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Abstract

We propose a novel local appearance modeling method for object detection and
recognition in cluttered scenes. The approach is based on the joint distribution of local
feature vectors at multiple salient points and their factorization with Independent Com-
ponent Analysis (ICA). The resulting densities are simple multiplicative distributions
modeled through adaptative Gaussian mixture models. This leads to computationally
tractable joint probability densities which can model high-order dependencies. Our
technique has been initially tested with natural and cluttered scenes with some degree
of occlusions yielding promising results. We also propose a method to select a reduced
set of learning samples in order to mantain the internal structure of an object to be able
to use high-order dependencies reducing the computational load.
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Abstract. We propose a novel local appearance modeling method for
object detection and recognition in cluttered scenes. The approach is
based on the joint distribution of local feature vectors at multiple salient
points and their factorization with Independent Component Analysis
(ICA). The resulting densities are simple multiplicative distributions
modeled through adaptative Gaussian mixture models. This leads to
computationally tractable joint probability densities which can model
high-order dependencies. Our technique has been initially tested with
natural and cluttered scenes with some degree of occlusions yielding
promising results. We also propose a method to select a reduced set of
learning samples in order to mantain the internal structure of an object
to be able to use high-order dependencies reducing the computational
load.

1 Introduction

For appearance based object modeling in images, the choice of method is usu-
ally a trade-off determined by the nature of the application or the availabil-
ity of computational resources. Existing object representation schemes provide
models either for global features [13], or for local features and their spatial re-
lationships [10,1,12,5]. With increased complexity, the latter provides higher
modeling power and accuracy. Among various local appearance and structure
models, there are those that assume rigidity of appearance and viewing angle,
thus adopting more explicit models [12,10,9]; while others employ stochastic
models and use probabilistic distance and matching metrics [5, 8, 1].
Recognition and detection of objects is achieved by the extraction of low
level feature information in order to obtain accurate representations of objects.
In order to obtain a good description of objects, extracted low level features
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must be carefully selected and it is often necessary to use as many salient fea-
tures as possible. But one of the most common problems in computer vision
is the computational cost of dealing with high dimensional data as well as the
intractability of joint distributions of multiple features.

We propose a novel local appearance and color modeling method for object
detection and recognition in cluttered scenes. The approach is based on the joint
distribution of local feature vectors at multiple salient points and factorization
with Independent Component Analysis (ICA). Taking this new statistically in-
dependent space to create k = 3 tuples (k = 3 salient points) of the most salient
points of an object, we are able to obtain a set of joint probability densities
which can model high-order dependencies. In order to obtain a good estimation
of the tuple space, we use an adaptative Gaussian mixture model based on the
Minimum Description Length (MDL)[14] criterion to optimally represent our
data.

We have tested our method in a real and complex environment where we
detect a real object (the US Pentagon building) after 9/11/01. We demonstrate
that our technique is able to detect a complex object with a damaged portion
of the building and under different natural conditions but we have to select a
properly number of training tuples. Our method is based on high-order depen-
dencies but, since the object consists of several keypoints, the number of possible
tuples for learning is extremely huge. Thus, we propose a method to select the
learning tuples in order to be able to work with high-order dependencies using
a reasonable amount of computational resources.

2 Methodology

We propose to use an adaptative Gaussian mixture model as a parametric ap-
proximation of the joint distribution of image features of local color and appear-
ance information at multiple salient points.

Let i be the index for elementary feature components in an image, which
can be pixels, corner/interest points [3,4], blocks, or regions in an image. Let
x; denote the feature vector of dimension n at location ¢. x; can be as simple
as {R,G,B} components at each pixel location, some invariant feature vectors
extracted at corner or interest points [7, 10, 11], transform domain coefficients at
an image block, and/or any other local/ regional feature vectors.

For model-based object recognition, we use the a posterior: probability de-
fined as max; P(M;|T) where M; is the object model and T' = {z;} represents
the features found in the test image. Equivalently, by assuming equal priors,
classification/detection will be based on maximum likelihood testing:

max; P(T|M;) (1)

For the class-conditional density in equation (1), it is intractable to model de-
pendencies among all z;’s (even if correspondence is solved), yet to completely
ignore these dependencies is to severely limit the modeling power of the probabil-
ity densities. Objects frequently distinguish themselves not by individual regions



(or parts), but by the relative location and comparative appearance of these re-
gions. A tractable compromise between these two modeling extremes (which does
not require correspondence) is to model the joint density of all k-tuples of z;’s
in T. Figure (1) shows a general scheme of our methodology.
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Fig. 1. System diagram for k-tuple density factorization using ICA and Gaussian mix-
ture models.

2.1 Joint Distribution of k-tuples

Instead of modeling the total joint likelihood of all z,zs,...x;, which is an
(I x n)-dimensional distribution, we model the alternative distribution of all
k-tuples as an approximation:

P({(miumiza'"7mik)}|M1) (2)

This becomes a (k x n)-dimensional distribution, which is still intractable (Note:
k <mn and k << I). We can use multi-dimensional histograms as an approxima-
tion of the joint distribution of image features with, i.e 20 histogram bins along
each dimension, and such a framework would require 20(*™) bins. Therefore, a
factorization of this distribution into a product of low-dimensional distributions
is required. We achieve this factorization by transforming x into a new feature
vector S whose components are (mostly) independent. This is where Independent
Component Analysis (ICA) comes in.

2.2 Density Factorization with ICA

ICA originated in the context of blind source separation [2,6] to separate ”in-

dependent causes” of a complex signal or mixture. It is usually implemented by

pushing the vector components away from Gaussianity by minimizing high-order

statistics such as the 4" order cross-cumulants. ICA is in general not perfect

therefore the IC’s obtained are not guaranteed to be completely independent.
By applying ICA to {z;}, we obtain the linear mapping

Tz~ AS (3)



and
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where A is a n-by-m matrix and S; is the ”source signal” at location ¢ with
nearly independent components (Note: m < n). The original high-dimensional
distribution is now factorized into a product of m k-dimensional distributions,
with only small distortions expected. We note that this differs from so-called
"naive Bayes” where the distribution of feature vectors is assumed to be factor-
izable into 1D distributions for each component. Without ICA the model suffers
since in general these components are almost certainly statistically dependent.

After factorization, each of the k& dimensional factored distributions becomes
manageable if k£ is small, e.g., & = 2 or 3. Moreover, matching can now be
performed individually on these low-dimensional distributions and the scores
are additively combined to form an overall score.

Figure (2) is a graphical model showing the dependencies between a pair of
3-dimensional feature vectors 1, x5. The joint distribution over all nodes is 6-
dimensional and all nodes are (potentially) interdependent. The basic approach
towards obtaining a tractable distribution is to remove intra-component depen-
dencies (vertical and diagonal links) leaving only inter-component dependencies
(horizontal links). Simultaneously, we seek to reduce the number of observed
components from n = 3 to a smaller number m = 2 of ”sources”. Ideally, a
perfect ICA transform results in the graphical model shown in the right dia-
gram where the pair S7,S> only have pair-wise inter-component dependencies.
Therefore, the resulting factorization can be simply modeled by 2D histograms
or Gaussian mixture models?.

Fig. 2. Graphical models: (a) fully-connected graph denoting no independence assump-
tions (b) the ICA-factorized model with pair-wise only dependencies.

8 We should note that in practice with an approximate ICA transform, the diagonal
links of the original model are less likely to be removed than the vertical ones.



3 Experimental Results

Our experimental results have been focused on the use of k£ = 3 tuples in order
to analyze the effect of choosing different learning tuples. We used a Harris
operator [4,11] to detect interest points and extracted the first 9 differential
invariant jets [7] at each point as the corresponding feature vector z. Using
these jets as our feature results in a local appearance model which is not only
invariant to in-plane rotation (and translation) but is also robust with respect
to partial occlusions. We must emphasize however that our methodology is not
restricted to differential invariant jets and can in principal be used for any local
set of features, for example, color, curvature, edge-intensity, texture moments.
We then performed ICA to get m < 9 independent components for the feature
vectors (jets). Using a k = 3 tuple model results in a set of 3D Gaussian mixture
models which were used to model our 3-tuple joint component densities.

We tested our system with real and cluttered scenes where objects can be
affected by different natural factors. This is the case presented in figure (3)
which shows the modeling of the US Pentagon building before and after the
September 11 terrorist attack. Figure (3.a) presents a real image of the pentagon
building and figure (3.b) shows the extracted building used for our learning and
modeling. Figure (3.c) depicts a test image which was taken after the bombing
debris was cleared away by the cleanup crew (leaving a whole section of the
building missing).

(©

Fig. 3. (a) Satellite image of the US Pentagon building (prior to 9/11/01). (b) ex-
tracted building region used for learning. (c) a new test image of the same region taken
after 9/11/01 under different natural conditions and with the damaged portion of the
building missing (removed after site cleanup). (Note: All images have been rescaled for
display purposes.)

Image of figure (3.b) has been used as training and the number of extracted
keypoints is approximately 250. All possible k = 3 tuples that we can generate
from 250 keypoints is extremely huge (like 250 x 249 x 248 = 15438000) and it
is impossible to learn a mixture of Gaussians with this huge number of training
tuples. Our idea is to select a subset of them in order to find a representative



set of tuple candidates to learn the Gaussian mixture models and obtain a good
representation of the natural object. In order to manage with natural occlusions,
tuples must be carefully selected. Thus, we defined a radial threshold (R;p,) and
we only consider those tuples that the distance between each keypoint of the
tuple with respect to the middle point of the tuple is less than Ryp,. This idea
is represented in figure (4) where we can see three local features (z;, 3 and z3)
and the middle point of the tuple. When all the three distances (R;, R2 and Rs)
between each feature and the middle point are less than Ryp,., the tuple will be
considered for training. As can be seen, this idea comes out in order to consider
tuples with close keypoints to mantain the object structure.
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Fig. 4. Given 3 local features (z1, 2 and z3) to create a k = 3 tuple, we obtain the
middle point and when all the distances (R1, Rz and R3) between the middle point
to all the three features are less than a predefined radial value (R:n,), this tuple is
considered for training.

This present work shows that a good criterion to choose a set of learning
tuples is fundamental in order to obtain satisfactory results. Our pentagon object
used for learning is about 120 x 120 pixels and, as seen in figure (3), it consists
of several structured parts but repeated along the object. After obtaining all
the pentagon keypoints, we have considered a set of learning tuples with a radial
threshold of 25, 30, 35,40 and 45 pixels because we need to mantain the structure
of the object. For example, a radial threshold of 45 pixels is about a quarter of
the pentagon and, as seen, it should be enough because our pentagon contains a
repeated structure. In case that a learning object consists of several and different
structured parts, the radial threshold for our learning tuples should be analyzed
more carefully. Detection maps corresponding to different radial thresholds can
be seen in figure (5) where we can appreciate that small radial thresholds lead
to bad detection maps and big radial thresholds lead to good (or acceptable)
detection maps. We should state that the number of training tuples when we
use big radial thresholds are really huge and our adaptative gaussian mixture
model needs a considerable amount of computational resources.

Since we are testing our method with an object with a missing part, see
figure (3.c), detection maps of figure (5) are understandable in the sense that
part of the pentagon may not be recognized properly. When using a Ry, = 25
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Fig. 5. Detection maps corresponding to different radial thresholds (from R:p,. = 25
t0 Ryp, = 45 pixels).

pixels, results are not acceptable since the pentagon is not correctly detected
and a lot of external regions are considered as the pentagon. But, when using



Ryp, = 40 pixels, pentagon is correctly detected and only a few external regions
are considered as being part of the pentagon object.

4 Conclusions

A novel probabilistic modeling scheme was proposed based on the factorization
of high-dimensional distributions of local image features. Our framework was
tested using real imagery where the US Pentagon building is learned and de-
tected in other natural conditions and with a damaged portion of the building
missing. These experiments with complex and cluttered scenes demonstrate that
this technique is well suited to object detection and localization tasks in natu-
ral environments. As seen, one of the problems is the huge number of training
tuples obtained when considering high-order dependencies and the associated
computational resources required that are extremely high. Thus, we propose a
method to select a reduced set of learning tuples in order to mantain the internal
structure of the object to be able to use high-order dependencies reducing the
computational load.
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