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Abstract—Time-sensitive mobile commerce is vulnerable to 
message authentication delays. Significant power consumption 
incurred by cryptography is another limiting factor of most 
mobile devices. In this paper, we present a scalable mobile 
cryptosystem, which installs a group key and an elliptic curve 
private/public key pair in each device to enable both symmetric 
key and public key cryptography. We propose scalable key 
establishment protocols and secure routing protocols with 
scalable authentication schemes to make tradeoffs between 
security and energy, according to different mobile applications.  

I.  INTRODUCTION  

Secure and fast transmission of sensitive digital 
information over wireless channels has become increasingly 
important. The use of public key cryptography consumes a 
significant portion of the overall system resource. The 
computation complexity of symmetric key based operations is 
negligible, but the key management for symmetric key based 
system is complicated, and is always subject to attacks by 
adversaries.  

A practical mobile cryptosystem should provide the 
customer flexible choices for balances between security, 
performance and power efficiency. The security requirements 
are different for different information to transmit, under 
different circumstances, or with different available resources. 
For instance, a customer may wish to use a pre-installed group 
key to authenticate his message when the battery is low, or the 
message is not important, while risk the security compromise 
of a node inside the group.  It should also be able to operate 
several different tasks for different security and energy 
tradeoffs. For applications with a low security requirement 
such as toys/games automation and small home light control 
network, energy efficiency is more important and we can use 
symmetric cipher encryption and authentication. In security 
sensitive deployments such as military service, oil site 
operation, and hospital monitoring, it must be able to do 
asymmetric cipher operation for a stronger and scalable 
security feature. Therefore, in this paper we present a scalable 
mobile cryptosystem, which installs a group key and an 
elliptic curve private/public key pair into each device before 
they enter the mobile network, to enable both symmetric key 
and public key cryptography.  

In section 2 of this paper, we propose scalable key 
establishment protocols in mobile network for applications 
with different security and energy requirements. Section 3 
presents secure routing protocols with scalable authentication 
schemes. A group key is used to authenticate data with less 

security requirements, or when the node is in low power 
status. For critical commercial and military applications we 
propose a secure routing protocol with faulty link detection 
based on an efficient authentication scheme combing the use 
of elliptic curve cryptography (ECC) and hash functions. 
Section 4 summarizes this paper.   

II. SCALABLE KEY ESTABLISHMENT 

In this section, we propose three different key 
establishment protocols for mobile networks according to 
different application scenarios, the first one based on pure 
symmetric key cryptography and suitable for toys/games home 
networking, the second based on a hybrid of symmetric key 
and public key cryptography and designed for residential or 
small commercial wireless network deployment, and the last 
one based on pure public key cryptographic operations and 
targeting large industrial or military applications.  

Perrig et al. present to use trusted third parties to assist 
node-to-node key agreement [1].  We call this trusted third 
party a security manager. A security manager is granted 
special capabilities to assist in provisioning link keys to other 
end mobile devices on-site. The security manager should first 
establish a link key with an end device before it can install link 
keys into that device for secure communicating with other end 
devices inside the mobile cluster.  One way to accomplish the 
initial link key establishment task is to pre-install a master key 
table into each device. However, mobile networks may be 
highly versatile, involving temporary communications 
between devices that may have never met before. Thus we 
cannot predict and install all master keys needed for devices 
before they join the network, especially for large-scale 
wireless ad hoc networks. An alternative way is to use a 
shared group key [2] that is pre-loaded into each device in our 
proposed cryptosystem. Then when two devices want to 
establish a link key, they use this group key to encrypt and 
exchange their ephemeral key contribution data. Since the 
group key is fixed, the trust relationship is based merely on the 
knowledge of the other device’s extended IEEE 64-bit 
address. The computation complexity and power consumption of 
symmetric key cryptographic operations are negligible when 
compared with public key schemes. However, a common group 
key poses a security risk if any one device is compromised. 
Therefore, this pure symmetric key based key establishment 
protocol in applications that require the least security 
protection, such as the home toys/games automation.    
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The use of asymmetric keys along with digital certificates 
to establish individual link keys can help reduce this risk and 
restrict the impact of key compromise to the compromised 
node itself, rather than to all its key-sharing parties. Public-key 
operations are quite expensive though. In recent years, ECC 
based key agreement protocols have gained popularity in 
constrained mobile environments, due to the property of small 
key sizes. In [3], we proposed a hybrid key establishment 
protocol, which is based on a combination of ECC and 
symmetric key operations. The motivation is to exploit the 
difference in capabilities between security managers and end 
devices, and put the cryptographic burden where the resources 
are less constrained. End mobile devices are much more 
battery and computational resources limited. However, the 
security manager means powered and more computational 
powerful. The hybrid key establishment protocol reduces the 
high cost elliptic curve random point scalar multiplications at 
the end device side and replaces them with low cost and 
efficient symmetric key based operations.  

To prevent the impersonation attack, we use certificates in 
our key-establishment protocol, which provide a mechanism to 
check cryptographically to whom the public key belongs and 
if the device is a legitimate member of a particula r network.  
In our mobile cryptosystem, we use the elliptic curve implicit 
certificate scheme [4], because of the resulting low 
communication complexity, which is a dominant factor for 
low bit transmission channels in sensor networks. 

First, an elliptic curve E defined over GF(p)  (where p is 
the characteristic of the base field) with suitable coefficients 
and a base point P of large order n is selected and made public 
to all users. CA selects a random integer CAq  as its static 
private key, and computes the static public key PqQ CACA ×= . 
To obtain a certificate and the static private-public key pair, an 
end device U randomly selects a temporary key pair ),( UU Gg  

and sends UG  to CA. CA verifies U’s identity and the 
authenticity of the request received from U. CA also selects a 
temporary key pair ),( CACA Gg  and computes the elliptic curve 
point CAUU GGB += . The implicit certificate UIC  for U is 
constructed as the concatenation of CA’s static public key 

CAQ , the device identity UID , the elliptic curve point UB  and 

the certification expiration date Ut , i.e., 
),,,( UUUCAU tBIDQIC = . CA then applies a one-way hash 

function H on UIC  and derives an integer ]2,2[ −∈ neU  from 
)( UICH  following the conversion routine described in Section 

4.1.3 of [5]. Finally, CA computes U’s private-key 
reconstruction data )(mod nqegs CAUCAU += , U’s public key 

CAUUU QBeQ += , and sends Us and UIC  back to U.  After U 
obtains the implicit certificate from CA, it computes the hash 
value )( UICH  and derives an integer Ue  from )( UICH  
following the conversion routine described in Section 4.1.3 of 
[5]. U also computes its static private key 

)(mod negsq UUUU ⋅+=  and its public key PqQ UU ×= . U 

then reconstructs the public key CAUUU QBeQ +=ˆ . If UU QQ =ˆ , 
U accepts the certificate and outputs the static key pair 

),( UU Qq ; otherwise it rejects the certificate. By repeating the 
very same process, a security manager V acquires its 
certificate VIC  and static key pair ),( VV Qq . 

The certificate generation processes for end device U and 
security manager V are performed offline and before they join 
the network. When they first communicate to each other, they 
execute our hybrid key establishment protocol as below: 

1. U and V send to each other their implicit certificates. 
The content of the certificate is verified at the other side, 
including the device identity and the validity period. If any 
check fails, the protocol is terminated. 

2. V computes the hash value )( UICH  and derives an 
integer Ue  from )( UICH following the conversion routine 
described in Section 4.1.3 of [5]. V  then obtains U’s public key 

CAUUU QBeQ += . After performing the certificate processing, 
V can conclude that UQ  is genuine, provided that U later 
evidences knowledge of the corresponding private key Uq . 

3. U selects a k-bit random number Uc  as its link key 
contribution and a random k−160 bit integer r. U calculates its 
ephemeral private key )||( rcHd UU = and ephemeral public 
key PdD UU ×= , where H is  a cryptographic hash function to 
map a binary string to a random integer ]2,2[ −∈ n . U verifies 
V’s certificate and obtains V’s public key the same way as V 
does, but instead of computing VQ  directly, U computes 

CAUVUVU QdBedQdR ×+×=×= )( . U can conclude that R is 

calculated from genuine VQ , provided that V later evidences 
knowledge of the corresponding private key Vq . U then 
encrypts Uc  by using the provably secure elliptic cure 
encryption [6], and sends to V ),().)||(,( 21 eExRrcDE UU =⊕= .  

4. V decrypts the received message and obtains R by 
calculating RQdPdqEq VUUVV =×=×=× 1 . V then computes 

xReu .2 ⊕= , and checks if PuHE ×= )(1 . It yes, V gets Uc  as 

the most significant k  bits of u. Otherwise, the protocol is 
terminated. V then selects a k-bit random number Vc  as its link 
key contribution, and encrypts Vc  concatenated with its 
identity VID  using symmetric key encryption under key Uc , 
generating )||( VVc cIDEy

U
= . Note that proper encryption 

mode needs to be used, such as the Cipher Block Chaining 
(CBC) mode, which ensures that there is no way for any 
device W to derive )( Vc cE

U
 from )||( VVc cIDE

U
and change this 

value. V sends y to U. 

5. V computes )||||||(|| VUVU IDIDccKDFLinkKeyMacKey = , 
where KDF is the specified key derivation function, LinkKey 
is the established link key, and MacKey is for explicit key 
confirmation use. V then destroys Uc  and Vc  from its memory. 



6. U decrypts the incoming message under Uc  and checks 
if the decrypted message contains a proper coding of VID  
concatenated with some number. If the check fails, U 
terminates the protocol. Otherwise, U denotes the number as 

Vc , and U has verified that V has the knowledge of the private 
key Vq  associated with VQ . U computes LinkKeyMacKey ||  

)||||||( VUVU IDIDccKDF= , and )(mod)( ndMacKeyHqz UU += . U 

then sends z to V and destroys Uc  and Vc  from its memory. 

7. V verifies if 1)( EQMacKeyhPz U +×=× . If it is false, V 
terminates the protocol. Otherwise, V believes that U has the 
knowledge of the private key Uq  associated with UQ , and U 
has provided the explicit key confirmation to V. V sends 

)||(' UVMacKey IDIDMACz = to U, where MAC is a message 

authentication code function. 

8. U checks if 'z  is valid. If yes, V provides the explicit 
key confirmation to U and both sides take LinkKey as the final 
established link key and accept the connection. 

In this protocol, authentication is accomplished by sending 
the challenge pairs (E, y) and (y , z). It is infeasible for an 
adversary to compute the correct response y without 
knowing Vq . Thus U can be sure that only V can produce the 
response and U verifies that V has the knowledge of the 
private key Vq  associated with the certified VQ .  Also, 

1)( EQMacKeyHPz U +×=×  can be satisfied only if z  is 

calculated by the correct private key Ud  associated with the 
certified public key UQ . Therefore, V can be sure that only U 
can produce the correct response. In addition, an adversary 
cannot obtain any information of Uc  and Vc  if both the 
symmetric and ECC encryption schemes are secure, which 
implies the link key contribution of each side is transferred 
securely to the other part. 

This hybrid key establishment protocol consumes more 
node energy as compared to the pure symmetric key based 
protocol. However, since we verify the binding of the sensor’s 
private key Uq to its public key UQ  in step 6 and 7 through a 
linear combination of the static key and the ephemeral key, 
rather than a multiplicative combination as in other ECC based 
pure public key protocols , at least one expensive elliptic-curve 
scalar multiplication of a random point is moved to the 
security manager side, and is replaced by one low cost 
modular multiplication, one modular addition and one 
symmetric key decryption. Therefore, our hybrid key 
establishment protocol is faster and saves more node energy 
than other public key based protocols, as evidenced by running 
our protocol on Mitsubishi’s 16-bit single-chip microprocessor 
M16C. The whole protocol execution time on end device side 
is about 760 msec, while ECMQV protocol with ECC X509 
certificates [4] and implicit certificates [5] takes 1110 msec 
and 1155 msec respectively, and the Elliptic-Curve Diffie -
Hellman Ephemeral (ECDHE) protocol [5] takes 1350 msec.  

The hybrid key establishment protocol has much better 
security enhancement than our first pure symmetric key based 
protocol, while has moderate energy consumption on end 
mobile devices. We notice that if the security manager's 
private key is compromised, then all the link keys from earlier 
runs can be recovered from the transcripts. However, the 
corruption of the sensor node does not help to reveal the link 
keys. Therefore, our scheme provides half forward secrecy and 
is suitable to use in residential and small commercial mobile 
applications where security is important but not critical, and 
we can trade security for mobile users’ energy efficiency. 

 To provide full forward secrecy, rather than being 
encrypted under a symmetric key Uc , Vc should be sent to U in 
a similar way that Uc  is sent to V (i.e., through secure elliptic 
cure encryption [6]), and only U with its ephemeral private 
key can reconstruct it. Then our hybrid protocol is modified 
into a pure ECC based public-key key establishment protocol. 
However, this requires additional expensive elliptic curve 
random point multiplications on mobile user side, and is 
opposite to our purpose of offloading the computation burden 
of end devices. The pure ECC based public-key key 
establishment protocol is suitable to vital or security-sensitive 
network deployments, including natural disaster control, 
battlefield service, rescue missions, etc., where security is 
more important than energy efficiency.  

III. SECURE ROUTING WITH SCALABLE AUTHENTICATION 

Most of the proposed secure routing protocols in wireless 
networks are based on authentication in the route discovery 
process. Seldom work has been done to detect faulty links 
based on observation of misbehavior in the data forwarding 
phase. Awerbuch et al. [7] address the Byzantine failure 
problem by using adaptive probing techniques. Unfortunately, 
malicious nodes can differentiate probing packets and normal 
data packets and therefore can selectively forward the probing 
packets to avoid detection. Herzberg and Kutten [8] have 
proposed the combination use of acknowledgements, timeouts 
and fault announcements, to detect packet forwarding faults. 
The protocols are only presented in an abstract model, a 
realization of which is proposed by Avramopoulos et al. [9].  
They propose a source routing protocol with Byzantine 
robustness by utilizing reserved buffer, sequence number and 
authentication of data and control packets based on message 
authentication codes. However, the authentication of data and 
control packets is based on message authentication code, 
which requires a separate authentication tag for each of the 
intermediate router, thus adding a lot of communication 
overhead when multi-hops are used.  

To detect faulty links, we use acknowledgements, timeouts 
and fault announcements described in [8, 9]. However to 
reduce the communication overhead, we can still use a shared 
group key to authenticate all the data and control packets . 
With a fixed group key, the sender just needs to calculate and 
attach one authentication tag for each data and control packet. 
While this group key approach is efficient both in terms of 



computation and communication overhead, it just mitigates 
outside attacks and does not protect against compromise of a 
single node. Therefore, it is more appropriate to use in 
applications with less security requirements, such as home 
automation applications, or when the node is in low power 
status and hence energy efficiency and performance are more 
important than security. 

For commercial and military applications with a high 
security requirement, keeping the network available for its 
intended use is essential. We propose to use the Guy Fawkes 
protocol [10] for authentication, such that only a single 
authentication tag is attached for each data or control packet, 
and therefore can save more communication overhead than the 
detection scheme proposed by Avramopoulos et al [9].  

We assume the dynamic source routing (DSR) protocol is 
used in the mobile network we envision. Now assume that the 
source S has a sequence of packets },,{ 21 nmmm L  to send to the 
destination D through a source route ( DnnS L21 ,, ), where 

L,, 21 nn  are intermediate routers. When the source sends the 
first packet 1m , it selects two random passwords 1X  and 2X , 
sets a timeout to receive either a destination acknowledgement 
(ACK) or a fault announcement (FA) from a downstream 
router for this packet, and forwards to the first router the 
following message:  

)}),(,()),(,(),(,{ 12211111 XXhmhXhmSigXhmMSG = . 

))(,( 11 XhmSig is a signature over ))(,( 11 Xhm  signed by the 
sender’s private key. With its public key, every downstream 
router can verify that ))(,( 11 Xhm  is valid and indeed generated 
by the claimed source node. Then each downstream router 
creates a new route table entry ( 21 ,, eeS ) associated with this 
source S, where )( 11 Xhe =  and )),(,( 1222 XXhmhe = , which will 
be used to authenticate the future message from the same 
source. An elliptic curve digital signature algorithm (ECDSA) 
can be used here due to a small size of the ECC key, faster 
processing speed and smaller communication complexity.   

When sending the second packet 2m , the source selects 
another password 3X  and forwards the second message 2MSG  
to the first downstream router: 

)}),(,(,),(,{ 2331222 XXhmhXXhmMSG = . 

Each downstream router can verify ))(,( 22 Xhm by first 
applying the hash function h to 1X  received in 2MSG  and 
checking if the result )( 1Xh  is the same value as 1e  stored in 

its route table.  If yes, 1X  is valid. It then performs the hash 
function on ( 122 ),(, XXhm ) received in 2MSG , and checks if 
the result is equivalent to the previously received value 2e  in 

1MSG . If the check succeeds, the authenticity of ))(,( 22 Xhm  is 
verified. Hence, the intermediate router knows that this 
message is indeed from the source node, and the content is not 
modified. It then updates the stored value of 1e  and 2e  as 

)( 21 Xhe =  and )),(,( 2332 XXhmhe = . The message 2MSG  is 
forwarded to the next hop as specified in the packet header. 

Similarly, when sending the k-th ( 2≥k ) packet km , the 

source selects a new password 1+kX  and forwards the k-th 
message kMSG : 

)}),(,(,),(,{ 111 kkkkkkk XXhmhXXhmMSG ++−= .  

When an intermediate router receives a data packet km , it 

verifies the authenticity of the packet by checking if 
11)( eXh k =−  and 21)),(,( eXXhmh kkk =− . If both checks succeed, 

it updates its routing entry as )(1 kXhe =  and 
)),(,( 112 kkk XXhmhe ++= . The packet is scheduled for 

transmission in the appropriate forward path. When the packet 
is transmitted, the router sets a timeout to receive either an 
ACK or an FA for this packet. ACKs provide feedback on 
whether a packet was successfully delivered. Timeouts detect 
delivery failures, which are set as the worst-case round trip 
time to the destination. With source routing the worst-case 
round trip time to the destination is known to the source and 
every intermediate router. 

If any of the above checks fails, the packet is dropped. If 
the check at node in  fails, there may be two reasons. The first 

is 1−in  modified )),(,( 1−kkk XXhmh  in 1−kMSG , and the second is 

1−in  modified ( 1),(, −kkk XXhm ) in kMSG . In either case, the 

node in  will drop the packet. Consequently, node 1−in  cannot 
get a valid ACK after timeout, and it will either report a link 
error of ),( 1 ii nn −  by itself, or the node 2−in  will report an error 
of ),( 12 −− ii nn  to the source node. In either case, the detected 
fault link includes the malicious node 1−in . 

When the destination receives a data packet km , it verifies 
the authenticity of the packet in the same way as the 
intermediate routers do. If any of the checks fails, then the 
packet is dropped. If both checks succeed, it schedules an 
ACK for transmission along the reverse of the path that the 
packet traversed. The ACK reflects the packet identification 
number k . The destination also appends an authentication tag 
to the ACK whose purpose is to authenticate it to all upstream 
routers. The authentication tag bears the same structure as the 
one generated by the source. Specifically, when sending 1ACK  
for the first packet 1m , the destination randomly selects two 
passwords 1Y  and 2Y , and sends the following information:  

)),(,()),(,(),(, 1221111 YYhACKhYhACKSigYhACK . 

Similarly, ))(,( 11 YhACKSig  is used to verify ))(,( 11 YhACK  
to each upstream router. When sending acknowledgement for 
packet km  ( 2≥k ), the destination selects a new password 1+kY  
and forwards:  

)),(,(,),(, 111 kkkkkk YYhACKhYYhACK ++− .  



If the timeout at an intermediate router expires, it 
schedules for transmission to the upstream path an FA for the 
first downstream link. The FA reflects the identification 
number of the packet and also bears a similar authentication 
tag, for authentication the FA to upstream routers. 

The other part of the protocol is the same as in [9]. When 
an intermediate router receives an ACK, it verifies its 
authenticity and that a timeout is pending for the 
corresponding data packet. If any check fails, it drops the 
ACK. Otherwise it cancels the timeout and further forwards 
the ACK. When an intermediate router receives an FA, it 
verifies its authenticity, it verifies that a timeout is pending for 
the corresponding data packet and that the link reported in the 
FA is the first downstream to the node that generated it. If any 
check fails, it drops the FA. Otherwise, it cancels the timeout 
and further forwards the FA.  

If the timeout at the source expires, then it deletes the first 
downstream link from its Route Cache. It then finds a new 
path to the destination in its cached routes and reprocesses the 
“failed” packet as if it were a new packet. If the source 
receives an kACK , it assumes successful delivery of the 
packet km . If the source receives an authentic FA, then it 
deletes the link in the FA from its Route Cache, provided that 
this is the downstream link of the router that generated the FA. 
It then rediscovers a new path to the destination and 
reprocesses the “failed” packet. 

Note that a prerequisite of our protocol is that 1−kMSG  
should always be received at each intermediate node before 
the source sending kMSG , which is guaranteed if the source 
holds on transmitting kMSG until it receives the ACK of FA 
regarding 1−kMSG .  

We assume that each link has one a-priori reserved buffer 
for every source router in the network as also described in [9]. 
This ensures that normal packets are never dropped because of 
congestion. Authentication ensures that the reserved buffer is 
allocated to its intended source and protect against vicious 
flooding the network with unauthenticated packets. Malicious 
nodes that send packets frequently will soon use up all the 
buffer space allocated to them and the not served old packets 
will be discarded. 

With authentication, the link containing a black hole or any 
passive attacker failing to forward packets to the destination 
can be detected since a malicious node does not hold the 
destination’s secret key or password to be used, and thus 
cannot fabricate an ACK with a valid authentication tag.  

The Guy Fawkes authentication tag also safeguards against 
replay. In a replay attack, an intermediate router stores 
authentic packets and introduces them at a later time into the 
network in order to “take out” new packets. In our protocol, a 
new packet is sent with a different password and the check on 
the replayed password fails when an intermediate node 

compares the hash of the password with the hash value it 
received in the previous message.  

In our scheme, the authentication tag of each packet bears 
only two hashes and one password, while in the detection 
protocol introduced in [9], L authentication tags must be 
attached for L hops, and therefore, our scheme has a much 
smaller communication overhead. In the first step of our 
protocol, the authentication is based on ECDSA digital 
signature, while in later steps all authentications are done by 
symmetric key operations. Therefore, this scheme has a 
moderate computation overhead but with more security 
enhancement than our first routing protocol based on group 
key authentication. 

IV.  CONCLUSION  
Scalable features are especially desirable for applications 

in low-power mobile cryptosystem. In this paper, we present a 
scalable mobile cryptosystem, which installs a group key and 
an elliptic curve private/public key pair into each device to 
enable scalable security processing. We propose scalable key 
establishment protocols and secure routing protocols with 
scalable authentication schemes, in which different security 
and energy tradeoffs are enabled for different application 
scenarios. The system user should choose the best appropriate 
protocol, by taking into account the level of security range 
required and the operational cost that the user is willing to 
accept.  
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