car. (b) The 2-D trajectory of
the centroid of the tank. ‘*’ means the starting and ending points
and ‘.’ points are marked along the trajectory every 10 frames. (c)
The scale estimate for the face sequence.

5.2. Tank tracking in an aerial video

Fig. 4 shows our results on tracking a tank in an aerial video with
degraded image quality due to motion blur. Also, the movement
of the tank is very jerky and arbitrary because of platform motion,
as evidenced in Fig. 5(b) which plots the 2-D trajectory of the
centroid of the tank every 10 frames, covering from the left to the
right in 300 frames. One extreme is that the tank moved about 100
pixels in column index in 10 frames, which might fail trackers with
fixed models. But, our tracking is still successful.

3The scale estimate is calculated as
√

(a2
1 + a2

2 + a2
3 + a2

4)/2.

5.3. Face tracking

We present one example of successfully tracking a human face
using a hand-held video camera in an office environment, where
both camera and target motions are present.

Fig. 6 presents the tracking results on the video sequence fea-
turing the following variations: moderate pose and lighting vari-
ations, quick scale changes (back and forth) in the middle of the
sequence, and occlusion (twice). The results are obtained by incor-
porating the occlusion analysis in the particle filter, but we did not
use theF -component. Notice that the appearance model remains
fixed during occlusion.

Fig. 7 presents the tracking results obtained by the particle
filter without occlusion analysis. We have found that the predicted
velocity actually accounts for the motion of the occluding hand
since the outlier pixels (mainly on the hand) dominates the image
difference(T {Yt; θ̂t−1}−Ẑt−1). Updating the appearance model
deteriorates the situation.

Fig. 5(c) plots the scale estimate against timet. We clearly
observe a rapid scale change (a sudden increase followed by a
decrease within about 50 frames) in the middle of the sequence
(though hard to display the recovered scale estimates are in perfect
synchrony with the video data).

5.4. Comparison

We illustrate the effectiveness of our adaptive approach (‘adp’)
by comparing the particle filter either with (a) an adaptive motion
model but a fixed appearance model (‘fa’), or with (b) a fixed mo-
tion model but an adaptive appearance model (‘fm’); or with (c)
a fixed motion model and a fixed appearance model (‘fb’). Table
1 lists the tracking results obtained using particle filters under all
the above situations, where ‘adp & occ’ indicates an adaptive ap-
proach with occlusion handling. Fig. 3 shows the tracking results
on the car sequence when ’fa’ and ’fm’ options are used.

Table 1 seems to suggest that the adaptive motion model plays
a more important role than the adaptive appearance model since
‘fa’ always yields successful tracking while ‘fm’ fails, the reasons
being that (i) the fixed motion model is unable to adapt to quick
motion present in the video sequences, and (ii) the appearance
changes in the video sequences, though significant in some cases,
are still within the range of the fixed appearance model. However,
as seen in the videos, ‘adp’ produces much smoother tracking re-
sults than ‘fa’, demonstrating the power of the adaptive appearance
model. When occlusion exists in the video sequence, we must use
occlusion handling technique.

6. CONCLUSIONS

We have presented an adaptive paradigm for visual tracking which
stabilizes the tracker by embedding deterministic linear prediction
into stochastic diffusion. Numerical solutions have been provided



Frame no. 1 Frame no. 145 Frame no. 148 Frame no. 155 Frame no. 470

Frame no. 517 Frame no. 685 Frame no. 695 Frame no. 710 Frame no. 800

Fig. 6. The face sequence. Frames 145, 148, and 155 show the first occlusion. Frame 470 and 517 show the smallest and biggest face
observed. Frame 685, 690, 710 show the second occlusion.

Frame no. 1 Frame no. 145 Frame no. 148 Frame no. 155 Frame no. 200

Fig. 7. Tracking results on the face sequence using the adaptive particle filter with the occlusion analysis.

Video Car Tank Face
# of frames 500 300 800
Frame size 576x768 240x360 240x360

At size 24x30 24x30 30x26
Occlusion No No Yes (twice)

‘adp’ o o x
‘fa’ o o x
‘fm’ x x x
‘fb’ x x x

‘adp & occ’ o o o

Table 1. Comparison of tracking results obtained by particle fil-
ters with different configurations. ‘At size’ means pixel size in
the component(s) of the appearance model. ‘o’ means success in
tracking. ‘x’ means failure in tracking.

by particle filters equipped with adaptivity: an adaptive observa-
tion model arising from the adaptive appearance model, an adap-
tive state transition model, and adaptive number of particles. Oc-
clusion analysis is also embedded in the particle filter. Our algo-
rithm was then tested on several tasks consisting of tracking visual
objects such as car and human face in realistic scenarios. Good
tracking results are obtained due to using appropriate choices for
both state transition and observation models in a particle filter.
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