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Abstract

We present an efficient algorithm forexactcalculation and
minimization of expected waiting times of all passengers us-
ing a bank of elevators. The dynamics of the system are repre-
sented by a discrete-state Markov chain embedded in the con-
tinuous phase-space diagram of a moving elevator car. The
chain is evaluated efficiently using dynamic programming to
compute measures of future system performance such as ex-
pected waiting time, properly averaged over all possible fu-
ture scenarios. An elevator group scheduler based on this
method significantly outperforms a conventional algorithm
based on minimization of proxy criteria such as the time
needed for all cars to complete their assigned deliveries. For
a wide variety of buildings, ranging from 8 to 30 floors, and
with 2 to 8 shafts, our algorithm reduces waiting times up
to 70% in heavy traffic, and exhibits an average waiting-time
speed-up of 20% in a test set of 20,000 building types and
traffic patterns. While the algorithm has greater computa-
tional costs than most conventional algorithms, it is linear in
the size of the building and number of shafts, and quadratic
in the number of passengers, and is completely within the
computational capabilities of currently existing elevator bank
control systems.

Keywords: decision-theoretic planning and scheduling,
applications of planning and scheduling, group elevator
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Introduction
Group elevator scheduling is a hard problem that has been
researched extensively due to its high practical significance
(Baoet al. 1994; Koehler & Ottiger 2002). The problem is
simply stated: New passengers arrive at a bank of elevators
at random times and floors, making hall calls to signal for
rides up or down. A ride destination is unknown until the
passenger enters the car and makes a car call to request a
stop. The scheduler must assign a car to serve each hall call
in a way that optimizes overall system performance. The
execution of the schedule is performed by alternating the
direction of movement of each car and servicing all hall calls
assigned to it in its current direction of motion.

The usual performance criterion to be optimized when
scheduling passenger pick-ups is the average waiting time

Copyright c© 2003, American Association for Artificial Intelli-
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(AWT) of all passengers in the system, i.e., the time period
from the moment a passenger arrives until the moment this
passenger boards some car, averaged over many arrivals. Al-
ternative criteria are sometimes used as well, such as the
average system time, defined as the time until a passenger
arrives at the desired floor, or the average squared waiting
time, which expresses a preference for a small variance in
wait times.

Minimizing any of these criteria is an extremely compli-
cated problem, for at least three reasons. First, the state
space of the system is huge, since it is indexed by the po-
sition, direction, and velocity of all cars, the number of pas-
sengers inside each car, and the number waiting at each floor
to board a car. A truly optimal scheduler would have to
consider all this information when deciding how to serve
a newly arrived passenger. Second, the dynamics of the
system are accompanied by a large amount of uncertainty.
While the motion of a car is completely determined by its
current schedule, this schedule changes constantly, because
it depends on the future arrival of passengers, which is a
stochastic process. Passenger arrival events contain three
types of uncertainty: the time of arrival, the floor of arrival,
and the passenger’s final destination. Third, if the scheduler
is allowed to revoke previous assignments and continuously
reassign calls to cars, an exponential number of calls-to-cars
assignments have to be considered in a short time. (This
mode of operation, typical of elevator systems in western
countries, is known as areassignment policy; the converse
mode, when the scheduler never reconsiders an assignment
after it has been made, is known as animmediate policy, and
is typical in Japan.)

The insurmountable combinatorial complexity and
stochastic nature of the problem have led practitioners in
the field of elevator scheduling to consider alternative, more
tractable optimization criteria that are hoped to correlate
well with the AWT of passengers. The following section
discusses several practical approaches used in commercial
systems, as well as several academic studies in which
idealizations of the problem have led to important insights,
albeit with limited practical applicability. Our approach is
rooted in the academic work, but the result is very practical:
A linear-time algorithm that directly optimizes theAWT.
Subsequent sections introduce the assumptions and general
operation of our algorithm, and describe how the general



procedure, which has exponential complexity, is reduced to
an efficient algorithm by embedding a discrete-state Markov
chain in the continuous phase space of an elevator car, and
evaluating theAWT represented by the chain by means of
dynamic programming. Experimental results on a detailed
commercial-grade simulator are presented as well.

Supervisory Group Elevator Scheduling
Group elevator control is a specific planning and scheduling
problem characterized by a very large state space, significant
uncertainty, and numerous resource constraints such as finite
car capacities, previous car calls, etc. As a result, most of its
early proposed solutions have not been based on either clas-
sical AI planning or decision-theoretic planning, but rather
onad hocapproximations and heuristics.

The oldest elevator schedulers used the principle ofcol-
lective control(Strakosch 1998), according to which cars al-
ways stop at the nearest call in their running direction. This
strategy is far from optimal and usually results inbunch-
ing – the phenomenon where several cars arrive at the same
floor at about the same time, with all cars but one wasting
time. Hikihara and Ueshima (Hikihara & Ueshima 1997)
analyzed the jamming effect occurring in down-peak traffic
and concluded that it was due to emergent synchronization
between multiple cars. Another approach iszoning, or sec-
toring, where the building is divided into zones, and each
car is assigned a single zone. While this approach avoids
bunching, it is also suboptimal when many passenger ar-
rivals occur in the same zone (Barney & dos Santos 1985;
Strakosch 1998).

Otis Elevator Company uses an optimization criterion
consisting of a weighted sum of bonuses and penalties,
called Relative System Response (RSR), computed for each
car in turn (Bittar 1982). This criterion is largely heuristic
and its relation to actualAWT is not clear. Otis also uses
another criterion called Remaining Response Time (RRT),
defined as the time necessary for a car to reach the floor of
the new hall-call, given its current commitments for loading
and unloading passengers already assigned to it (Powell &
Williams 1992). This criterion is in fact well correlated with
theAWT of the passengers who have signaled the current hall
call, but misses completely the effect a potential assignment
would have on hall calls previously assigned to that car. Fur-
thermore, RRT includes only the time necessary for a car to
pick up passengers assigned to it, but ignores the time re-
quired for these passengers to get off, since it is not known
whether they would disembark before or after the new hall
call is serviced.

Another group of scheduling methods uses fuzzy-logic
rules which are supposed to prescribe the correct assignment
of a car to a new hall call in a small number of prototypical
situations (Ujihara & Tsuji 1988; Ujihara & Amano 1994).
The ability of fuzzy inference to generalize over similar sit-
uations is used to ensure coverage of the whole state space
of the system. The rules are either elicited from experts,
or induced from a training set. It is a matter of speculation
whether the rules are correct even in the prototypical situa-
tions, and whether the fuzzy inference mechanism general-
izes those rules correctly to novel situations.

More rigorously motivated methods use approximations
of the desired performance criterion that are computable in
reasonable time. Kone Corporation employs a method called
the Enhanced Spacing Principle, which computes an approx-
imation ofAWT based on estimating the probable number of
stops and most likely reversal floor of a car servicing its cur-
rent commitments (Siikonen 1997). The method proposed
by Cho, Gagov, and Kwon uses the same idea, and extends
the method to handle arbitrary probability distributions over
destination floors (Cho, Gagov, & Kwon 1999). The correct
computation of the probable number of stops and most likely
car reversal floors is essential to these methods, and usu-
ally several well-known statistical formulae are employed
(Barney & dos Santos 1985). These formulae, however, are
only applicable under the very restrictive assumptions that
an elevator car would reach its contract (maximal) speed
within a distance no longer than half the space between two
neighboring floors, i.e., it would be able to accelerate fully
and stop completely during a trip between two consecutive
floors. This assumption is grossly violated for modern el-
evators: even a typical elevator with contract speed of180
m/min needs at least three floors to accelerate fully and stop
completely, and the world’s fastest elevators, installed by
Mitsubishi Electric in the Yokohama Landmark Tower, have
contract speeds of750 m/min and require39 floors in order
to reach maximal speed and then come back to rest (Tana-
hashi & Araki 1994).

The problem of group elevator scheduling has also been
approached from the point of view of classical planning,
expressing the problem domain using the PDDL formal-
ism (Koehler & Schuster 2000; Koehler 2001). Several ob-
stacles to this approach have been identified, such as the
lack of support for metric/resource constraints, no consid-
eration for cost functions during planning, and lack of op-
timization capabilities. To these, we will also add the in-
ability of classical planners to reason and plan under un-
certainty — in fact, the proposed PDDL-based solution is
only applicable to elevator banks with full destination con-
trol, i.e., all ride destinations are registered in advance on
a destination panel (Koehler & Ottiger 2002). However,
decision-theoretic planning, which is an extension of classi-
cal planning to stochastic and partially-observable domains,
in conjunction with queueing theory models, seems like a
very suitable formalism for this problem (Boutilier, Dean, &
Hanks 1999).

Special traffic patterns, such as down-peak and up-peak
traffic, can be handled very efficiently by special-purpose
algorithms based on queueing theory. A provably optimal
solution has been obtained for the case of pure up-peak traf-
fic, when all passengers arrive in the lobby at a fixed rate and
no other departure floors are allowed (Pepyne & Cassandras
1997). In order to make the problem tractable, however, the
service time of elevators has been assumed to come from a
fixed exponential distribution. This assumption, along with
the requirement for pure up-peak traffic, severely limits the
usefulness of the algorithm in practical schedulers.

For the case of down-peak traffic, similarly efficient algo-
rithms are Finite Intervisit Minimization (FIM) and Empty
the System Algorithm (ESA) (Baoet al. 1994). While they



have been demonstrated to outperform simpler algorithms
by a margin of34%, FIM and ESA are only applicable to
down-peak traffic, because they assume that the destination
of all passengers is the lobby. As soon as there is uncer-
tainty in passengers’ destinations, the assumptions of these
algorithms are violated and they cannot be expected to per-
form well.

Nevertheless, theESA algorithm contains a very important
idea: Instead of minimizingAWT of all known and future
arrivals, it limits the optimization only to the residual wait-
ing time (RWT) of the passengers currently in the system.
This includes all passengers currently in elevator cars and all
passengers who have signaled their presence by making hall
calls for elevators. TheRWT of a single passenger is defined
as the time between the current moment and the moment
this passenger is picked up by a car (Baoet al. 1994). Min-
imizing the RWT of known passengers instead of theAWT
of all known and future passengers is equivalent to the as-
sumption that the current decision (assignment of a car to
the current hall call) would not influence the waiting times of
future passengers. While this assumption is clearly not true
and should lead to suboptimal policies, its consequences can
be expected to be relatively benign, since it can be expected
that the stochasticity of the arrival process would eliminate
the influence of the current decision in the long run.

In computational terms, this assumption eliminates two of
the three sources of uncertainty identified above: the exact
arrival times of passengers and the exact floor of their arrival.
This is due to the fact that the scheduler needs only consider
those passengers who have already arrived but have not been
served yet—their exact arrival times and floors are known.
The only uncertainty that remains is that of their destination
floors. In this paper we show that one can compute exactly
the expectation of theRWT of all known passengers with
respect to an arbitrary probability distribution of their desti-
nation floors.

Before continuing, we will note the existence of algo-
rithms that also consider the consequences of the current
decision on future arrivals. Crites and Barto demonstrated
an asynchronous algorithm for stochastic optimal control
which uses neural networks and Q-learning (Crites & Barto
1996). Although their algorithm performed slightly better
thanFIM andESA for one specific down-peak scenario (by
2.65%), it took 60, 000 hours of simulated elevator opera-
tion to converge, which is not practical for real elevator sys-
tems. While trainable algorithms seem very promising for
this problem area, the issue of correct generalization over
the enormous state space and infinite horizon is very forbid-
ding.

Dynamic Programming for Exact
Computation of Expected Average Waiting

Times

Initial Assumptions

Our key assumption, motivated above, is that future arrivals
need not be factored into decisions about current passengers.
There are in fact several ways in which this can be relaxed;

we begin with the strong assumption for simplicity of expo-
sition. Under this assumption, the most informed decisions
are made when the waiting times are estimated all the way
out to the horizon where all known passengers have been
delivered to their destinations. Hence this is an empty-the-
system algorithm, but unlike the originalESA algorithm, our
approach accommodates all traffic patterns and uncertainty
about the state of the system. In short, we retain theESA
strategy but introduce new machinery for inference.

We will initially describe the algorithm under the assump-
tion that the destination floors of passengers are equally
likely, and later on explain how non-uniform destination
probabilities can be handled (at a significant computational
expense). We also assume that the full state of the system
is known to the scheduler — most importantly, we assume
that the number of people standing on each floor is known.
While such information cannot be obtained only by inspect-
ing the number of hall buttons pressed, approximations of
various quality exist and will be discussed below. A sched-
uler operating under this assumption is known as anomni-
scientscheduler.

Another key assumption concerns the way passengers as-
signed to a car are being served. In general, ifn passengers
are assigned to a car, there aren! possible orders for them to
be picked up. If all orders are allowed and will be considered
by the scheduler, the corresponding planning problem has
been shown to be NP-hard even for a single car (Seckinger
& Koehler 1999). However, there exists a simple order of
serving passengers assigned to a car that also conforms well
to passengers’ expectations and is rarely suboptimal: Keep
moving in the current direction until all passengers who have
requested rides in this direction are picked up and delivered;
after that, move to the first hall call in the opposite direction,
and repeat the same procedure for all opposite hall calls. Our
planner assumes that all assignments would be served in this
manner.

The discussion in this section assumes an immediate as-
signment policy, as is customary in Japan, i.e., new assign-
ments are appended to the current schedule and previous as-
signments are never changed. Using the algorithm for a re-
assignment policy would simply involve employing it as a
subroutine on a set of proposed assignments, generated ei-
ther exhaustively in a combinatorial manner, or after pruning
the set of candidate assignments by means of heuristics or a
systematic branch-and-bound algorithm, similarly to other
scheduling algorithms (Baoet al. 1994). The last assump-
tion we are making is that each car has infinite capacity —
while not realistic, this assumption simplifies significantly
the algorithm, and we will discuss possible ways to relax it.

Optimization Criterion
Whenever a new hall call is generated at a particular floor
in a particular direction, the algorithm minimizes the total
residual waiting time of all currently waiting passengers, in-
cluding the new arrival. All such passengers except the new
one have already been assigned to a car; under the imme-
diate assignment policy, their assignments will never be re-
considered. If the elevator group has a total ofNc cars, let
W−

i , i ∈ [1, Nc] denote the expected waiting time of all



passengers currently assigned to cari, excludingthe newly
arrived passenger(s) signaling the current hall call, and sim-
ilarly, let W+

i , i ∈ [1, Nc] denote the expected waiting time
of all passengers currently assigned to cari, including the
newly arrived passenger(s). We can then compute the ex-
pected waiting timeWi associated with assigning the new
call to cari as

Wi = W+
i +

Nc∑
j=1
i 6=j

W−
j , i ∈ [1, Nc].

The car c chosen by the scheduler for assignment is
the one, which minimizes the total expected RWT:c =
arg mini Wi. Note that since the number of waiting pas-
sengers is constant at the time of a particular decision step,
such an assignment would also minimize theaverageex-
pected RWT of current passengers, which is computed as
the total RWT of all passengers divided by their number.

If W− .=
∑Nc

i=1 W−
i , the waiting times for each possible

assignment can be expressed asWi = W+
i − W−

i + W−.
SinceW− is the same for eachi, the assignment which min-
imizes∆Wi = W+

i −W−
i is also the one which minimizes

Wi. As a result, the optimal assignment can be found by
computingW+

i andW−
i for each car, and choosing the car

for which their respective difference is minimal.
ComputingW+

i andW−
i for a particular cari is essen-

tially the same problem. ForW−
i we compute the expected

RWT given the state of the system and all currently scheduled
elevator-to-passenger assignments. ForW+ we temporarily
add the new passenger to elevatori’s itinerary and recom-
pute the expectedRWT.

Effect of Uncertainty in Passengers’ Destination
By definition,W is the expected total RWT for all passen-
gers currently assigned to be served by a car, subject to the
constraints imposed by the car’s current position, direction,
and velocity, and the currently mandated stops at requested
destination floors. The expectation of the waiting time is
taken with respect to the uncertainty in the destinations of
passengers who are yet to be picked up by the car. Since
only their requested direction of travel is known, their des-
tination can be any of the remaining floors in that direction.
This is in contrast to the originalESA algorithm (Baoet al.
1994) which only works for pure down-peak traffic in which
all passengers are delivered to the lobby. In classicalESA,
the exact path traveled by the car is known, and the total
waiting time of all passengers can be found by summing up
the car travel times between floors where passengers are to
be picked up, weighted by the number of passengers still
waiting.

A straightforward extension of theESA approach to the
case when the destination of passengers is not known can
be implemented by considering all possible destinations of
each passenger (respectively, all possible paths the car can
take), computing the total waiting time along each path, and
weighting these times by the probability of the respective
path. This is equivalent to generating a tree containing all

possible futures of the system (disregarding future passen-
gers), and computing a weighted sum of the waiting times
over all paths from the root to the leaves. IfNp passengers
are assigned to a car in a building ofNf floors, each of the
passengers hasO(Nf ) possible destinations, and the total

complexity of such an implementation would beO(NNp

f )—
prohibitively high.

Estimation of ExpectedRWT in Linear Time
by Means of Dynamic Programming

It is possible, however, to reduce the complexity of compu-
tation toO(NfNp) by casting the problem into a dynamic
programming framework. We will call the corresponding
algorithmESA-DP (ESA by Dynamic Programming).

Dynamic programming is commonly employed in
stochastic scheduling algorithms where cost estimates on
segments of a system’s path can be reused in multiple paths
(Bertsekas 2000). In order to solve a problem this way,
one must typically discretize the state and identify branch
points where system paths converge and then diverge again,
so that the costs on a segment between two such points can
be computed only once, and then reused for the computation
of costs along all paths which include this segment.

Trajectory Structure of an Elevator Car

Such branching points can readily be identified on the phase-
space diagram of an elevator car shown in Fig. 1. Like any
moving mechanical system, a car traveling in an elevator
shaft has a phase-space diagram which describes the pos-
sible coordinates(x, ẋ) for the car’s position along the shaft
x and its velocityẋ. When the car is moving under constant
acceleration without friction, its trajectory consists of seg-
ments which are parts of parabolae, and more complicated
equations of motion result in slightly different shapes of the
traversed trajectories. However, even when the equations of
motion of a car are nonlinear (e.g. include gear backlash)
and/or include position derivatives higher than acceleration
(e.g. jerk with a specified magnitude and duration), the mo-
tion of the car is very predictable and can be realized only
on a small number of trajectories. Accordingly, these trajec-
tories branch only on a small number of points, denoted by
circles in Fig. 1, which always correspond to the last possi-
ble location at which a car should start decelerating if it is to
stop at a particular floor in its direction of motion. A particu-
lar path of a car during its round-trip always consists of a fi-
nite number of such segments, whose endpoints are branch-
ing or resting points. Consequently, if the waiting time on
each such segment can be computed, it can be reused for the
computation along many paths that include that segment.

Reusing the costs on all individual segments can be
achieved by embedding a discrete Markov chain into the
original system of elevator movement, which in itself oper-
ates in continuous time and space. A Markov chain consists
formally of a finite number of statesSi, i ∈ [1, Ns], an im-
mediate costCij of the transition between each pair of states
Si andSj , a matrixPij of the probabilities of transition be-
tween statesSi andSj , and a distributionπ(Si) which spec-
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Figure 1: A schematic illustration of the phase space of a
single car moving upwards in a shaft of a building with eight
floors, not all of which have equal height. All branching
points are denoted by circles.

ifies the probability that the system would start in stateSi

(Bertsekas 2000).
In order for the chain to be Markovian, it should obey

the Markov property: The probabilityPij of transitioning
to stateSj should depend only on the starting stateSi, and
not on the trajectory of the system before it enteredSi. If
we define the states of the system to correspond only to the
branching points in the phase-space diagram, the resulting
chain would not be Markovian, because the probability of
each branch depends on how many people are currently in-
side the car, and that number depends on how many of all
waiting people have already been transported to their desti-
nations in previous stops of the car.

Consequently, the number of people in the car must be in-
cluded in the state of the Markov chain as well. However,
the state needs only encode the number of currently waiting
people who will board the carafter the moment of assign-
ment decision. This number does not include people who are
already in the car at that time and have signaled their desti-
nations by pressing car buttons. These “in-car” passengers
influence the motion of the car too, by imposing constraints
on its motion in the form of obligatory car stops, but these
constraints are deterministic and have no impact on transi-
tion probabilities. These probabilities depend only on the
uncertainty in the destinations of the passengers who are yet
to board the car1.

Accordingly, a stateSi of the Markov chain is described
by the four-tuple(f, d, v, n), wheref is the floor of the car,
d is its current direction,v is its current velocity, andn is
the number ofnewly boarded passengers, precisely, wait-
ing passengers who enter the car in the course of evaluating
the Markov chain. The variablesd andn are discrete, and
have predefined ranges:d can take only two values, “up”
and “down”, whilen ranges from0 to the maximum number

1Technically, the disembarkation times of in-car passengers
have some impact on theRWT of waiting in-hall passengers. Un-
certainty over how many in-car passengers will disembark at each
of the (known) requested stops could be marginalized out via dy-
namic programming with an expanded state descriptor. However,
this represents a respectable increase in run-time for a negligible
gain in accuracy; disembarkation times are very small relative to
other time costs. We approximate the exact cost by assessing an
N/n-second disembarkation cost forN in-car passengers andn
requested stops. The disembarkation times of to-be-boarded pas-
sengers are modeled exactly.

of passengers assigned to a car, traveling in either direction.
(This maximum number is reached, for example, when all
passengers intend to get off the car at the last floor in the
current direction of motion.)

The variablesf andv, however, are essentially continu-
ous, and in order to make the problem tractable, they have
to be discretized. An inspection of the phase-space diagram
suggests a straightforward discretization scheme for the ve-
locity v — it can be seen that while accelerating from a par-
ticular floor, the car reaches branching points along its tra-
jectory only at a small number of velocities (four in Fig. 1,
including the quiescent state, when the velocity is zero).
The reason for this is the limit on the maximum speed of
any real elevator car. Depending on the inter-floor distance,
maximum speed, and acceleration of the motors, this num-
ber of distinct velocities at branching points can be lower
(for longer inter-floor distances, lower maximum speed, and
greater acceleration), or higher (for shorter inter-floor dis-
tances, higher maximum speed, and lower acceleration). For
a particular building and the elevator bank installed in it, this
number is fixed and can be found easily, so henceforth we as-
sume it is known and will denote it byNv. Hence, the vari-
ablev would only takeNv discrete values, ranging from0
(rest) toNv−1 (maximum speed). Note that the same value
of v can correspond to different physical velocities, depend-
ing on which floor the car stopped at last. Another interpre-
tation of this variable is the number of branching points a car
has encountered since its last stop.

There are several ways to discretize the floor variable
f , the obvious one being to round the physical location of
the car to the nearest floor. While such a discretization
is possible, the resulting value for the floor is not conve-
niently related to the particular branching point represented
by the Markov chain. A much more convenient discretiza-
tion scheme is to choose for a value off the floor at which
the carwill stop if it starts decelerating at that branching
point. The advantage of such a discretization scheme be-
comes apparent, if we organize the states of the Markov
chain in a regular structure, commonly calledtrellis in dy-
namic programming algorithms.

Structure and Parameters of the Embedded
Markov Chain
Fig. 2 shows a dynamic programming trellis for one partic-
ular Markov chain which corresponds to the situation when
a car is moving down and is about to reach the branching
point at which it will stop at floor13, if it decelerates. It
has already been scheduled to pick up a passenger at floor
7, and the scheduler is considering whether this car should
also pick up a new hall call down, originating at floor11.
The embedded Markov chain has84 states which are placed
in a trellis matrix of7 rows and12 columns. States in a
row represent branching points that share the property that
the car will stop at thesamefloor, if it starts decelerating im-
mediately. Note that this applies to branching points reached
when the car is moving in a particular direction — when it is
moving in the opposite direction, the branching points gen-
erally have different positions in the phase space diagram.
The corresponding row of the trellis is labelled with the floor



at which the car can stop, as well as the direction of the
movement of the car when it reaches the branching points.
Since there is a separate row for each floor and direction, the
trellis can have at most2Nf rows.
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Figure 2: Simplified trellis structure for the embedded
Markov chain of a single descending car. Rows signify
floors; columns signify the number of recently boarded pas-
sengers; column groups signify elevator speeds. The empty
descending car is about to reach the branching point for pos-
sible a stop at floor13. It has been assigned hall calls at
floors 7 and 11, each of which may increase the passenger
load by one.

The states in each row of the trellis are organized into
Nv groups (4 in figure 2), corresponding to theNv possi-
ble velocity values at branching points (ordered so that the
leftmost column correspond to zero velocity, and the right-
most column correspond to the maximum velocity of the
car). Within a group, the states correspond to the number
of people who are currently in the car and who were waiting
in the halls at the beginning of the trellis (ranging from0 to
2 in figure 2). If the maximum number of people that can be
in the car at the same time isH (2 in figure 2), the width of
the trellis isNv(H + 1) states. This organization of states
constitutes the trellis of the dynamic programming problem.
It can be seen that not all of the states in the trellis can be
visited by the car, because its motion is constrained by the
current hall and car calls.

If we assume that the floor-value componentf of the four-
tuple used to describe a branching point is that of the floor
where the car will stop, if it starts decelerating at this branch-
ing point, the first row of the trellis always contains the first
branching point which the car will reach. Similarly, under
this convention, the last row of the trellis always corresponds
to the floor where the last passenger along the round-trip of
the car will be picked up. This arrangement of rows conve-
niently spans the horizon which the dynamic programming
algorithm has to consider, because the last moment which
has to be considered is always the moment the last waiting
passenger is picked up—after that, the residual waiting time
of passengers assigned to the current car becomes zero.

The total costCij incurred on a segment, measured as
the waiting time of passengers who have not been picked up
yet, can be expressed simply as the product of the number of
these passengers and the duration of the segment.

The last remaining components of the embedded Markov
chain are the transition probabilitiesPij of transitioning be-
tween each pair of statesSi andSj . A large number of these
transitions are deterministic and are always taken with prob-
ability one. Such are the transitions resulting from existing
car and hall calls. For example, the initial trajectory of the
car from floor13 to floor11 in Fig. 2 is deterministic — the
empty car accelerates until it reaches the branching point for
stopping at floor11, where it stops to pick up the first hall-
call passenger waiting there. After that, the car accelerates
again until it reaches the branching floor for stopping at floor
10, from which it can take many different paths, depending
on the unknown destination of that passenger.

At the branching point of floor10, the passenger might be
getting off at one of the next10 floors, and hence the prob-
ability that this would be exactly floor10 is 0.1. With prob-
ability 0.9, the passenger would not get off at floor10, and
the car will continue accelerating until the branching point
for floor 9, with one passenger still on board, as reflected in
the diagram of the Markov chain.

In the general case, when the car hask floors to go withn
passengers on board, and we assume that a passenger would
get off at any of thek floors with equal probability (1/k),
we can find the probability thatx people would want to get
off at the next floor by using the formula for the binomial
probability function:

Pr(x, n, k) =
n!

(n− x)!x!
(k − 1)n−x

kn
(1)

Thereforen − x people would remain on board the car
with probabilityPr(x, n, k). A similar treatment will give
Pr(x, n, k) when the destination probabilities are nonuni-
form but independent of where each passenger gets on; we
show below how to exploit a matrix of destination prob-
abilities that are conditioned on the floor of arrival. The
number of remaining peoplen − x specifies which state
within a group the Markov chain would enter with probabil-
ity Pr(x, n, k), but we still have to find which group (veloc-
ity setting) this state would be in. This velocity setting can
be determined by inspecting the existing car and hall calls,
as well as the numberx of people getting off. Ifx > 0 or
there is a mandatory stop at the next floor due to a car or hall
call, the velocityv at the next state would be zero; only when
x = 0 (nobody gets off the car at the next floor) and there
are no car or hall calls for this floor, the car would accelerate
(or maintain maximum speed, if it has already reached it).

The initial and terminal states of the Markov chain are al-
ways unique, and can easily be found by locating the first
branching point the car would enter along its current trajec-
tory, and the floor where the last waiting passenger would
be picked up, respectively. The distance between the rows
of the trellis containing the initial and terminal states effec-
tively spans the planning horizon of the dynamic program-
ming algorithm.

Once the initial state of the Markov chain has been found,
the whole chain can be built by propagating the set of states
which can be visited by the car from the initial state. The
chosen arrangement of the states into a dynamic program-
ming trellis provides a convenient order for doing this. By



inspecting the order of transitions in Fig. 2, it can be seen
that if a transition is between different rows, the starting state
is always in a row above the successor state, and if a transi-
tion is within the same row, the starting state is always to the
right of the successor state. Consequently, the propagation
of states proceeds row-wise from the upper-right corner of
the trellis until the lower-left corner is reached. Each state
might have multiple successor states, depending on the num-
ber of people in the car who might want to get off, and the
probability of each of these transitions is determined by the
binomial formula above.

It should be noted that trellis building and evaluation time
can be significantly reduced by skipping highly improba-
ble events. A simple way to do this is to simply neglect to
add a transition for any disembarkation event whose prob-
ability (equation 1) lies below some threshold, for exam-
ple, all passengers disembarking at the same mid-building
floor. However, as the number of passengers in the system
increases, nearly all disembarkation events have probability
values close to zero. It is important to evaluate a sample of
such cases representing the majority of the probability mass
in equation 1. This is done very efficiently by adding tran-
sitions for events in order of descending probability, stop-
ping when some large fraction of the probability mass is ac-
counted for, say 99%.

Evaluation of Travel Time
Once the trellis is built, it is used to evaluate the expected
travel time of the car, starting from its current state. Opposite
to the procedure for building the trellis, the algorithm for
evaluating it starts from the bottom row of the trellis moving
up, and processes the states in each row from left to right.

In essence, the algorithm iteratively computes the cost-
to-go (expected remaining waiting time) of each state in the
trellis that can be visited by the car, by means of a Bell-
man backup on all successor states, using the probabilities
and costs for transitioning to these states. After all costs-to-
go are computed, the overall expected residual waiting time
from the moment the car enters the initial state is just the
cost-to-go of that state.

This algorithm computes the expected remaining waiting
time of a car’s passengers only from the moment the car
reaches the first state of the trellis. In general, however,
when a hall call occurs, the car would be somewhere be-
tween two branching points, In order to find the total ex-
pected residual waiting time of a car’s passengers from the
moment a hall call occurs, the result returned by the algo-
rithm has to be increased by the time it would take for the
car to reach the first branching point, multiplied by the total
number of passengers currently assigned to that car, in both
directions.

Experimental Verification of the Algorithm
The algorithm was benchmarked against a conventional
method for supervisory group control which minimizes the
round-trip time of the car along a single path, taking into
consideration only stops due to existing car calls and stops
where the car would pick up new passengers due to hall
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Figure 3: Waiting times of theESA-DP scheduler plotted
against waiting times of the conventional scheduler in iden-
tical scenarios, in seconds. Each dot represents an hour sim-
ulation in a different building type and arrival rate. Dots
below the diagonal represent cases when ESA-DP achieves
lower waiting time than the conventional scheduler, and vice
versa for dots above the diagonal.

calls, but ignoring stops where those new passengers would
be dropped off. We have been advised by industry experts
that the benchmark scheduler method is considered to be
highly competitive with the state of the art in currently de-
ployed schedulers. The algorithm was tested on various
buildings with height ranging from8 to 30 floors, served
by between2 and8 elevator shafts, whose cars were moving
at a speed of180 m/min. Each floor in these buildings was
4m tall, except for the lobby which was5m tall.

The experiments explored the case of mixed up-peak and
down-peak traffic which are some of the scenarios that pose
extraordinary demands to the performance of the system. In
addition, the up-peak case is accompanied by significant un-
certainty in passenger destinations. Most (80%) of the traf-
fic originated at the lobby and was directed approximately
evenly to the upper floors, while the remaining20% of the
traffic was between floors other than the lobby. For the case
of down-peak traffic, most of the traffic (80%) originated at
the upper floors and directed to the lobby,10% was directed
from the upper floors, and the remaining10% percent was
inter-floor traffic not involving the lobby.

The performance of the two algorithms was tested under
arrival rates ranging from100 arrivals per hour up to the
point where the elevator group was overwhelmed by the ar-
rival stream and average waiting time exceeded two min-
utes. Such a point is reached at different rates for different



buildings and number of shafts in the elevator group. The
scatter-plot in Fig. 3 plots the average waiting times ofESA-
DP against those of the conventional scheduler in 20,000
hour-long trials in a detailed simulator. Each point repre-
sents the average wait time over 1 hour, with both sched-
ulers fed identical arrival patterns. In general, the time sav-
ings resulting from the application of theESA-DP algorithm,
expressed as a percentage of the time of the conventional al-
gorithm, also grow larger with increasing the arrival rate. At
the rate, at which the elevator bank can be considered to be
overwhelmed by the passenger flow, the savings are in the
range of30%-40%. This indicates thatESA-DP has a higher
throughput and capacity, only saturating at much higher traf-
fic rates.

The reduction in average waiting time and consequent im-
provement of system capacity can be quite dramatic, espe-
cially in tall buildings with relatively few shafts, where the
system is heavily strained. The advantages of theESA-DP al-
gorithm fade away in buildings with (unrealistically) many
shafts, partly because the system is never strained, and partly
because of the conventional scheduler’s zoning strategy. It
should be noted thatESA-DP strongly dominates the conven-
tional scheduler at all traffic rates in mixed and down-peak
traffic. Successive papers will document elaborations of the
ESA-DP approach that make it strongly dominant at all ar-
rival rates in up-peak traffic too.

Extensions of the Algorithm
Several of the underlying assumptions of the algorithm can
be relaxed, which might result in better performance and
easier installation on existing elevator banks. These are:
completely observable system state, uniform probability dis-
tribution on passenger destinations, infinite capacity of the
cars, and absence of future arrivals. Solutions for relaxing
the first three assumptions are described below.

Partially-Observable System State
The ESA-DP algorithm assumes that the state of the system
is completely observable, including the number of car and
hall calls, and the number of people waiting per hall call.
The exact number of hall and car calls is known because
they are always registered by passengers by pressing car and
hall buttons, but the exact number of people per hall call is
not readily available.

There are two possibilities for dealing with this problem
— one of them relies on technical devices, and the other one
relies on statistical estimation techniques. The simplest pos-
sibility is to require each passengers to press individually a
button in the desired direction, even when the button has al-
ready been pressed by a previous passenger. This would pro-
vide an accurate count of the number of passengers per hall
call, but would most likely be abused by impatient passen-
gers. The exact number of people waiting on a given floor
can also be determined from sensing, e.g., a computer vision
system observing the space in front of the elevator bank and
counting the number of faces in the image. Such a solution is
clearly within the current state of the art in computer vision
(Kim & Moon 2001).

One may also estimate the expected number of arrivals at
a floor since the hall button on that floor was first pressed.
If the time elapsed since then is∆t, and the times between
arrivals at this floor are i.i.d. exponentially distributed ran-
dom variables with arrival rateλ, then the total number
of new arrivals comes from a Poisson distribution whose
mean isλ · ∆t. Hence, the expected number of passen-
gers waiting at this floor isλ · ∆t + 1. Such estimates
have been widely used by supervisory control algorithms,
with minimal decrease in performance (Baoet al. 1994;
Crites & Barto 1996). In order to apply this statistical esti-
mation method, however, the arrival rates at each floor must
be known. These might come either from online statistical
estimates of the latest arrivals, or from known traffic profiles
accumulated off-line from past data (Siikonen 1997).

Non-uniform Destination Probabilities
Conditioned on Floor of Arrival
The assumption of a uniform probability distribution on pas-
senger destinations will certainly be violated for most real
buildings which usually have different number of occupants
on each floor, so the traffic flow from the lobby to differ-
ent floors cannot be assumed to be uniform. Furthermore,
traffic between floors other than the lobby would usually be
non-uniform as well, for example in the case when a single
company is occupying adjacent floors in a building and there
is a lot of traffic between these floors, but little or no traffic
to and from other, unrelated floors.

As noted above, handling non-uniform destination proba-
bilities which do not depend on the floor of arrival is straight-
forward and does not change the complexity of the algorithm
— the only change necessary is in the probability used in
the binomial formula. However, when destination probabili-
ties are conditioned on the floor of arrival, the computational
complexity changes drastically, due to the necessity to “re-
member” explicitly the state of each individual passenger (in
or out of the car).

The favorable computational complexity of the original
algorithm could be achieved because the scheduler could ig-
nore the distinctions among the passengers within a car, and
each state could be characterized simply by the number of
people within the car. If the largest number of passengers
that could be in the car at the same time wasH, a total of
H +1 states were sufficient to encode all distinctions neces-
sary to quantify the future trajectory of the car, i.e. to make
the chain fully Markovian. This was possible because indi-
vidual passengers exited the car with the same probability,
and the binomial formula could be used to aggregate multi-
ple exits.

Conversely, the binomial formula cannot be used to com-
pute transition probabilities when the respective probabil-
ities of exiting the car vary among different passengers,
because the disembarkation events for individual car pas-
sengers are not i.i.d. variables. One straightforward ex-
tension of the algorithm is to maintain individual Boolean
state variables for each passenger, where each variable des-
ignates whether the passenger is inside the car or not. Let
the overall state of the passengers inside the car beU =
[u1, u2, ..., uH ], where each variable (fluent)ui

.= 1 iff pas-



senger1 ≤ i ≤ H is in the car, andui
.= 0 otherwise. Fur-

thermore, letpij be the probability that passengeri would
get off at floorj, given that he/she is still in the car, and let
qij

.= 1 − pij . Then, the transition between stateU and
one of its successor statesU ′ = [u′1, u

′
2, ..., u

′
H ], u′i ≤ ui,

1 ≤ i ≤ H, can be expressed as
∏H

i=1(p
ui−u′

i
ij )(q1−ui+u′

i
ij ).

While this extension is quite straightforward, both its
computational time and storage space complexities are ex-
ponential in the number of passengersH. This is a fre-
quent issue in many decision-theoretic planning problems,
and many approaches for complexity reduction have been
tried (Boutilier, Dearden, & Goldszmidt 1995). Significant
computational leverage can be achieved by exploiting struc-
ture in the stochastic properties of the problem domain, and
one primary manifestation of such structure is conditional
independence between state fluents.

Such conditional independence is present in the elevator
scheduling problem as well. The behavior of each individual
passenger is independent of that of other passengers — deci-
sions to get off or stay in the car are not influenced by other
passengers. It can be expected that this structure can be ex-
ploited in the future to reduce the exponential complexity of
the extended algorithm.

Finite Car Capacity
When the number of waiting passengers assigned to a sin-
gle car exceeds its physical limit, whether all of them can
be transported within a single round trip of the car depends
on their destinations. The basic version of theESA-DP al-
gorithm assumes that the car has infinite capacity, and all
passengers would be transported in a single round trip —
while this assumption simplifies computation, it would not
correspond to reality in many cases2. Another way of han-
dling the physical limits of the car is to divide theH + 1
states within a single-velocity-group of the trellis into two
subgroups: one subgroup ofm + 1 states, wherem is the
physical limit of the car, and another subgroup ofH−m+1
states which correspond to the possible number of people
left off as a result of a car overflow. The state propagation al-
gorithm becomes more complicated, because now two com-
ponents have to be propagated: one is the number of people
inside the car, and the other one is the number of people left
off.

A major difference from the basic case is that when com-
puting the first component (number of people in the car), the
number of people from existing car calls can no longer be
ignored, since whether the car would pick up new hall-call
passengers at a particular floor (and exactly how many) de-
pends also on whether existing car-call passengers would get
off at that floor to make room for new ones. The fact that all
stops due to existing car calls are known in advance simpli-
fies the computation, but still the exact number of car-call

2We are forced to make this unrealistic assumption in the cur-
rent implementation because the elevator simulator automatically
assigns to a car any new arrivals at floors where the car is already
scheduled to stop, regardless of whether or not car has room to
accommodate these passengers. The scheduler is not called and
therefore does not get a chance to re-balance the load.

passengers getting off at a particular floor is not completely
certain, when the number of such passengers exceeds the
number of car buttons pressed. Even though the distribu-
tion on people getting off is completely defined, computing
it is not trivial, because that distribution must also obey the
constraints arising from existing car calls.

The propagation of the second component (the one en-
coding the possibility that between0 andH−m passengers
would be left off as a result of an overflow) can be imple-
mented easily if one additional assumption is made: that
once a passenger has been left off, he or she will remain
unserved until the end of the round-trip. Under this assump-
tion, the number of left-off passengers cannot decrease, and
would either remain the same or increase as the state is prop-
agated in time, depending on whether new overflows occur.

Conclusions
This paper details an efficient scheduling algorithm based on
dynamic programming for exact estimation and minimiza-
tion of the expected waiting times of all known passengers
in a group elevator system. Empirical comparison with a
state-of-the-art scheduler in a very detailed discrete-event
elevator bank simulator demonstrated that for a wide vari-
ety of buildings, ranging from8 to 30 floors, and with2 to
8 shafts,ESA-DP reduces waiting times by 30%-40% under
very heavy traffic, and rarely under-performs the benchmark
scheduler in light traffic.

The baseESA-DP algorithm was developed under the as-
sumptions of no future passenger arrivals, unlimited car ca-
pacity, full state information, and a known marginal distribu-
tion over destination floors; even though the simulator does
not respect most of these assumptions, the algorithm per-
forms very well.

Most of these assumptions can be relaxed. We provided
complete solutions for dealing with partial state information
and handling non-uniform probability distributions on des-
tination floors. The algorithm was also extended to deal
with non-uniform probability distributions on destination
floors conditioned on the arrival floor, although at a much
higher computational cost. We also outlined how the algo-
rithm could be extended to consider possible future passen-
ger overflows due to finite car capacity. This may not be
necessary because the base algorithm shows its greatest per-
formance advantage at the heaviest traffic rates—precisely
where we should expect to see it most punished for neglect-
ing overflows.

The complexity of the base algorithm is linear3 in both the
number of cars and the number of existing hall calls, which
allows it to be implemented on micro-controllers currently
employed in existing elevators.

It is our hope that this paper will open the door toDP solu-
tions to many other online scheduling problems. Forthcom-
ing papers will describe extensions toESA-DP that consider
future arrivals, with significant further gains in performance.

3Run-time complexity is also linear in the total number of pas-
sengers, but in some cases the number of transitions between two
slices of the trellis can be quadratic in the number of people in the
car.
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