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Automatic Video Object Segmentation Using
Volume Growing and Hierarchical Clustering

Fatih Porikli, Yao Wang

Abstract— We introduce an automatic segmentation
framework that blends the advantages of color, texture,
shape, and motion based segmentation methods in a com-
putationally feasible way. A spatiotemporal data struc-
ture is first constructed for each group of video frames, in
which each pixel is assigned a feature vector based on low-
level visual information. Then, the smallest homogeneous
components, so called as volumes, are expanded from se-
lected marker points using an adaptive, three dimensional,
centroid-linkage method. Self descriptors that character-
ize each volume, and relational descriptors that capture the
mutual properties between pairs of volumes are determined
by evaluating the boundary, trajectory, and motion of the
volumes. These descriptors are used to measure the simi-
larity between volumes based on which volumes are further
grouped into objects. A fine-to-coarse clustering algorithm
yields a multi-resolution object tree representation as an
output of the segmentation.

Keywords—Video segmentation, object detection, centroid-
linkage, color similarity

I. Introduction

OBJECT segmentation is important for video compres-
sion standards as well as recognition, event analysis,

understanding, and video manipulation. By object, we re-
fer to a collection of image regions grouped under some
homogeneity criteria where a region is defined as a con-
tiguous set of pixels.

Basically, segmentation techniques can be grouped into
three classes: region-based methods using a homogeneous
color or texture criterion, motion-based approaches uti-
lizing a homogeneous motion criterion, and object track-
ing. Approaches in the region oriented domain range from
empirical evaluation of various color spaces [20], to clus-
tering in feature space [4], to nearest neighbor algorithm,
to pyramid linking [7], to morphological methods [24], to
split-and-merge [17], to hierarchical clustering [9]. Color
clustering based methods often utilize histograms and they
are computationally simple. Histogram analysis delivers
satisfactory segmentation result especially for multi-modal
color distributions, and where the input data set is rel-
atively simple, clean, and fits the model well. However,
this method lacks generality and robustness. Besides, his-
togram methods fail to establish spatial connectivity. Re-
gion growing based techniques provide better performance
in terms of spatial connectivity and boundary accuracy
than histogram-based methods. However, extracted re-
gions may not correspond to actual physical objects un-
less the intensity or color of each pixel in objects differs
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from the background. A common problem of histogram
and region-based methods arises from the fact that a video
object can contain several totally different colors.

On the other hand, works in the motion oriented domain
start with an assumption that a semantic video object has
a coherent motion that can be modeled by the same set
of motion parameters. These type of motion segmentation
works can be separated into two broad classes: boundary
placement schemes [27] and region extraction schemes [28],
[1], [19], [6], [11]. Most of these techniques are based on
rough optical flow estimation or unreliable spatiotemporal
segmentation, and may suffer from the inaccuracy of mo-
tion boundaries. The estimation of dense motion field tends
to be extremely slow, hence not suitable for processing of
large volumes of video and real-time data. Block-wise or
higher order motion models may be used instead of dense
motion fields. However, a chicken-egg problem exists in
modeling motion; should the region that a motion model to
be fitted be determined first, or should the motion field to
be used to obtain the region be calculated first? Stochastic
methods may overcome this priority problem by simulta-
neously modeling flow field and spatial connectivity, but
they require the number of objects be supplied as a priori
information before the segmentation. Small and non-rigid
motion gives rise to additional model fitting difficulties.
Furthermore, modeling may fail when a semantic video ob-
ject have different motions in different parts of the object.
Briefly, computational complexity, region-motion priority,
and modeling issues are to be considered in utilizing dense
motion fields for segmentation.

The last class is “tracking” [2]. A tracking process can
be interpreted as the search for a target. It is the trajecto-
ries of the dynamic parameters that are linked in a time.
This process is usually embodied through model match-
ing. Many types of features, e.g., points [25], intensity
edges [10], textures [5], and regions [18] can be utilized for
tracking. Three main approaches have been developed to
track objects depending on their type; whether they are
rigid, nonrigid, or have no regular shape. For the first two
approaches the goal is to compute the correspondences be-
tween objects already tracked and the newly detected mov-
ing regions, whereas the goal of the last approach is han-
dling the situations where correspondences are ambiguous.
The major difficulty in tracking is to deal with the inter-
frame changes of moving objects. It is clear that the image
shape of a moving object may undergo deformation, since
a new aspect of the object may become visible or an actual
shape of an object may change. Thus a model needs to
evolve from one frame to the next, capturing the changes
in the image shape of an object as it moves. Although for
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Fig. 1. Flow diagram of the video segmentation algorithm showing
all the major modular stages.

most of the cases, more than two video frames are already
available before segmentation, existing techniques usually
view tracking as a unidirectional propagation problem.

Semi-automatic segmentation methods have the power
of correlating semantic information with extracted regions
using human assistance. However, such assistance often ob-
ligates training of users to understand the behaviour of the
segmentation method. Besides, real-time video systems re-
quire user independent processing tools. The vast amount
of video data demands for automatic segmentation since
entering object boundaries by hand is cumbersome.

In summary, a single homogeneous color or motion cri-
terion does not lead to satisfactory extraction of object
information because each homogeneous criterion can only
deal with a limited set of scenarios, and a video object may
contain multiple colors and complex motions.

II. Proposed Segmentation Framework

Each of the segmentation algorithms summarized before
has is own advantages. It would be desirable to have a gen-
eral segmentation framework that combines distinct qual-
ities of separate methods without getting hampered into
their pitfalls. Such a system is expected to be made up by
compatible processing modules that can be easily modified
with respect to the application parameters. Even user as-
sistance and system specific priori information should be
easily embedded into the segmentation framework with-
out reconstructing the overall system architecture. Thus,
we designed our segmentation framework to meet with the
following targets

• Automaticity,
• Adaptability,
• Accuracy,
• Computational complexity.

A general flow diagram of the framework is given in Fig.
1. In the diagram, the main algorithm is shown in gray,
and its modular extensions that include application spe-
cific modules i.e. skin color detection, frame difference,
motion vector processing, are shown by the dotted lines.
When MPEG-7 dominant color descriptors are available,

Fig. 2. Construction of spatiotemporal data from the video.

they can be utilized in the volume growing stage to adapt
the color similarity function parameters. Frame difference
score becomes useful where the camera system is station-
ary. Skin color can be incorporated as an additional fea-
ture for human detection. For MPEG encoded sequences,
motion vectors can be used at the hierarchical clustering
stage.

Before segmentation, the input video sequence is sliced
into video shots that are defined as groups of consecutive
frames having similar attributes between two scene-cuts.
The segmentation algorithm takes a certain number of con-
secutive frames within the same video shot, and processes
all of these frames at the same time. The number of frames
chosen can be the same as the length of the corresponding
shot, or a number that is sufficient to have discriminatory
object motion within the chosen frames. A limiting factor
may be the memory requirement due to the large data size.
After filtering, a spatiotemporal data structure is formed
by computing point-wise features of frames. These features
include color values, frame difference score, skin colors, etc.
as illustrated in Fig. 2.

We acquire homogeneous parts of the spatiotemporal
data by growing volumes around selected marker points.
By volume growing, all the frames of an input video shot
are segmented simultaneously. Such an approach solves the
problem of tracking objects and correlating the segmented
regions between the consecutive frames since no account of
the quantitative information about the regions and bound-
aries need to be kept. Volume growing approach solves the
problem of “should the region of support be obtained first
by color segmentation followed by motion estimation, or
should the motion field be obtained first followed by seg-
mentation based on motion consistency?”, by supplying the
region of support and an initial estimation of motion at the
same time. In addition, volume growing is computationally
simple.

The grown volumes are refined to remove small and er-
roneous volumes. Then, motion trajectories of individual
volumes are determined. Thus, without explicit motion es-
timation, a functional approximation of motion is obtained.
Self-descriptors for each volume, mutual-descriptors for a
pair of volumes are computed from volume trajectories and
also from other volume statistics. These volume-wise de-
scriptors are designed to capture motion, shape, color and
other characteristics of the grown volumes. At this stage,
we have the smallest homogeneous parts of a video shot
and their relations in terms of mutual descriptors. Appli-
cation specific information can be incorporated as separate



3

Fig. 3. Original and filtered images using the simplification filter.

descriptors such as skin color.
In a following clustering stage, volumes are merged into

objects by evaluating their descriptors. An iterative, hi-
erarchical fine-to-coarse clustering is carried out until the
motion similarity of merged objects becomes small. Af-
ter clustering, an object partition tree that gives the video
object planes for successively smaller number of objects
is generated. The object partition tree can be appended
to the input video for further recognition, data mining,
event analysis purposes. Note that, this framework does
not claim to obtain semantic information automatically,
but it aim to provide tools for efficient extraction and in-
tegration of explicit visual features to improve the object
detection. Thus, a user can easily change the visual defini-
tion of semantic object at the clustering stage, which has
an insignificant computational load, without segmenting
the video over again.

III. Formation of Spatiotemporal Data

A. Filtering

In the preprocessing stage, the input frames are filtered
first. Two main objectives of filtering are noise removal
and simplification of color components. Noisy or highly
textured frames can cause over-segmentation by produc-
ing excessive number of segments. This not only slows
down the algorithm, but also increases the memory re-
quirements and degrades the stability of the segmentation.
However, most noise filtering techniques demand intensive
operations. Thus, we have developed a computationally ef-
ficient simplification filter which can retain the edge struc-
ture, and yet smooth the texture between edges. Simply
stated, color value of a point is compared with its neigh-
bors for each color channel. If the distance is less than a
threshold, the point’s color value is updated by the aver-
age of its neighbors within a local window. For the per-
formance comparison of this filter with other methods in-
cluding Gaussian, median, morphological filtering, etc., see
[21]. A sample filtering result is given in Fig. 3.

B. Quantization & Color Space

To further simplify input images, color quantization is
applied by estimating a certain number of dominant col-
ors. Quantization also decreases the total processing time
by allowing use of smaller data structures in the implemen-
tation of the code. The dominant colors are determined by
a hierarchical clustering approach incorporating the Gen-
eralized Lloyd algorithm (GLA) at each level. Suppose we
already have an optimal partitioning of all color vectors

Fig. 4. Quantization by 32, 16, and 8 dominant colors, which are
shown next to each image. As visible, very low quantization levels
may disturb the color properties, i.e. skin colors and edges.

in the input image into 2k level. At the k+1’th level, we
perturb each cluster center into two vectors, and use the
resulting 2k+1 cluster centers as the initial cluster centers
at this level. We then run the GLA to obtain an opti-
mal partition with 2k+1 levels. Specifically, starting with
the initial cluster centers, we group each input color vec-
tor to its closest cluster center. The cluster centers are
then updated based on the new grouping. A distortion
score is calculated which is the sum of the distances of the
color vectors to the cluster centers. The grouping and the
recalculation of the cluster centers are repeated until the
distortion does not reduces significantly anymore. Initially
at level k = 0, we have one clusters only, including all the
color vectors of the input image. As a final stage, the clus-
ters that have close color centers are grouped to decide on
a final number of dominant colors.

The complexity of the metric used for computing color
distances is a major factor in selecting a color space since
most of the processing time is spent while computing the
color distances between the points. We preferred the Y UV
color space since the color distance can be computed using
simpler norms. In addition, the Y UV space separates illu-
minance from luminance components, and represents color
more in accordance with human perception than the RGB
[26]. Thus, the segmentation results are visually more plau-
sible. The above described dominant colors have minor dif-
ferences from the MPEG-7 dominant color descriptors. For
example, MPEG-7 has a smaller number of color bins, and
it is based on Lab color space. In the case MPEG-7 de-
scriptors are available with the input video, the dominant
color descriptor can be directly used to quantize the input
video after suitable conversion of the color space. In Fig. 4,
quantized images with different number of dominant colors
are given.

C. Feature Vectors

Frames of the input video shot are then assembled
into a spatiotemporal data structure S. Each element
of this data structure has a feature vector w(p) =
[Y, U, V, δ, θ1, .., θK , ρ]. Here, p = (x, y, t) is a point in S
where (x, y) is the spatial coordinate and t is the frame
number. We will denote individual attributes of the fea-
ture vector, e.g. the Y color value of point p, by Y (p).
Sometimes we also use w(p, k) to represent feature k at
point p, e.g. k = Y, U, V . Table-I summarizes the nota-
tion. Besides the color values, additional attributes can be
included in the feature vector. The frame difference score δ
is defined as the point-wise color dissimilarity of two frames



4

TABLE I

Notation of parameters.

S volumetric spatiotemporal data
p point in S; p = (x, y, t)
w(p) feature vector at p
Y (p), U(p), V (p) color values at p
δ(p) frame difference at p
θk(p) texture features at p
ρ(p) skin color score at p
∇Y,∇U,∇V color gradient
mi marker of volume Vi

ci feature vector of volume Vi

Vi a volume within S
γ(i) self descriptor of volume Vi

Γ(i, j) relational desc. of pair Vi,Vj

Fig. 5. Skin color scores ρ for sample images.

with respect to a given set of rules. One such rule is

δ(p) = |Y (p) − Y (pt−)| (1)

where pt− = (x, y, t−1). The texture features θ1, . . . , θK

are computed by convolving the luminance channel Y with
the Gabor filter kernels as

θk(p) =
∣∣∣∣Y (p) ⊗ 1

2πσ2
e−

x2+y2

2πσ2 e−2π(uk+vk)
∣∣∣∣ . (2)

It is sufficient to employ the values for the spatial fre-
quency

√
u2 + v2 = 2, 4, 8 and the direction tan−1(u/v) =

0, π/4, π/2, 3π/4 , which leads to a total of 12 texture fea-
tures. Obtaining texture features is computationally as in-
tensive as estimating motion vectors by phase-correlation
due to the convolution process. Blending texture and color
components into a single similarity measure is usually done
by assigning weighting parameters [16]. In this work, we
concentrate on the color components.

The skin color score ρ indicates whether a point has high
likelihood of corresponding to human skin. We obtained a
mapping from the color space to the skin color values by
projecting the color values of a large set of manually seg-
mented skin images that include people of various races,
genders, and ages. This mapping is used as a look-up ta-
ble to determine the skin color score. More details on this
derivation can be found in [22]. In Fig. 5, skin color scores
of sample images are shown. In these images, higher inten-
sity values correspond to higher likelihoods.

IV. Volume Growing

Volumes are the smallest connected components of the
spatiotemporal data S with homogeneous color and tex-
ture distribution within each volume. Using markers and

Fig. 6. Fast marker selection finds the minimum gradient magnitude
points in the current slice of the downsampled data. Then, a volume
is grown within the spatiotemporal data, and the process is repeated
until no point remains as unclassified.

evaluating various distance criteria, volumes are grown it-
eratively by grouping neighboring points of similar charac-
teristics.

In principle, volume growing methods are applicable
whenever a distance measure and a linkage strategy can
be defined. Several linkage methods were developed in the
literature, they differ in the spatial relation of the points for
which the distance measure is computed. In single-linkage
volume growing, a point is joined to its 3D neighboring
points whose properties are similar enough. In hybrid-
linkage growing, similarity among the points is established
based on the properties within a local neighborhood of the
point itself instead using the immediate neighbors. In the
case of centroid-linkage volume growing, a point is joined
to a volume by evaluating the distance between the cen-
troid of the volume and the current point. Yet another ap-
proach is to provide not only a point that is in the desired
volume but also counterexamples that are not in the vol-
ume. Two dimensional versions of these linkage algorithms
are explained in [13]. In the following, we first describe
the marker selection process, and then the centroid-linkage
algorithm in more detail.

A. Marker Assignment

A marker is the seed of a volume around it. Since a vol-
ume’s initial properties will be determined by its marker, a
marker should be a good representative of its local neigh-
borhood. A point that has a low color gradient magnitude
satisfy this criterion. Let mi be a marker for volume Vi,
and Q be the set of all available points, i.e., it is all the
points of S initially. The color gradient magnitude is de-
fined as follows;

|∇S(p)| = |∇Y (p)| + |∇U(p)| + |∇V (p)| (3)

such that the gradient magnitude of a channel is

|∇Y (p)| = |Y (px+)−Y (px−)|+|Y (py+)−Y (py−)|
+|Y (pt+) − Y (pt−)| (4)

where px+ and px− represent equal distances on the x-
direction from the center point p, i.e., (x−1, y, t), (x+1, y, t),
etc. We observed that using L2 norm instead of L1 norm
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does not improve the results. The point having local mini-
mum gradient magnitude is chosen as marker. A volume Vi

is grown as will be explained in the following section, and
all the points of the volume are removed from the set Q.
The next minimum in the remaining set is chosen, and the
selection process is repeated until no more available points
remain in S. Rather than searching the full-resolution spa-
tiotemporal data, a subsampled version of it is used to find
the minima since searching in full resolution is computa-
tionally costly.

More computational reduction is achieved by dividing
subsampled S into slices. A minimum gradient magnitude
point is found for the first slice, and a volume is grown,
then the next minimum is searched in the next slice as il-
lustrated in Fig. 6. The temporal continuity is preserved
by growing a volume in the whole spatiotemporal data S
after selecting a marker in the current slice. In case the
markers are limited only within the first frame, the algo-
rithm becomes a forward volume growing.

Generally, the marker points are uniformly distributed
among the frames of a video shot in which objects are con-
sistent and motion is uniform. For such video shots, a single
frame of S can be used for selection of all markers instead of
using the whole S. However, presence of fast moving small
objects, highly textured objects, and illumination changes
may deteriorate the segmentation performance if a single
frame is used. Besides, objects that are not visible in the
single frame may not be detected at all. The iterative slice
approach overcomes these difficulties.

B. Centroid-linkage Algorithm

For each new volume Vi, a volume feature vector ci, the
so called “centroid”, is assigned. Centroid-linkage algo-
rithm compares the features of a candidate point to the
current volume’s feature vector. This vector is composed
of the color statistics of the volume, and initially it is
equal to the feature vector of the point chosen as marker
ci(k) = w(mi, k). In a 6-point neighborhood, two in each
of the x, y, t direction, the color distances of the adjoint
points are calculated. If the distance d(ci,w(q)) is less
than a volume specific threshold εi, the point q is included
in the volume, and the centroid vector is updated as

cn
i (k) =

1
N

[
(N − 1)cn−1

i (k) + w(q, k)
]

(5)

where N is the number of points in the volume after the
inclusion of q. If the point q has a neighbor that is not
included in the current volume, it is assigned as an “ac-
tive shell” point. Thus, active shell points constitute the
boundary of the volume. In the next cycle, the unclassified
neighbors of the active shell points are probed. Linkage is
repeated either no point remains in the active shell or in
the spatiotemporal data.

There are two other possible linkage techniques; single-
linkage, which compares a point with only its immediate
neighbors, and dual-linkage, which compare with the cur-
rent object boundary. We observed that these two tech-
niques are prone to segmentation errors such as leakage

(a) (b) (c)

Fig. 7. Segmentation by (a) single-linkage, (b) dual-linkage, and (c)
centroid-linkage. Single linkage is prone to errors.

and color inconsistent segments. The sample results for
the various linkage algorithms are given in Fig. 7.

C. Distance Calculation & Threshold Determination

The aim of the linkage algorithm is to generate homoge-
neous volumes. Here we define homogeneity as the quality
of being uniform in color composition. In other words, it is
the amount of color variation. For a moment, let us assume
a color density function of the data is available. Modality
of this density function refers to the number of its princi-
pal components, i.e. the number of separate models for a
mixture of models representation. A high modality indi-
cates larger number of distinct color clusters of the density
function. Our key hypothesis is that points of a color ho-
mogeneous volume are more likely to be in the same color
cluster rather than being in different color clusters. Thus,
we can establish a relationship between the number of clus-
ters and the homogeneity specifications of volumes. If we
know the color cluster that a volume corresponds, we can
determine the specifications of homogeneity for that vol-
ume, i.e. parameters of the color distance function and its
threshold.

Before volume growing, we approximate the color den-
sity function by deriving a 3D color histogram of the slice.
We find cluster centers within the color space either by
assigning the dominant colors as centers or using the de-
scribed GLA clustering algorithm. We group each color
vector w(p) to the closest cluster center, and for each clus-
ter we compute a within cluster distance variance σ2.

After choosing a marker and initializing a volume feature
vector ci, we determine the closest cluster center to the ci

in the color space. Using the variance of this cluster, we
define the color distance and its threshold as follows

d(ci, q)=
√∑

k

(ci(k) − w(q, k))2 (6)

where k : Y, U, V and the threshold is εi = 2.5σ to let the
inclusion of the 95% of colors within the same color clus-
ter. Above formulation assumes that the color channels are
equally contributing (due to the Euclidean distance norm),
and the 3D color histogram is densely populated (for effec-
tive application of clustering). However, a dense histogram
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Fig. 8. On the left: volume growing by intraframe-interframe switch-
ing, on the right: recursive diffusion. As visible, recursive diffusion
grows volumes as an inflating balloon, whereas switching method first
enlarges a region in a frame than spreads this region to the adjoint
frames.

may not be available in case of small slice sizes, and color
components may not be equally important in case of the
Y UV space.

We also developed an alternative approach that uses
separate 1D histograms. Local maxima hn(k) of the his-
tograms are obtained for each channel such as hn(k) <
hn+1(k) and n = 1, .., Hk. Note that, number of maxima
Hk for different channels may be different. Histograms are
clustered, and within cluster distance variance is computed
for each cluster similarly. Using the current marker point
mi, three coefficients τi(k), k : Y, U, V (one for each his-
togram) are determined as

τi(k) = 2.5σj(k) (7)
j = arg min

n
|ci(k) − hn(k)| (8)

where hn(k) is the closest center. These coefficients spec-
ify the cluster ranges. A logarithmic distance function is
formulated as follows

d(ci, q)=
∑

k

Hk log2

(
1 +

|ci(k) − w(q, k)|
τi(k)

)
. (9)

We normalized the channel differences with the cluster
ranges to equalize the contribution of a wide cluster in a
histogram to a narrow cluster in another histogram. The
logarithmic term intended to suppress the large color mis-
matches of a single histogram. Considering a channel that
has more distinctive colors should provide more informa-
tion for segmentation, the channel distances are weighted
by the corresponding Hk’s. Then, the distance threshold
for volume Vi is derived as

εi =
∑

k

Hk. (10)

D. Modes of Volume Growing

Volume growing can be carried out either by growing
multiple volumes simultaneously, or expanding only one

volume at a time. Furthermore, the expansion itself can be
done either in an intraframe - interframe switching fashion,
or a recursive outward growing style.

• Simultaneous growing: After certain number of
marker points are determined, volumes are grown simul-
taneously from each marker. At a growing cycle, all the
existing volumes are updated by examining the neighbor-
ing points to the active shell of the current volume. In
case a volume stops growing, an additional marker that is
an adjoint point to the boundary of the stopped volume is
selected. Although simultaneous growing is fast, it may di-
vide homogeneous volumes into multiple smaller volumes,
thus volume merging becomes is necessary.

• One-at-a-time growing: At each cycle, only a single
marker point is chosen, and a volume is grown around this
marker. After the volume stops growing, another marker
in the remaining portion of the spatiotemporal data is se-
lected. This process continues until no more point remains
in S. An advantage of one-at-a-time growing is that it can
be implemented by recursive programming. It also gen-
erates more homogeneous volumes. However, it demands
more memory to keep all the pointers.

• Recursive diffusion: The neighboring points to the
active shell are evaluated disregarding whether they are in
the same frame with the active shell point or not as illus-
trated in Fig. 8. After a point is included within a volume,
the point becomes a point of the active shell as long as it
has a neighbor that is not included in the same volume.
By updating the active shell as described, the volume is
diffused outward from the marker. Instead of using only
adjoint points, other points within a local window around
the active shell point can be used in diffusion as well. How-
ever, in this case the computational complexity increases,
and moreover, connectivity may deteriorate.

• Intraframe-interframe switching: A volume grown
using recursive diffusion tends to be topologically non-
compact by having several holes and ridges within. Such
a volume usually generate unconnected regions when it is
sliced frame-wise. In intraframe-interframe switching, the
diffusion mechanism is first applied within the same frame
to grow a region, then results are propagated to the previ-
ous and next frames. The grown region is assigned as the
active shell for the neighboring frames. As a result, each
frame-wise projection of a volume will be a single connected
region, and volumes will have more compact shapes.

E. Volume Refinement

After volume growing, some of the volumes may be neg-
ligible in size or very elongated due to the fine texture and
edges. Such volumes increase the computational load of
the later processing. A simple way of removing a small or
elongated volume is labeling its points as unclassified and
inflating the remaining volumes iteratively to fill up the
empty space. First, the unclassified points that are adjoint
to other volumes are put into a set of active shell. Then,
each active shell point is included in the volume which is
adjoint and has the minimum color distance. The point
is removed from the active shell, and the inclusion process
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is iterated until no more unclassified point remains. Al-
ternatively, a small volume can be merged into one of its
neighbors as a whole using volume-wise similarity. In this
case, similarity is defined as a combination of the ratio of
the mutual surface, compactness ratio, and color distance.
For more details on definition of such a similarity measure
see [22].

V. Descriptors of Volumes

Descriptors capture various aspects of the volumes such
as motion, shape, and color characteristics of individual
volumes, as well as pair-wise relations among the volumes.

A. Self Descriptors

Self descriptors evaluate a volume’s properties such as its
size γsi(i), its total boundary γbo(i), its normalized color
histogram γh(i) (0 ≤ γh(i) ≤ 1), the number of frames it
was detected in the spatiotemporal data γex(i). Compact-
ness γco(i) is defined as

γco(i) =
1

γex(i)

∑
t

γsi(i, t)
γbo(i, t)2

(11)

where the frame-wise boundary γbo(i, t) is squared to make
compactness score independent from the radius of the
frame-wise region γsi(i, t) at frame t. (Consider the case of
a disk; γco = πr2/(2πr)2 = 1/(4π).) Note that, in the spa-
tiotemporal data, the most compact volume is a cylinder
along the time axis, but not a sphere. Elongated, sharp-
pointed, shell-like, and thin shapes have lower compactness
scores. However, the compactness score is sensitive to the
boundary irregularities.

Motion trajectory of a volume is defined as the localiza-
tion of its frame-wise representative points. The represen-
tative point can be chosen as the center of mass, or it can be
the intersection of the longest line within the volumes frame
projection and another line that is longest in the perpen-
dicular direction. We used the center of mass since it can
be computed easily. Trajectory T(i, t) = [T x

i (t), T y
i (t)]T

is calculated by computing the frame-wise averages of vol-
ume’s coordinates along x and y directions. Sample tra-
jectories are shown in Fig.9. Note that, these trajecto-
ries does not involve any motion estimation. The trajec-
tory approximates the translational motion in most of the
cases. The translational motion is the easiest to be per-
ceived by the human visual system, for much the same
reason it is the most discriminative in object recognition.
Motion trajectory enables to comprehend the motion of a
volume between frames without requiring complex motion
vector computation. It can also be used to initialize param-
eterized motion estimation to improve the accuracy and to
accelerate the speed.

The descriptor γtl(i) measures the length of the trajec-
tory. Volumes that are stationary with respect to the cam-
era imaging plane have shorter trajectory lengths. The set
of affine motion parameters A(i, t) = [a1(i, t), ..., a6(i, t)]
for a volume models the frame-wise motion

v(p) =
[

a1(i, t) a2(i, t)
a4(i, t) a5(i, t)

]
p +

[
a3(i, t)
a6(i, t)

]
− p (12)

Fig. 9. Sample trajectories of Children and Foreman.

where v(p) are motion vectors at p. To estimate these pa-
rameters, a certain number of feature points pf are selected
for each region Ri(t), and corresponding motion vectors are
computed. Feature points are selected among the high spa-
tial energy points. The spatial energy of a point is defined
in terms of color variance as

w(p, e) =
∑

p

∑
k

(w(p, k) − w(p, µk))2. (13)

Above, w(p, µk) is the color mean of points in a small local
window centered around p. After w(p, e)’s are computed,
the points of Ri(t) are ordered with respect to their spatial
energy magnitudes. The highest rank point on the list
is assigned as a feature point pf , and neighboring points
of pf are removed from the list. Then, the next highest
rank point is chosen until a certain number of points are
selected. To estimate the motion vectors, we used phase-
correlation in which the search range is constrained around
the trajectory T(i, t). Given motion vectors v̂(pf ), the
affine model is fitted by minimizing

A(i, t) = argmin
∑
pf

log(1 + |v(pf ) − v̂(pf )|) (14)

where v(pf ) are the affine projected motion vectors as given
in Eq.12 and v̂(pf ) are the motion vectors estimated by
phase-correlation at feature points pf . The logarithm term
works as a robust estimator which can detect and reject the
measurement outliers that violate the motion model. We
used downhill simplex method for minimization. To reduce
the load of the above computationally intensive motion vec-
tor and parameter estimation procedures, we only used up
to 20 points to estimate the parameters. Note that, the
motion parameters are estimated for only a small number
of volumes, which is usually between 10-100, after the vol-
ume refinement stage.

The frame difference descriptor γδ(i) is proportional to
the amount of color change in the volume after trajectory
motion compensation

γδ(i) =
1

γsi(i)

∑
p∈Vi

δ (x − T x
i (t), y − T y

i (t), t) . (15)

where the frame difference score δ is given as in Eq.1. We
present truncated frame difference scores in Fig.10. The
skin color descriptor γsi(i) is computed similarly

γρ(i) =
1

γsi(i)

∑
p∈Vi

ρ(p). (16)
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Fig. 10. Frame difference score δ(p) for Foreman, Akiyo, and Head.
Frame difference indicates the amount of motion for certain cases.

where ρ(p) is the skin color score as explained in section
III-C and γsi(i) is the size of the volume.

B. Relational Descriptors

These descriptors evaluate correlation between a pair
of volumes Vi and Vj . The mutual trajectory distance
∆(i, j, t) is one of the motion based relative descriptors.
It is calculated by

∆(i, j, t) = |T(i, t)−T(j, t)|. (17)

The mean of the trajectory distance Γµ(i, j) measures av-
erage distance between the trajectories, and Γσ(i, j) is the
variance of the distance ∆(i, j, t). A small variance means
two volumes have similar translational motion, and a big
variance reveals volumes have different motion, i.e., getting
away from each other or moving in the opposite directions,
etc. One exception happens in case of a large background,
since its trajectory usually falls on the center of the frames.
To distinguish volumes that have small motion variances
but opposite motion directions, e.g., two volumes turning
around a mutual axis, the directional difference Γdd(i, j)
can also be defined. The parameterized motion similarity
is measured by Γpm(i, j)

Γpm(i, j) =
∑

t

[
cR

∑
n=1,2,4,5

|an(i, t)−an(j, t)|

+cT

∑
n=3,6

|an(i, t)−an(j, t)|
]

(18)

where the constants are set as cT � cR to take into ac-
count of the fact that a small change in the parameters an,
n = 1, 2, 3, 4 can lead to much larger difference in the mod-
eled motion field than the translation parameters a5, a6.
The compactness ratio Γcr(i, j) of a pair of volumes is the
amount of the change on the total compactness before and
after the two volumes merge

Γcr(i, j) =
γco(Vi ∪ Vj)

γco(i) + γco(j)
(19)

where a small Γcr(i, j) means the merging of Vi and Vj

will generate a less compact volume. Another shape re-
lated descriptor Γbr(i, j) is the ratio of mutual boundary
of two volumes Vi and Vj to the boundary of volume Vi.
The color difference descriptor Γcd(i, j) gives the sum of
the difference between the color histograms, the mutual
existence Γex(i, j) counts the number of frames in which
both volumes exist, and Γne(i, j) shows whether volumes

Fig. 11. Coarse-to-fine (k-means, GLA, quad-tree) and fine-to-coarse
clustering. The first approach divides the volumes into certain num-
ber of clusters at each time, the second merges a pair of volumes at
each level.

are adjoint. Similarly, Γρ(i, j) shows the difference in the
skin color scores between the volumes, and Γfd(i, j) gives
the difference in the change detection scores.

VI. Fine-to-Coarse Clustering

As described in the general framework, the volumes are
clustered into objects using their descriptors. Different ap-
proaches to clustering data can be categorized as hierar-
chical and partitional approaches. Hierarchical methods
produce a nested series of partitions while a partitional
clustering algorithm obtains a single partition of the data.
Merging the volumes in a fine-to-coarse manner is an ex-
ample to hierarchical approaches. Grouping volumes using
adaptive k-means method in an coarse-to-fine manner is an
example to the partitional approaches as illustrated in Fig.
11.

In the fine-to-coarse merging method, determination of
most similar volumes is done iteratively. At each iteration,
all the possible volume combinations are evaluated. The
pair having the highest similarity score are merged and af-
fected descriptors are updated. A similar morphological
image segmentation approach using such hierarchical clus-
tering is presented in [9].

Detection of a semantic object requires explicit knowl-
edge of specific object characteristics. Therefore, user has
to decide which criteria dictate the similarity of volumes.
It is the semantic information that is being incorporated at
this stage of the segmentation. We designed the segmen-
tation framework such that most of the important object
characteristics will be available for user in terms of the self
and relational descriptors. Other characteristics can be
included easily without changing the overall architecture.
Furthermore, the computational load of building objects
from the volumes is minimized significantly by transferring
the descriptor extraction in the previous automatic stages.

The following observations are made on the similarity of
two volumes:
1. Two volumes are similar if their motion is similar. In
other words, volumes having similar motion construct the
same object. A stationary region has high probability of
being in the same object with another region that is sta-
tionary, i.e., a tree and a house in the same scene. We
already measured the motion similarity of two volumes
in terms of motion-based relational descriptors Γσ(i, j),
Γdd(i, j), and Γpm(i, j). These descriptors can be incor-
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porated in the similarity definition. However, without us-
ing further intelligent models, it is not straightforward to
distinguish objects with similar motion.
2. Objects tend to be compact. A human face, a car, a
flag, a soccer ball are all compact objects. For instance, a
car in a surveillance video is formed by separate elongated
smaller regions. Shape of a volume gives clues about its
identity. We captured shape information in the descrip-
tors Γcr(i, j) and Γbr(i, j) and also volume boundary itself.
Note that, compactness ratio must be used with caution in
merging volumes. If a volume is enclosing another volume,
their merge will increase compactness whether these two
volumes correspond to same object or not. Furthermore,
many objects such as cloud formations, walking people,
etc. are not compact. To improve the success of shape-
based object clustering, application-specific criteria should
be used, e.g. a human model for videoconferencing.
3. Objects have connected parts. This is obvious for most
of the cases, an animal, a car, a plane, a human, etc., un-
less an object is visible only partially. We begin evalua-
tion of similarity with the volumes that are neighbors to
each other. Neighborhood constraint is useful, and yet, can
easily deteriorate the segmentation accuracy in case of an
under segmentation, i.e., background encloses most of the
volumes.
4. An object moves as a whole. Although this statement
is not always true for human objects, for rigid bodies, it
is useful. The change detection descriptor becomes very
useful in constructing objects that are moving in front of a
stationary background.
5. Each volume already has a consistent color by construc-
tion, therefore there is little room for utilization of color
information to determine a neighbor to merge in. In fact,
most objects are made from small volumes that have differ-
ent colors, i.e., human body consists face, hair, dress, etc.
When forming the similarity measure, color should not be a
key factor. However, for specific video sequences featuring
people, human skin color is an important factor.
6. Important object tend to be at the center. We can find
good examples as in head-and-shoulder sequences, sports,
etc.

To blend all the above observations and statements, we
evaluate the likelihood of a volume merge given the relevant
descriptors. For this purpose, we define a similarity score

P∗(Vi,j) ≡ Γ∗(i, j)∑
m,n Γ∗(m, n)

(20)

Alternatively, P∗(Vi,j) can be defined using a ranking based
similarity measure. For all possible neighboring volume
pairs, the relevant relative descriptors are ordered in sep-
arate lists in either descending or ascending order. For
example, Lσ(i, j)) returns a number indicating the rank of
the descriptor Γσ(i, j) in its ordered list. Using the ranks
in the corresponding lists the likelihood is computed as

P∗(Vi,j) ≡ 1 − 2L∗(i, j)
l∗(l∗ + 1)

(21)

Fig. 12. Multi-resolution partition of objects in a hierarchical tree
representation.

where the length of the list L∗ is l∗. The similarity based
on all descriptors is defined as

P (Vi,j) =
∑

∗:σ,dd,..

λ∗P∗(Vi,j) (22)

where constant multipliers λ’s are used to normalize and
adjust the contribution of each descriptor. These multi-
pliers can be adapted to the specific applications as well.
To detect human face, skin color descriptor Γρ(i, j) can
be included in the above formula. Similarly, if we are in-
terested in finding moving objects in a stationary camera
setup but trajectory or parametric modeling are not suffi-
cient enough to obtain an accurate motion representation,
the frame difference descriptor γδ(i) becomes an adequate
source.

The pair having the highest similarity score are merged,
and the descriptors of the volumes are updated accordingly.
Clustering is performed until there are only two volumes
remain. At a level of the clustering algorithm, we can ana-
lyze whether the chosen volume pair is a good choice. This
can be done by observing the behaviour of the similarity
score of the selected merge. If this score gets small or shows
a sudden drop, the merge is likely to be not a valid merge
although it is the best available merge.

The segmentation algorithm supplies volumes, their at-
tributes, and information about how these volumes can be
merged. Since human is the ultimate decision maker in an-
alyzing the results of video segmentation, it is necessary to
provide the segmentation results in an appropriate format
to user or other decision mechanism for further analysis.
We use an object tree structure to represent segmentation
results as demonstrated in Fig. 12. In this representation,
the video is divided into objects, and objects into volumes.
At the lowest volume level, the descriptors and boundaries
are available. Volumes are homogeneous in color and tex-
ture, and they are connected within. The clustering step
generates higher levels that are consistent in motion. The
user can choose the segmentation result at different levels
based on the desired level of details. In case a user wants to
change the criteria used to cluster volumes, only the clus-
tering stage needs to be executed with new criteria, e.g.
weights in different descriptors, which is computationally
simple.

The corresponding objects at various object levels of the
multi-resolution object tree are presented in Figs. 13-14.
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Fig. 13. Results at object levels 13, 10, 8, 6, 3, and 2 for Akiyo using
frame difference descriptor.

Fig. 14. Results at object levels 12, 10, 8, 7, 6, 5, 4, 3, and 2 for
sequence Children using trajectory distance variance descriptor.

The descriptor multipliers are set as λfd = λρ = λcr =
λbr = 1, λothers = 0 for Akiyo since we intended to find
a human head having very slow non-rigid motion, λµ =
λcr = λbr = 1 λothers = 0 for Bream since motion is the
most discriminating visual feature for the fish, and λµ =
λρ = λcr = λbr = 1, λothers = 0 for Children since objects
are defined as moving regions that have human skin colors.
Hierarchical clustering finds the mouth of the speaker in
Akiyo as the most different object since it has the highest
frame difference and skin color score. At the consequent
levels of the multi-resolution tree, the face and suit comes
because of the same reason. For Children, the red ball
has the most discriminating motion among the all objects,
and the proposed VOS method correctly put it on the top
level of the multi-resolution tree (Fig. 14). As visible,
volume growing accurately detects the objects boundaries
as a result of adaptive color distance threshold assignment.

VII. Experimental Results

We selected a version of the proposed video object seg-
mentation framework (VOS) to be used as a reference con-
sidering the computational simplicity i.e. texture features
and motion parameters are omitted. Centroid-linkage is
used to grow volumes, and 1D histogram based formulation

(Eq. 9) is applied to compute color distance. Intra-inter
switching method is preferred to prevent a volume from
having disconnected regions.

We also implemented two other state-of-art semi-
automatic tracker to provide a detailed comparison of the
proposed method with others.

A. Reference Methods

AMOS (Active MPEG-4 Object Segmentation): We
used a semi-automatic video object segmentation algorithm
[29], [8] to compare our results. This algorithm requires the
initial object definition i.e. object boundary to be provided
by users by mouse selected points around the target ob-
ject. Then a snake algorithm refines the user input to fit a
smooth boundary. The initial object is generated through
a region segmentation and aggregation process. To extract
homogeneous regions in both color and motion, motion seg-
mentation based on a dense motion field is used to further
split the color regions. Homogeneous regions are classified
as either foreground or background to form the object. Re-
gion aggregation is based on the coverage of each region by
the initial object mask: regions that are covered more than
a certain percentage are grouped into the foreground ob-
ject. The final contour of the semantic object is computed
from foreground regions. Tracking is done at both the re-
gion and object levels. Segmented regions from the pre-
vious frame are first projected to the current frame using
their individual 2D affine models with 6 parameters. An
expanded bounding box including all projected foreground
regions is computed. Then the area inside the bounding
box is split to homogeneous color and motion regions fol-
lowing a region tracking process. Pixels that can not be
tracked from any old regions are labeled as new regions.
Thus the resulting homogeneous regions are tagged either
foreground (meaning tracked from a foreground region), or
background (meaning tracked from a background region),
or new (meaning not tracked). They are then passed to
an aggregation process and classified as either belonging to
the foreground object or the background. To handle pos-
sible motion estimation errors, the aggregation process is
carried out iteratively. Finally, the object contour is com-
puted from foreground regions.

This technique is very similar to the system explained in
COST-211 project [3].

SAM (Self Affine Mapping Tracker): We also made com-
parisons with another semi-automatic tracker [15] in which
the initial boundary entered by painting a region instead of
mouse clicks. The concept of this method is quite different
from that of the snake method. A self-affine mapping sys-
tem instead of the energy minimization procedure is used to
approach and fit the roughly drawn line to the object con-
tour. The object contour is extracted as a self-similar curve
instead of a smooth curve. The self-affine maps parameters
are detected by analyzing the blockwise self-similarity of an
image using a simplified algorithm in fractal encoding.
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MOTION VECTORS (Akiyo, frame: 101) MOTION VECTORS (Bream, frame: 101) MOTION VECTORS (Children, frame: 101)

Fig. 15. Estimated ground truth motion fields using phase-correlation for the first frames of Akiyo, Bream, and Children.

B. Performance Measures

As explained in [12], comparative assessment of segmen-
tation algorithms is often based upon subjective judge-
ment, which is qualitative and time consuming. Although
several measures can be applied in the presence of a ground
truth mask, the generation of ground truth requires signifi-
cant effort and it is often limited to foreground-background
type of object segmentation. Selection of a conventional
ground truth for multi-level object extraction algorithms
may not be possible. For instance, what should be assigned
as ground truth for 3 objects level for Children sequence;
two boys and the background, or one boy, ball and back-
ground, or some other possible combination? Should two
boys constitute a single object, or should they be consid-
ered as separate entities? For two object case, we hand seg-
mented foreground object using the AMOS method since it
is semi-automatic. However, we stopped the tracker when-
ever it makes an error and corrected the object boundary
accordingly. We observed that even for the experienced
users and careful initialization, the generation of ground
truth is very exhausting and it takes more than 20 seconds
for a single frame on average.

Using the binary ground truth (G(p) = (1 : object, 0 :
background), we calculate a point misclassification score
Epixel(t) at frame t as follows:

Epixel(t) =
1

|R(t)|
∑

p

|G(p) − R(p)| (23)

where R(p) = 1 if the point p is inside the object, and |R(t)|
is the number of points inside the object. This measure
computes the ratio of the misclassified points to the total
number of object points in the current frame.

In addition to ground truth based measure, we use three
other color and motion based performance measures (spa-
tial color distance, temporal histogram distance, and mo-
tion distance). These measures do not require a ground
truth, and depends on these assumptions: object bound-
aries coincide with both the color and motion boundaries,
and the color histogram of the object is stationary from
frame to frame. In order to measure the spatial color dif-
ference, a set of probe points just inside and just outside of
the objects are selected. For the points pout, pin that are at
the opposite sides of the object boundary and at an equal

distance, the averaged color I(pout) and I(pin) are com-
puted in the M × M neighborhood of the corresponding
points. The color difference measure along the boundary
is calculated as:

Espacol(t) = 1 − 1
|B(t)|

∑
p∈B(t)

|I(pout) − I(pin)| (24)

where |B(t)| is the total length of the object boundary B(t)
in frame t. When the location of the object boundary is
estimated correctly, we expect the spatial color measure
Espacol to take a small value. However, the converse of
this statement is not necessarily true. That is, if the spa-
tial color measure has a small value, this does not imply
that the object boundary is located correctly. This color
measure is expected to be reliable when the object and
background textures are not cluttered and when the color
contrast across the boundary is high.

A straightforward way to assess the temporal changes
in the segmented object is to calculate the pairwise color
histogram differences of the objects at time t and t−1. How-
ever, a drawback of this approach is that it may not catch
a gradual deterioration. Therefore, we can alternatively
check the histogram differences between the first and cur-
rent object regions. This method penalizes the cumulative
difference effect of the previous approach. The temporal
histogram difference measure is defined as:

Ehist(t) = 1 − |γh(i, t) − γh(i, 1)|. (25)

where γh(i, 1) is the normalized frame-wise color histogram
of the object i at the first frame t = 1. We used the fore-
ground object for the presented results in Fig. 18-20. In
order to quantify how well the estimated object boundary
coincide with actual motion boundaries, we adopt the ge-
ometry of the probes used for spatial color difference and
consider the difference of the average motion vectors in the
neighborhood the points. The motion measure for frame t
is estimated as follows:

Emotion(t) = 1 − 1
|B(t)|

∑
p∈B(t)

1 − e−|v(pout)−v(pin)| (26)

The motion difference can sometimes be large, not because
of errors in segmentation, but as a consequence of the fact
that not all parts of the object is moving or having a uni-
form translational motion.
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Fig. 16. Average processing times of different components for a sin-
gle frame. Preprocessing includes filtering and threshold adaptation.
Volume growing includes marker selection and one-at-a-time growing.
Postprocessing includes volume refinement and descriptor extraction.

C. Ground Truth for Motion Field

We implemented a dense optical flow estimation method
[23], [14] to generate the ground truth motion vectors. This
is done only for comparison, and this dense field is not a
part of the proposed segmentation framework. Instead of
the simple block matching, we used phase correlation which
is a frequency domain motion measurement method that
makes use of the shift property of the Fourier transform.
Phase correlation takes the advantage of the fact that a
shift in the spatial domain is equivalent to a phase shift
in the frequency domain. Using the rotation and scale
properties of the Fourier transform, it is possible to find
the rotation and scale as a shift in the frequency domain
invariant to any translation. We first window both im-
ages due to repeating nature of the frequency spectrum,
and calculate its Fourier transform. We filter out the DC
component and any high frequency noise. We then calcu-
late the normalized cross power spectrum above. We take
the inverse Fourier transform, and find peak on correla-
tion surface. An interpolation is done finally the surface
to achieve subpixel accuracy. Phase Correlation is limited
by the number of samples that the Fourier transform can
use thus limiting the resolution in the frequency domain.
Therefore, the block size is chosen as 32 × 32.

D. Discussion on Results

We extensively tested the proposed algorithm and the
reference methods. For the AMOS method, we carefully
marked the initial boundary by mouse clicking on more
than 50 boundary points. The initial boundary is aligned
on the object as close as possible. Then we segmented the
sequence for a total of 136 frames. We generated spatiotem-
poral data for the same sized video and run the automatic
segmentation as mentioned before.

For the VOS method results presented in this section,
we did not fine-tune any parameters but only modified the
multipliers in the clustering stage since they are related
with the semantic definition which differ for each sequence.
We set the multipliers of the hierarchical clustering stage
as λρ = 1, λothers = 0 for Akiyo, λµ = 1, λothers = 0 for
Bream, and λµ = 1, λothers = 0 for Children to be able to
extract semantically similar objects as the hand generated

TABLE II

Processing times of single frame (ms: milliseconds, s: seconds)

CPU Pre
VOS AMOS SAM VOS AMOS SAM

Akiyo 86ms 2.1s 70ms 27ms 36s 25s

Bream 128ms 6.3s 113ms 25ms 45s 35s

Children 125ms 5.5s 120ms 25ms 55s 35s

Mother 68ms 7.2s 123ms 25ms 40s 23s

Stefan 157ms 2.2s 87ms 28ms 30s 25s

ground truth, i.e. face, fish, children and ball.
We performed experiments for 320×240 of Y UV video

on a P4 1.8Ghz CPU. In Fig. 16, we show the average
processing time for each module of the proposed method
for various test sequences. The differences among the pro-
cessing times is a result of the spatial color distribution
and the number of small volumes going into the volume
refinement. For instance, for the Bream sequence the fine
texture on the fish causes several small volumes to be re-
moved. On the other hand, the smooth background and
the relatively larger volumes after the volume growing keep
the computational time low for Akiyo. Table II shows the
averaged CPU processing times of a frame and prepara-
tion time required before the segmentation for the semi-
automatic methods. For a small number of experienced
users, we counted the initial boundary marking time for
the reference methods. As presented on the table, most
users spend more than 30 seconds to enter the initial object
boundary for the AMOS and SAM methods. The prepara-
tion time for the VOS method indicates the time required
for threshold adaptation and memory handling before the
segmentation. We observed that both of the SAM and VOS
methods has close speeds (100miliseconds/frame) although
the SAM algorithm requires an additional 30 seconds for
boundary initialization. Moreover, we observed that the
segmentation results of the SAM deteriorated after only a
small number of frames (around 10 frames) and requires
halting the tracking process and correcting the boundary.
The AMOS method needs more time to process a frame
(more than 2seconds) but is more stable. Thus, we com-
pared the segmentation accuracy with the better perform-
ing AMOS method.

We present the segmentation results in Fig. 24. The
proposed method consistently produces both visually and
quantitatively better results. In Fig.17, the misclassfica-
tion errors are plotted for the VOS (blue) and AMOS (red).
For Akiyo, the error scores are similar due to the minor dif-
ferences between the extracted boundaries. However, the
semi-automatic method (AMOS) fails to maintain the cor-
rect boundary on the left side of the head and starts ex-
panding after certain number of frames. This also happens
whenever object moves fast, which causes the tracker to
miss the part of the object, as in the case of Children when
the boy on the left suddenly kneels down. For Bream, the
proposed method manages to detect the correct boundary
even the fish changes its direction. On the other hand,the
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Fig. 17. Misclassification errors (Eq. 23) of the proposed segmentation framework (VOS) and a semi-automatic methods (AMOS) using
manually extracted ground truths for Akiyo, Bream, and Children.

motion estimation and boundary fitting mechanisms of the
AMOS can not compensate for this movement as a result
object boundary is significantly deformed. One shortcom-
ing of the proposed method is that the volume refinement
process may drop a grown volume if it fails to satisfy size
criterion. For instance, the size of the volume correspond-
ing to the feet of the boy on the left in Children is less than
the threshold, thus it is not included among the volumes
send to the clustering stage. Still, it is evident that the
proposed algorithm has superior results than the reference
one.

The computed point discrepancy measure (given in Fig.
17) also confirms these observations. We used Eq. 23 to
find the misclassification scores.

In Figures 18, 19, and 20, we present the non-ground
based performance measure results. These graphs confirm
the ground truth results, although for some certain con-
ditions the sensitivity of the motion and temporal color
distance are limited. In Fig. 21, we give a plot of perfor-
mance measures versus object levels and frame numbers.
As visible, the errors decrease for most frames as the ob-
ject number gets smaller until the it reaches to 2, which
was the intention of foreground/background segmentation.
However, we observed that the measures does not always
comply with this observation since they depend on the pre-
viously described assumptions.

In Fig. 22, the highest similarity score P (Vi,j) at each
object level are plotted for different test sequences. One hy-
pothesis is that if the clustering stage ’accurately’ merges
two volumes at the current level (k), in the highest likeli-
hood in the next object level (k − 1) will be less than the
highest value at the current level (k). Otherwise, a possible
merge, which has higher likelihood value, would be missed
since it is encountered in the following level (That is how
we find the existence of such a merge). This hypothesis
is justified by the object level versus performance measure
plot as shown in 22. These plots show that the highest
likelihood drops as the object level decreases, which also
indicates merging process works accurately.

We also analyzed the effects of the color quantization.
By quantizing the 3D space into 256 levels, we are able to
decrease the computational load by 15% without causing a
degradation of the segmentation performance. This gain is
a result of using shorter data structures for memory han-
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Fig. 22. Highest similarity score monotonically decreases as the
volumes are merged. Note that, after volume growing the number
of volumes are different for each sequence. Large decreases indicate
potentially weak merges.

dling in the implementation. Further quantization, i.e. into
64 and 32 levels, requires platform specific data structures.
Severe quantization, i.e. into 16 and 4 levels, significantly
disturbs the volume boundaries and washes out skin colors.

VIII. Summary

We introduced an automatic segmentation framework.
The main stages of the presented automatic segmentation
framework are: filtering and simplifying color distributions,
feature vector calculation, assigning markers as seeds of
volumes, volume growing, removal of volume irregulari-
ties, deriving self- and relational-descriptors of volumes,
and clustering volumes into a multi-resolution object tree.
Several alternatives for each of the preceding stages have
been explored.

For volume growing, we discussed several linkage meth-
ods: single-linkage, dual-linkage, and centroid-linkage. We
proposed threshold adaptation techniques for centroid-
linkage method as well. Furthermore, we compared various
modes of the volume growing. Out of these, the simultane-
ous growing and one-at-a-time growing methods basically
differ in the number of markers that are active at each it-
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Fig. 18. Comparison of the spatial color distance, temporal histogram distance, and motion distance measures for Akiyo.
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Fig. 19. Comparison of the spatial color distance, temporal histogram distance, and motion distance measures for Bream. When the AMOS
cut the most of the fish, its spatial color and temporal histogram errors became very large in comparison to VOS.
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Fig. 20. Comparison of the spatial color distance, temporal histogram distance, and motion distance measures for Children.
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Fig. 23. Effects of quantization by 256, 64, and 16 dominant col-
ors. Quantization decreases the computational load. However, with
the decreasing number of quantization levels the extracted volume
boundaries become more sensitive to the quantization errors. First
row: 256 color levels Head sequence for 17, 6, and 2 objects after
clustering. Second row: 64 levels for 10, 3, and 2 objects. Third row:
16 levels for 11, 4, and 2 objects. Fourth row: 32 levels Akiyo for 18,
6, and 2 objects. Last row: 16 levels for 11, 4, and 2 objects.

eration. The recursive diffusion and intraframe/interframe
switching methods offer different expansion mechanisms.
We assigned self descriptors to quantify individual volumes.
We also introduced the relational descriptor concept which
evaluates the similarity between a pair of volumes. In addi-
tion to descriptors that capture general attributes such as
motion, shape, we discussed ways to integrate application
specific features, such as skin color and frame difference
into the descriptors. Hierarchical clustering approach was
adapted to group volumes into objects. We used a rank-
based similarity measure of volumes. We proposed a multi-
resolution object tree representation as an output of the
segmentation. This framework blends the advantages of
color-, texture-, shape-, motion-based segmentation meth-
ods in an automatic and computationally feasible way.

Our experiments prove the effectiveness and accuracy of
the proposed framework.

As a future work, we plan integrating the previously
mentioned texture and available compressed domain fea-
tures to the automatic segmentation framework.
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Fig. 24. Segmented objects for frames 1, 26, 101, 116, and 136 of test sequences. Ground truth is marked by a red boundary in the
original images. The red areas in the segmented images shows to undersegmented pixels which are missed. The cyan areas corresponds the
oversegmented regions where the algorithm exceeded object boundary. White+cyan areas shows what segmentation generates.
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