
MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Energy/Security Scalable Mobile
Cryptosystem

Qiang Huang, Hisashi Kobayashi, Bede Liu, Daqing Gu, and Jinyun Zhang

TR-2003-79 February 2004

Abstract

Time-sensitive mobile commerce is vulnerable to message authentication delays. Significant
power consumption incurred by cryptography is another limiting factor of most mobile devices.
In this paper, we present a scalable mobile cryptosystem, which installs a group key and an
elliptic curve private/public key pair in each device to enable both symmetric key and public key
cryptography. We propose scalable key establishment protocols and secure routing protocols
with scalable authentication schemes to make tradeoffs between security and energy, according
to different mobile applications.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2004
201 Broadway, Cambridge, Massachusetts 02139

Publication History:

1. First printing, TR-2003-79, February 2004

Energy/Security Scalable Mobile Cryptosystem

Qiang Huang, Hisashi Kobayashi and Bede Liu
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544, USA

Daqing Gu and Jinyun Zhang
Mitsubishi Electric Research Laboratories

201 Broadway
Cambridge, MA 02139, USA

Abstract—Time-sensitive mobile commerce is vulnerable to
message authentication delays. Significant power consumption
incurred by cryptography is another limiting factor of most
mobile devices. In this paper, we present a scalable mobile
cryptosystem, which installs a group key and an elliptic curve
private/public key pair in each device to enable both symmetric
key and public key cryptography. We propose scalable key
establishment protocols and secure routing protocols with
scalable authentication schemes to make tradeoffs between
security and energy, according to different mobile applications.

I. INTRODUCTION

Secure and fast transmission of sensitive digital
information over wireless channels has become increasingly
important. The use of public key cryptography consumes a
significant portion of the overall system resource. The
computation complexity of symmetric key based operations is
negligible, but the key management for symmetric key based
system is complicated, and is always subject to attacks by
adversaries.

A practical mobile cryptosystem should provide the
customer flexible choices for balances between security,
performance and power efficiency. The security requirements
are different for different information to transmit, under
different circumstances, or with different available resources.
For instance, a customer may wish to use a pre-installed group
key to authenticate his message when the battery is low, or the
message is not important, while risk the security compromise
of a node inside the group. It should also be able to operate
several different tasks for different security and energy
tradeoffs. For applications with a low security requirement
such as toys/games automation and small home light control
network, energy efficiency is more important and we can use
symmetric cipher encryption and authentication. In security
sensitive deployments such as military service, oil site
operation, and hospital monitoring, it must be able to do
asymmetric cipher operation for a stronger and scalable
security feature. Therefore, in this paper we present a scalable
mobile cryptosystem, which installs a group key and an
elliptic curve private/public key pair into each device before
they enter the mobile network, to enable both symmetric key
and public key cryptography.

In section 2 of this paper, we propose scalable key
establishment protocols in mobile network for applications
with different security and energy requirements. Section 3
presents secure routing protocols with scalable authentication
schemes. A group key is used to authenticate data with less

security requirements, or when the node is in low power
status. For critical commercial and military applications we
propose a secure routing protocol with faulty link detection
based on an efficient authentication scheme combing the use
of elliptic curve cryptography (ECC) and hash functions.
Section 4 summarizes this paper.

II. SCALABLE KEY ESTABLISHMENT

In this section, we propose three different key
establishment protocols for mobile networks according to
different application scenarios, the first one based on pure
symmetric key cryptography and suitable for toys/games home
networking, the second based on a hybrid of symmetric key
and public key cryptography and designed for residential or
small commercial wireless network deployment, and the last
one based on pure public key cryptographic operations and
targeting large industrial or military applications.

Perrig et al. present to use trusted third parties to assist
node-to-node key agreement [1]. We call this trusted third
party a security manager. A security manager is granted
special capabilities to assist in provisioning link keys to other
end mobile devices on-site. The security manager should first
establish a link key with an end device before it can install link
keys into that device for secure communicating with other end
devices inside the mobile cluster. One way to accomplish the
initial link key establishment task is to pre-install a master key
table into each device. However, mobile networks may be
highly versatile, involving temporary communications
between devices that may have never met before. Thus we
cannot predict and install all master keys needed for devices
before they join the network, especially for large-scale
wireless ad hoc networks. An alternative way is to use a
shared group key [2] that is pre-loaded into each device in our
proposed cryptosystem. Then when two devices want to
establish a link key, they use this group key to encrypt and
exchange their ephemeral key contribution data. Since the
group key is fixed, the trust relationship is based merely on the
knowledge of the other device’s extended IEEE 64-bit
address. The computation complexity and power consumption of
symmetric key cryptographic operations are negligible when
compared with public key schemes. However, a common group
key poses a security risk if any one device is compromised.
Therefore, this pure symmetric key based key establishment
protocol in applications that require the least security
protection, such as the home toys/games automation.

This work is supported by the New Jersey Center for Wireless and
Internet Security (NJWINS) and Mitsubishi Electric Research Laboratories.

The use of asymmetric keys along with digital certificates
to establish individual link keys can help reduce this risk and
restrict the impact of key compromise to the compromised
node itself, rather than to all its key-sharing parties. Public-key
operations are quite expensive though. In recent years, ECC
based key agreement protocols have gained popularity in
constrained mobile environments, due to the property of small
key sizes. In [3], we proposed a hybrid key establishment
protocol, which is based on a combination of ECC and
symmetric key operations. The motivation is to exploit the
difference in capabilities between security managers and end
devices, and put the cryptographic burden where the resources
are less constrained. End mobile devices are much more
battery and computational resources limited. However, the
security manager means powered and more computational
powerful. The hybrid key establishment protocol reduces the
high cost elliptic curve random point scalar multiplications at
the end device side and replaces them with low cost and
efficient symmetric key based operations.

To prevent the impersonation attack, we use certificates in
our key-establishment protocol, which provide a mechanism to
check cryptographically to whom the public key belongs and
if the device is a legitimate member of a particula r network.
In our mobile cryptosystem, we use the elliptic curve implicit
certificate scheme [4], because of the resulting low
communication complexity, which is a dominant factor for
low bit transmission channels in sensor networks.

First, an elliptic curve E defined over GF(p) (where p is
the characteristic of the base field) with suitable coefficients
and a base point P of large order n is selected and made public
to all users. CA selects a random integer CAq as its static
private key, and computes the static public key PqQ CACA ×= .
To obtain a certificate and the static private-public key pair, an
end device U randomly selects a temporary key pair),(UU Gg

and sends UG to CA. CA verifies U’s identity and the
authenticity of the request received from U. CA also selects a
temporary key pair),(CACA Gg and computes the elliptic curve
point CAUU GGB += . The implicit certificate UIC for U is
constructed as the concatenation of CA’s static public key

CAQ , the device identity UID , the elliptic curve point UB and

the certification expiration date Ut , i.e.,
),,,(UUUCAU tBIDQIC = . CA then applies a one-way hash

function H on UIC and derives an integer]2,2[−∈ neU from
)(UICH following the conversion routine described in Section

4.1.3 of [5]. Finally, CA computes U’s private-key
reconstruction data)(mod nqegs CAUCAU += , U’s public key

CAUUU QBeQ += , and sends Us and UIC back to U. After U
obtains the implicit certificate from CA, it computes the hash
value)(UICH and derives an integer Ue from)(UICH
following the conversion routine described in Section 4.1.3 of
[5]. U also computes its static private key

)(mod negsq UUUU ⋅+= and its public key PqQ UU ×= . U

then reconstructs the public key CAUUU QBeQ +=ˆ . If UU QQ =ˆ ,
U accepts the certificate and outputs the static key pair

),(UU Qq ; otherwise it rejects the certificate. By repeating the
very same process, a security manager V acquires its
certificate VIC and static key pair),(VV Qq .

The certificate generation processes for end device U and
security manager V are performed offline and before they join
the network. When they first communicate to each other, they
execute our hybrid key establishment protocol as below:

1. U and V send to each other their implicit certificates.
The content of the certificate is verified at the other side,
including the device identity and the validity period. If any
check fails, the protocol is terminated.

2. V computes the hash value)(UICH and derives an
integer Ue from)(UICH following the conversion routine
described in Section 4.1.3 of [5]. V then obtains U’s public key

CAUUU QBeQ += . After performing the certificate processing,
V can conclude that UQ is genuine, provided that U later
evidences knowledge of the corresponding private key Uq .

3. U selects a k-bit random number Uc as its link key
contribution and a random k−160 bit integer r. U calculates its
ephemeral private key)||(rcHd UU = and ephemeral public
key PdD UU ×= , where H is a cryptographic hash function to
map a binary string to a random integer]2,2[−∈ n . U verifies
V’s certificate and obtains V’s public key the same way as V
does, but instead of computing VQ directly, U computes

CAUVUVU QdBedQdR ×+×=×=)(. U can conclude that R is

calculated from genuine VQ , provided that V later evidences
knowledge of the corresponding private key Vq . U then
encrypts Uc by using the provably secure elliptic cure
encryption [6], and sends to V),().)||(,(21 eExRrcDE UU =⊕= .

4. V decrypts the received message and obtains R by
calculating RQdPdqEq VUUVV =×=×=× 1 . V then computes

xReu .2 ⊕= , and checks if PuHE ×=)(1 . It yes, V gets Uc as

the most significant k bits of u. Otherwise, the protocol is
terminated. V then selects a k-bit random number Vc as its link
key contribution, and encrypts Vc concatenated with its
identity VID using symmetric key encryption under key Uc ,
generating)||(VVc cIDEy

U
= . Note that proper encryption

mode needs to be used, such as the Cipher Block Chaining
(CBC) mode, which ensures that there is no way for any
device W to derive)(Vc cE

U
 from)||(VVc cIDE

U
and change this

value. V sends y to U.

5. V computes)||||||(|| VUVU IDIDccKDFLinkKeyMacKey = ,
where KDF is the specified key derivation function, LinkKey
is the established link key, and MacKey is for explicit key
confirmation use. V then destroys Uc and Vc from its memory.

6. U decrypts the incoming message under Uc and checks
if the decrypted message contains a proper coding of VID
concatenated with some number. If the check fails, U
terminates the protocol. Otherwise, U denotes the number as

Vc , and U has verified that V has the knowledge of the private
key Vq associated with VQ . U computes LinkKeyMacKey ||

)||||||(VUVU IDIDccKDF= , and)(mod)(ndMacKeyHqz UU += . U

then sends z to V and destroys Uc and Vc from its memory.

7. V verifies if 1)(EQMacKeyhPz U +×=× . If it is false, V
terminates the protocol. Otherwise, V believes that U has the
knowledge of the private key Uq associated with UQ , and U
has provided the explicit key confirmation to V. V sends

)||(' UVMacKey IDIDMACz = to U, where MAC is a message

authentication code function.

8. U checks if 'z is valid. If yes, V provides the explicit
key confirmation to U and both sides take LinkKey as the final
established link key and accept the connection.

In this protocol, authentication is accomplished by sending
the challenge pairs (E, y) and (y , z). It is infeasible for an
adversary to compute the correct response y without
knowing Vq . Thus U can be sure that only V can produce the
response and U verifies that V has the knowledge of the
private key Vq associated with the certified VQ . Also,

1)(EQMacKeyHPz U +×=× can be satisfied only if z is

calculated by the correct private key Ud associated with the
certified public key UQ . Therefore, V can be sure that only U
can produce the correct response. In addition, an adversary
cannot obtain any information of Uc and Vc if both the
symmetric and ECC encryption schemes are secure, which
implies the link key contribution of each side is transferred
securely to the other part.

This hybrid key establishment protocol consumes more
node energy as compared to the pure symmetric key based
protocol. However, since we verify the binding of the sensor’s
private key Uq to its public key UQ in step 6 and 7 through a
linear combination of the static key and the ephemeral key,
rather than a multiplicative combination as in other ECC based
pure public key protocols , at least one expensive elliptic-curve
scalar multiplication of a random point is moved to the
security manager side, and is replaced by one low cost
modular multiplication, one modular addition and one
symmetric key decryption. Therefore, our hybrid key
establishment protocol is faster and saves more node energy
than other public key based protocols, as evidenced by running
our protocol on Mitsubishi’s 16-bit single-chip microprocessor
M16C. The whole protocol execution time on end device side
is about 760 msec, while ECMQV protocol with ECC X509
certificates [4] and implicit certificates [5] takes 1110 msec
and 1155 msec respectively, and the Elliptic-Curve Diffie -
Hellman Ephemeral (ECDHE) protocol [5] takes 1350 msec.

The hybrid key establishment protocol has much better
security enhancement than our first pure symmetric key based
protocol, while has moderate energy consumption on end
mobile devices. We notice that if the security manager's
private key is compromised, then all the link keys from earlier
runs can be recovered from the transcripts. However, the
corruption of the sensor node does not help to reveal the link
keys. Therefore, our scheme provides half forward secrecy and
is suitable to use in residential and small commercial mobile
applications where security is important but not critical, and
we can trade security for mobile users’ energy efficiency.

 To provide full forward secrecy, rather than being
encrypted under a symmetric key Uc , Vc should be sent to U in
a similar way that Uc is sent to V (i.e., through secure elliptic
cure encryption [6]), and only U with its ephemeral private
key can reconstruct it. Then our hybrid protocol is modified
into a pure ECC based public-key key establishment protocol.
However, this requires additional expensive elliptic curve
random point multiplications on mobile user side, and is
opposite to our purpose of offloading the computation burden
of end devices. The pure ECC based public-key key
establishment protocol is suitable to vital or security-sensitive
network deployments, including natural disaster control,
battlefield service, rescue missions, etc., where security is
more important than energy efficiency.

III. SECURE ROUTING WITH SCALABLE AUTHENTICATION

Most of the proposed secure routing protocols in wireless
networks are based on authentication in the route discovery
process. Seldom work has been done to detect faulty links
based on observation of misbehavior in the data forwarding
phase. Awerbuch et al. [7] address the Byzantine failure
problem by using adaptive probing techniques. Unfortunately,
malicious nodes can differentiate probing packets and normal
data packets and therefore can selectively forward the probing
packets to avoid detection. Herzberg and Kutten [8] have
proposed the combination use of acknowledgements, timeouts
and fault announcements, to detect packet forwarding faults.
The protocols are only presented in an abstract model, a
realization of which is proposed by Avramopoulos et al. [9].
They propose a source routing protocol with Byzantine
robustness by utilizing reserved buffer, sequence number and
authentication of data and control packets based on message
authentication codes. However, the authentication of data and
control packets is based on message authentication code,
which requires a separate authentication tag for each of the
intermediate router, thus adding a lot of communication
overhead when multi-hops are used.

To detect faulty links, we use acknowledgements, timeouts
and fault announcements described in [8, 9]. However to
reduce the communication overhead, we can still use a shared
group key to authenticate all the data and control packets .
With a fixed group key, the sender just needs to calculate and
attach one authentication tag for each data and control packet.
While this group key approach is efficient both in terms of

computation and communication overhead, it just mitigates
outside attacks and does not protect against compromise of a
single node. Therefore, it is more appropriate to use in
applications with less security requirements, such as home
automation applications, or when the node is in low power
status and hence energy efficiency and performance are more
important than security.

For commercial and military applications with a high
security requirement, keeping the network available for its
intended use is essential. We propose to use the Guy Fawkes
protocol [10] for authentication, such that only a single
authentication tag is attached for each data or control packet,
and therefore can save more communication overhead than the
detection scheme proposed by Avramopoulos et al [9].

We assume the dynamic source routing (DSR) protocol is
used in the mobile network we envision. Now assume that the
source S has a sequence of packets },,{ 21 nmmm L to send to the
destination D through a source route (DnnS L21 ,,), where

L,, 21 nn are intermediate routers. When the source sends the
first packet 1m , it selects two random passwords 1X and 2X ,
sets a timeout to receive either a destination acknowledgement
(ACK) or a fault announcement (FA) from a downstream
router for this packet, and forwards to the first router the
following message:

)}),(,()),(,(),(,{ 12211111 XXhmhXhmSigXhmMSG = .

))(,(11 XhmSig is a signature over))(,(11 Xhm signed by the
sender’s private key. With its public key, every downstream
router can verify that))(,(11 Xhm is valid and indeed generated
by the claimed source node. Then each downstream router
creates a new route table entry (21 ,, eeS) associated with this
source S, where)(11 Xhe = and)),(,(1222 XXhmhe = , which will
be used to authenticate the future message from the same
source. An elliptic curve digital signature algorithm (ECDSA)
can be used here due to a small size of the ECC key, faster
processing speed and smaller communication complexity.

When sending the second packet 2m , the source selects
another password 3X and forwards the second message 2MSG
to the first downstream router:

)}),(,(,),(,{ 2331222 XXhmhXXhmMSG = .

Each downstream router can verify))(,(22 Xhm by first
applying the hash function h to 1X received in 2MSG and
checking if the result)(1Xh is the same value as 1e stored in

its route table. If yes, 1X is valid. It then performs the hash
function on (122),(, XXhm) received in 2MSG , and checks if
the result is equivalent to the previously received value 2e in

1MSG . If the check succeeds, the authenticity of))(,(22 Xhm is
verified. Hence, the intermediate router knows that this
message is indeed from the source node, and the content is not
modified. It then updates the stored value of 1e and 2e as

)(21 Xhe = and)),(,(2332 XXhmhe = . The message 2MSG is
forwarded to the next hop as specified in the packet header.

Similarly, when sending the k-th (2≥k) packet km , the

source selects a new password 1+kX and forwards the k-th
message kMSG :

)}),(,(,),(,{ 111 kkkkkkk XXhmhXXhmMSG ++−= .

When an intermediate router receives a data packet km , it

verifies the authenticity of the packet by checking if
11)(eXh k =− and 21)),(,(eXXhmh kkk =− . If both checks succeed,

it updates its routing entry as)(1 kXhe = and
)),(,(112 kkk XXhmhe ++= . The packet is scheduled for

transmission in the appropriate forward path. When the packet
is transmitted, the router sets a timeout to receive either an
ACK or an FA for this packet. ACKs provide feedback on
whether a packet was successfully delivered. Timeouts detect
delivery failures, which are set as the worst-case round trip
time to the destination. With source routing the worst-case
round trip time to the destination is known to the source and
every intermediate router.

If any of the above checks fails, the packet is dropped. If
the check at node in fails, there may be two reasons. The first

is 1−in modified)),(,(1−kkk XXhmh in 1−kMSG , and the second is

1−in modified (1),(, −kkk XXhm) in kMSG . In either case, the

node in will drop the packet. Consequently, node 1−in cannot
get a valid ACK after timeout, and it will either report a link
error of),(1 ii nn − by itself, or the node 2−in will report an error
of),(12 −− ii nn to the source node. In either case, the detected
fault link includes the malicious node 1−in .

When the destination receives a data packet km , it verifies
the authenticity of the packet in the same way as the
intermediate routers do. If any of the checks fails, then the
packet is dropped. If both checks succeed, it schedules an
ACK for transmission along the reverse of the path that the
packet traversed. The ACK reflects the packet identification
number k . The destination also appends an authentication tag
to the ACK whose purpose is to authenticate it to all upstream
routers. The authentication tag bears the same structure as the
one generated by the source. Specifically, when sending 1ACK
for the first packet 1m , the destination randomly selects two
passwords 1Y and 2Y , and sends the following information:

)),(,()),(,(),(, 1221111 YYhACKhYhACKSigYhACK .

Similarly,))(,(11 YhACKSig is used to verify))(,(11 YhACK
to each upstream router. When sending acknowledgement for
packet km (2≥k), the destination selects a new password 1+kY
and forwards:

)),(,(,),(, 111 kkkkkk YYhACKhYYhACK ++− .

If the timeout at an intermediate router expires, it
schedules for transmission to the upstream path an FA for the
first downstream link. The FA reflects the identification
number of the packet and also bears a similar authentication
tag, for authentication the FA to upstream routers.

The other part of the protocol is the same as in [9]. When
an intermediate router receives an ACK, it verifies its
authenticity and that a timeout is pending for the
corresponding data packet. If any check fails, it drops the
ACK. Otherwise it cancels the timeout and further forwards
the ACK. When an intermediate router receives an FA, it
verifies its authenticity, it verifies that a timeout is pending for
the corresponding data packet and that the link reported in the
FA is the first downstream to the node that generated it. If any
check fails, it drops the FA. Otherwise, it cancels the timeout
and further forwards the FA.

If the timeout at the source expires, then it deletes the first
downstream link from its Route Cache. It then finds a new
path to the destination in its cached routes and reprocesses the
“failed” packet as if it were a new packet. If the source
receives an kACK , it assumes successful delivery of the
packet km . If the source receives an authentic FA, then it
deletes the link in the FA from its Route Cache, provided that
this is the downstream link of the router that generated the FA.
It then rediscovers a new path to the destination and
reprocesses the “failed” packet.

Note that a prerequisite of our protocol is that 1−kMSG
should always be received at each intermediate node before
the source sending kMSG , which is guaranteed if the source
holds on transmitting kMSG until it receives the ACK of FA
regarding 1−kMSG .

We assume that each link has one a-priori reserved buffer
for every source router in the network as also described in [9].
This ensures that normal packets are never dropped because of
congestion. Authentication ensures that the reserved buffer is
allocated to its intended source and protect against vicious
flooding the network with unauthenticated packets. Malicious
nodes that send packets frequently will soon use up all the
buffer space allocated to them and the not served old packets
will be discarded.

With authentication, the link containing a black hole or any
passive attacker failing to forward packets to the destination
can be detected since a malicious node does not hold the
destination’s secret key or password to be used, and thus
cannot fabricate an ACK with a valid authentication tag.

The Guy Fawkes authentication tag also safeguards against
replay. In a replay attack, an intermediate router stores
authentic packets and introduces them at a later time into the
network in order to “take out” new packets. In our protocol, a
new packet is sent with a different password and the check on
the replayed password fails when an intermediate node

compares the hash of the password with the hash value it
received in the previous message.

In our scheme, the authentication tag of each packet bears
only two hashes and one password, while in the detection
protocol introduced in [9], L authentication tags must be
attached for L hops, and therefore, our scheme has a much
smaller communication overhead. In the first step of our
protocol, the authentication is based on ECDSA digital
signature, while in later steps all authentications are done by
symmetric key operations. Therefore, this scheme has a
moderate computation overhead but with more security
enhancement than our first routing protocol based on group
key authentication.

IV. CONCLUSION
Scalable features are especially desirable for applications

in low-power mobile cryptosystem. In this paper, we present a
scalable mobile cryptosystem, which installs a group key and
an elliptic curve private/public key pair into each device to
enable scalable security processing. We propose scalable key
establishment protocols and secure routing protocols with
scalable authentication schemes, in which different security
and energy tradeoffs are enabled for different application
scenarios. The system user should choose the best appropriate
protocol, by taking into account the level of security range
required and the operational cost that the user is willing to
accept.

REFERENCES
[1] A. Perrig, R. Szewczyk, V. Wen, D. Culler and D. Tygar. SPINS:

Security protocols for sensor networks. Wireless Networks Journal
(2002).

[2] S. Basagni, K. Herrin, E. Rosti and D. Bruschi. Secure pebblenets.
Proceedings of ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc 2001) (2001), 156-163.

[3] Q. Huang, J. Cukier, H. Kobayashi, B. Liu and J. Zhang. Fast
authenticated key establishment protocols for self-organizing sensor
netowrks. Proceedings of second ACM International Workshop on
Wireless Sensor Networks and Applications (2003).

[4] Rene Struik and Gregg Rasor. Mandatory ECC Security Algorithm
Suite, submissions to IEEE P802.15 Wireless Personal Area Networks,
(March 2002).

[5] Certicom Research, Standard for efficient cryptography, SEC 1: Elliptic
Curve Cryptography. Version 1.0, September 20, 2000.

[6] E. Fujisaki, T. Kobayashi, H. Morita, H. Oguro, T. Okamoto, S.
Okazaki, and D. Pointcheval. PSEC: Provably secure elliptic curve
encryption scheme. Primitive submitted to NESSIE by NTT Corp.,
(September 2000).

[7] B. Awerbuch, D. Holmer, C. Nita-Rotaru, H. Rubens. An on-demand
secure routing protocol resilient to byzantine failures. Proceedings of the
2002 ACM Workshop on Wireless Security (Sept. 2002).

[8] A. Herzberg and S. Kutten. Early detection of message forwarding
faults. SIAM J. Comput., vol. 30, no. 4, (2000):1169-1196.

[9] I. C. Avramopoulos, H. Kobayashi, and R. Y. Wang. A routing protocol
with byzantine robustness. The 2003 IEEE Sarnoff Symposium (2003).

[10] R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and R.
Needham. A new family of authentication protocols. ACMOSR: ACM
Operating Systems Review, vol. 32 (1998).

	tmp.pdf
	title page
	page 2

	Energy/Security Scalable Mobile Cryptosystem
	page 2
	page 3
	page 4
	page 5

