
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Responding to and Recovering from
Mistakes during Collaboration

Andrew Garland, Neal Lesh, and Charles Rich

TR2003-17 April 2003

Abstract

Successful collaboration requires the participants to maintain mutualas any other subgoal.

IJCAI 2003 workshop on Mixed-Initiative Intelligent Systems, Acapulco, Mexico.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2003
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Submitted March 2003.



Responding to and Recovering from Mistakes during Collaboration

Andrew Garland, Neal Lesh, and Charles Rich
Mitsubishi Electric Research Laboratories

201 Broadway, Cambridge MA 02139
{garland,lesh,rich}@merl.com

Abstract

Successful collaboration requires the participants
to maintain mutual understanding of their shared
goals and plans. This paper, unlike prior work,
addresses how to maintain these mutual beliefs
when a user performs anon-contributor, i.e., a mis-
take or an interruption. We present methods to
infer the intentions underlying mistakes, to repair
shared plans by adding recovery goals, and to gen-
erate utterances that maintain mutual understand-
ing about both non-contributors and recoveries. By
explicitly representing recovery goals, our system
is able to discuss and achieve recoveries in the same
manner as any other subgoal.

1 Introduction
There has been a great deal of research toward making intel-
ligent agents collaborate with human users [5, 14, 13]. Suc-
cessful collaboration requires the participants to maintain
mutual understanding of their shared goals and the actions
intended to achieve them, through both verbal communica-
tion and performing actions. Previous work has focused on
maintaining mutual understanding when the participants exe-
cute “correct” actions, i.e. those which contribute to a shared
goal.

This paper extends previous work by addressing the case
when a user performs anon-contributor, i.e., either a mistake
or an interruption (an action that contributes to a new goal).
We present novel methods and discuss open issues on sev-
eral relevant topics: how to infer the intentions underlying
mistakes, when and how to repair the shared plan by adding
explicit recovery goals, and how to generate responses that
maintain mutual understanding about both non-contributors
and recoveries.

While the ideas we discuss apply to collaboration in gen-
eral, the clearest motivation and examples occur in the context
of teaching. For example:

User presses the engage button.
♦Agent says “Whoops, it was too soon to press the engage button.”
�Agent says “Let’s recover from pressing the engage button.”
♦Agent says “First, let’s set the engine speed to zero”

...

�Agent says “We’ve recovered from pressing the engage button.”

♦Agent says “Let’s return to starting the engine”

Later, in a similar context, the interaction could be:

User presses the engage button.
�Agent says “Whoops, you’ve made this mistake before.”
♦Agent says “You take it from here.”

User says “What next?”

�Agent says “Let’s recover from pressing the engage button.”

Previously we have reported on an intelligent tutor [15, 12]
that could generate the utterances marked with a♦, which
include negative feedback and instruction on the actions
needed to recover from a mistake. However, it did not dis-
tinguish between actions typically needed to achieve the cur-
rent goal and ones that are part of recoveries, and could not
produce the comments marked with a�.

This highlights a criterion for maintaining mutual under-
standing during recovery: an agent must be able to indicate
when recovery is needed, and which actions are part of the
recovery. This matches what people do in many domains,
e.g., “here’s what you do if you accidentally engage the
engine prematurely ...”.

A second criterion is to reuse as much of the agents general
capabilities as possible. For example, the same mechanisms
that the agent would use to discuss and decide between alter-
nate ways to achieve some domain goal should be used to
discuss and decide between alternate ways to recover from a
mistake.

Our approach to meeting these two criteria is to explicitly
represent recovery goals and add them to shared plans during
repair. Since recoveries are represented like any other sub-
goal, our generic mechanisms for communication and plan-
ning operate on them correctly. It is also clear which actions
are part of the recoveries since they are subplans of recovery
goals. Furthermore, this approach allows a tutor to intention-
ally commit mistakes in order to teach how to recover from
them.

We developed these techniques in order to extendCOLLA-
GEN [13], an application-independent collaboration manager
based on SharedPlan theory [6, 10], which we used to develop
our intelligent tutor. We will, however, attempt to present our
techniques as generally as possible.



(a) Current discourse state.

[B]
[A]

A

A�
B- ē

A�
c d̄

(b1) If the user correctly
performsd.

[B]
[A]

A

A�
B- ē

A�
c d

(b2) If the user mistakenly performse,
but no recovery is required.

[A]

A
�� @@

B - ē

A�
c d̄ e

(b3) If the user mistakenly performse,
and recovery is required.

[A]

A
�� @@

B - ē
�� @@

c RF- d̄ e

Figure 1: Examples of interpretation and repair.

2 Background
Collaborationis a process in which two or more participants
coordinate their actions in order to achieve shared goals. In
this paper, we focus exclusively on collaborations involving
only two participants. Tutoring is a kind of collaboration in
which one participant (the tutor) has greater expertise and
initiative, and the primary shared goal is to increase the stu-
dent’s expertise. Assistance is another kind of collaboration
in which the initiative may vary and the primary shared goal
is to successfully accomplish some domain task.

A task modelspecifies domain tasks and possible ways to
accomplish them. Specifically, a task model includes prim-
itive actions, non-primitive actions, and recipes. Primitive
actions include both “physical” actions, such as pressing a
button, and utterances. Non-primitive actions are achieved by
decomposing them into other actions. A recipe is a method
for decomposing a non-primitive, possibly imposing prece-
dence relations among the steps, as well as other logical rela-
tions among their parameters.1 In general, there are one or
more recipes for each non-primitive action type, which may
be chosen based on the recipe’s applicability conditions.

Discourseis a technical term for an extended communi-
cation between two or more participants in a shared context,
such as a collaboration. Previous work [13] has discussed
at length the crucial role which collaborative discourse the-
ory [6, 10] has played in the development and architecture
of COLLAGEN. Our discourse state representation consists of
a stack of goals, called thefocus stack, and aplan treefor
each goal on the stack. The top goal on the focus stack is the
current task or subtask. The plan tree associated with each
goal gives its hierarchical decomposition, if any, into partially
ordered sets of subtasks with constraints.

Figure1(a) shows a “snapshot” of a discourse state. Upper-
case letters, such asA, denote non-primitive actions. Low-
ercase letters denote primitive actions; those that are under-
lined, such asc , have been done and those with a bar on top,
such as̄e, need to be done. In Figure1(a), the focus stack is
on the left, and shows thatB is the current task. To the right is
the plan tree, which shows the decomposition of bothA and
B. The arrow betweenB and ē indicates a precedence link,
i.e. B must be achieved beforēe can be done.

After the user or agent performs an action,discourse inter-
pretationupdates the discourse state. The basic job of dis-
course interpretation is to explain how the most recently per-
formed action, called the occurrence,contributesto the col-
laboration. A physical action typically contributes by match-

1These relations are also referred to as constraints.

ing one of the steps in a plan. An utterance typically con-
tributes by referring to one of the steps in a plan. Updat-
ing the discourse state typically involves some combination
of extending the plan tree and popping and/or pushing the
focus stack.

During discourse interpretation for an occurrenceo, our
plan recognizer considers all ways of extending a current plan
that respect the constraints in the task model and include per-
forming o. We refer to such an extension as anexplanation
for o. The agent only considers explanations foro that respect
all the ordering and other constraints in the task model. Fur-
ther, the agent does not generate explanations in whicho is a
descendant of an action that is already known to be achieved.

Figure 1(b1) demonstrates how discourse interpretation
normally works. In this case, the user has just performed the
primitive actiond. Since the current plan contains ad̄ step, a
correct explanation exists; after the discourse state is updated,
the step is denoted asd since it no longer needs to be done.
d is added as a subplan ofd. (Figure1 does not show the
subplans ofc andd to keep the pictures smaller.)

3 Interpreting non-contributors
We now define anon-contributoras an occurrence for which
the plan recognition algorithm described above finds no
explanation. There are two possible interpretations for non-
contributors. As discussed in [9], it is always possible that
the user has interrupted the current task in order to work on
some new task. In addition, some occurrences just nearly
miss contributing to a current shared goal, so it is reasonable
to interpret them as mistakes.

When both interpretations are possible, the system must
decide which is the more likely. We have experimented with
different methods for making this decision, but generally pre-
fer to assume that an occurrence is a mistake rather than an
interruption. This enables the agent to provide more specific
feedback to non-contributors, as will be shown in Section5.

Our method for determining if a non-contributor can be
interpreted as a mistake is to search for “near miss” expla-
nations. Near-misses are found by re-running the plan rec-
ognizer while relaxing ordering, precondition, and postcon-
dition constraints. Another type of near-miss explanation can
be found by relaxing constraints between parameter values.2

This explains actions which would be correct if the occur-
rence had had different parameters. For example, if the plan
called for the generator speed to be set to 12 but the person
set it to 10, we would interpret this as a mistake by the user.

2This is only partially implemented at this time.

2



Figure1(b2) demonstrates discourse interpretation after a
“harmless” mistake has occurred. In this case, the user per-
formse immediately afterc; this is a mistake becauseB is not
yet achieved. As a result,e is added as anon-contributing
subplanof ē, which is indicated by the dashed link between
them. This mistake is considered harmless because of domain
knowledge, as will be explained in the next section.ē still
needs to be done, butd̄ still must be done first.

4 Repairing the shared plan
Regardless of why a non-contributor was executed or whether
it was a mistake, a shared plan may need to be repaired. A key
aspect of the repair algorithm is that the only changes made
are the addition of one or more recovery nodes and prece-
dence links involving those recoveries. This strategy allows
recovery to be explicitly discussed (or taught) without requir-
ing any extension to the agent’s general abilities. As will be
discussed in Section4.1, there are some situations that the
techniques described here do not address.

Figure 2 contains pseudo-code for our plan repair algo-
rithm, calledREPAIR. It is not the case that every single node
in the plan tree is repaired after every single non-contributor.
Determining which nodes need repair is based on general
principles applied to specific domain knowledge. The general
principles identify those nodes in the plan tree that arevul-
nerableto the occurrence; whether a vulnerable plan actually
needs to be repaired depends on domain-specific knowledge.

Figure 1(b3) shows an example of plan repair whene is
done too early, and this interferes with the current shared
goal of B (B is vulnerable, andA is not). In this case,
the only correct action to work on is the newly added
recovery node (labeledRF, which is an abbreviation for
RecoverFrom(B, e)). This plan tree does not show a
decomposition forRF; one would be chosen by the same
mechanisms by which a recipe is chosen for any non-
primitive.

In general, the plans that are vulnerable are the most-
deeply-nested, started plans that have not yet been achieved
(see functionISVULNERABLE in Figure2). If a plan has not
been started yet, then the occurrence cannot interfere with its
decomposition. If a node of typeFoo has been achieved and
the occurrence interferes with its effects, then the node’s par-
ent may need to be repaired (possibly by retryingFoo) but
the node itself does not.

The reason that a plan is not vulnerable if it contains a sub-
plan that is started and not achieved is because of the encapsu-
lation of abstract acts. Any valid decomposition of a subplan
is acceptable as far as the plan is concerned as long as the con-
straints on its decomposition are not violated. We are positing
that the semantics ofRecoverFrom respects this principle of
encapsulation; thus, our repair algorithm transforms one valid
decomposition into another valid decomposition. For exam-
ple, in Figure1(b3), the plan forA is not vulnerable because
any needed repair will be part of the new decomposition for
B.

Domain knowledge is necessary to determine if a vulner-
able plan actually needs to be repaired because of a non-
contributing occurrence. If the task model includes causal

REPAIR (o) ≡
forall shared plan treesT

REPAIRPLAN(ROOT(T ), o)

REPAIRPLAN (P, o) ≡
if ISVULNERABLE(P )

if REQUIRESRECOVERY(P, o)
ADDRECOVERY(P, o)

else foralls in SUBPLANS(P )
REPAIRPLAN(s, o)

ISVULNERABLE (P ) ≡
if ISACHIEVED(P ) or¬ ISSTARTED(P )

return false
forall s in SUBPLANS(P )

if ISVULNERABLE(s)
return false

return true

ADDRECOVERY (P, o) ≡
s← newRecoverFrom(P, o)
addPrecedes(s,SUBPLANS(P )) to the constraints ofP
adds as a subplan ofP

Figure 2: Pseudo-code to repair a shared plan tree

links, then REQUIRESRECOVERY can be computed from
those links. Otherwise, values forREQUIRESRECOVERY
must be explicitly specified. While specifying those val-
ues might increase the modeling effort for a given domain,
default rules usually suffice. An optimistic domain mod-
eler would assume that recovery is not needed by default,
and override this in very specific cases; a pessimistic model
would assume that all physical actions require recovery.
In Figure1(b2), REQUIRESRECOVERY(B, e) is false so no
RecoverFrom is added to the shared plan; in Figure1(b3),
REQUIRESRECOVERY(B, e) is true.

An important special case for recovery is when some or all
of the domain actions arereversible, as in direct manipula-
tion interfaces. When an actionx is reversible, then there is
a sequence of one or more actions (possible just the action
itself, e.g., for a toggle button) that form a decomposition for
RecoverFrom(G, x) for any goalG. While this decompo-
sition will always be applicable, it may sometimes be “too
strong” — for example, if a non-contributor had ten effects,
perhaps nine of them are beneficial and only one is detrimen-
tal with the regard to the current plan.

The last step of repair is to add a newRecoverFrom sub-
plan and enough precedence relationships to make sure that
recovery is done next. The pseudo-code inADDRECOVERY
does this very crudely; our implementation only adds the min-
imal number of precedence links required.

Note that the techniques presented here will work even
when several non-contributing actions are made in a row.
This method adds aRecoverFrom subplan for each and
precedence links between them such that the non-contributors
will be recovered from in reverse order.

3



4.1 Open issues
There are several important issues regarding repairing the
shared plan that are not handled by the algorithms presented
in this paper.

First-principles planning REPAIRrequires that the domain
model will contain decomposition rules forRecoverFrom,
and each rule will be associated with applicability checks to
make sure it is only used when appropriate. This requirement
is perfectly reasonable forCOLLAGEN or other systems that
“plan” by recipe selection. However, this seems an unneces-
sary modeling burden in systems that include a first-principles
planner (and must, therefore, already include a full causal
model).

It might be possible to avoid this modeling burden; here is
the gist of one potential approach, which relies on modify-
ing the first-principles planner slightly. The modified planner
will infer a decomposition ofRecoverFrom by comparing
P with a “augmented” copy ofP . The augmented copy ofP
is produced by generating a plan for the current goals using
the planner, with the restriction that the planner can only add
subplans toP or mark subplans as no longer needed, i.e.
the planner cannot retract any of the decompositions that are
already inP . Also, P can only be augmented if it is vul-
nerable. Then, comparingAUGMENTED(P ) to P will show
which actions inAUGMENTED(P ) should be grouped under
the recovery node. The final step would be to copy all of the
markings ofAUGMENTED(P ) to P, and copy the constraints
between the recovery actions to theRecoverFrom node.

Non-local repairs The repair algorithm presented in this
paper assumes that all necessary recovery should be done as
one atomic unit and, when recovery is over, that the rest of the
plan can proceed normally.Non-local repairsare necessary
when this assumption does not hold. Some non-local repairs
can be accommodated by more complicated plan structures
which force actions to be interleaved to achieve multiple sub-
goals (namely the recovery and the original goal). In more
dramatic cases, the agent will need to indicate that the non-
contributor has significantly effected the plan, and so it can
no longer be executed as was originally planned, and then
proceed with the new plan (e.g., you break the jack while
changing the tire, so now have to call for help).

Imperfect knowledge Repair might be needed due to
imperfect action (or recipe) descriptions or other source of
unanticipated changes to the state of the world. In such sit-
uations, recoveries may be sufficient or repair could require
changing the decomposition for a non-primitive. In general,
imperfect knowledge would require very different techniques
than those presented here.

Ambiguity Our techniques can generate multiple near-miss
explanations. Dealing with ambiguity is a general problem
in that there can also be multiple correct explanations for an
occurrence. The general strategies for dealing with ambigu-
ity include picking an explanation based on some preference

rules, asking a clarification question, and waiting for future
actions to disambiguate. These can all be applied to near-
miss explanations as well, though some may be less attrac-
tive since the intention inference is fundamentally more spec-
ulative. The techniques presented in this paper will not be
able to repair plans or guide recoveries until the ambiguity is
resolved.

“Bumming” It may seem strange that our algorithm can
addRecoverFrom subgoals to two vulnerable subplans. It
would seem that it should be sufficient to recover from the
non-contributor once. However, this is a general problem that
potentially occurs whenever the same subgoal appears twice
in a plan. It may well be the case (but is not always the case)
that it only needs to be achieved once. In the planning liter-
ature, this problem is referred to as “bumming” because one
subgoal is achieved by using the actions from another.COL-
LAGEN currently does not have a systematized method for
handling bumming, but such a facility would allow for two
RecoverFrom subgoals to be achieved simultaneously.

Goal maintenance Another set of issues arises from the
fact that recovering from a non-contributor typically requires
undoing some or all of its effects. However, it is possible
that the user caused those effects intentionally. For example,
if the user opens a window on her computer screen to check
on her stocks, a “helpful” assistant agent might immediately
close that window if it obstructs the task that was being col-
laboratively achieved. Again, this is really part of a larger
issue having to do with understanding which goals need to be
maintained (and for how long) and which ones do not.

5 Maintaining shared beliefs
It is important for the utterances and actions of the agent to
maintain shared beliefs about non-contributors and recover-
ies. In our system, reacting to non-contributors required some
new methods. However, the actions of the agent during recov-
ery are produced by the same general mechanisms for produc-
ing behavior when achieving any goal.

The agent now “watches” for non-contributors, and
responds with an utterance that is generated from the near-
miss explanation. For example, if the user performs a step
that is ordered after an action that has not yet been done,
then the agent says “Whoops, you can’t do that yet.” If the
user performs an action that they have already performed (and
does not need to be repeated), then the agent says “Whoops,
you already did that.” The agent has similar utterances for
actions with false preconditions or postconditions that were
already true before they were executed.

Figures3 and4 contain sample execution traces with our
agent demonstrating the ways in which our agent maintains
mutual understanding about non-contributors and recover-
ies. These indented traces are automatically produced by the
discourse interpretation algorithm, and provide useful sum-
maries of the interaction. In these figures, the lines in italics
describe non-primitive acts, and the other lines describe prim-
itive acts.

4



Achieving A.
...
Agent performs c.
User performing d.

Agent says "Please perform d."
Done agent performing c.

User inappropriately performs c.
Agent says "Whoops, c was already done, but that was a harmless mistake."

Agent says "Please perform d."
Stopped interruption.

User performs x.
Agent says "Whoops, your performing x was not relevant to our task."

Done recovering from performing x.
Done agent performing UndoX.

Agent says "I’m going to perform UndoX."
User says "Ok."
Agent performs UndoX.

Agent says "Please perform d."

Figure 3: Sample behavior by an intelligent assistant.

Showing how to achieve A.
...
Showing how to perform d.

Agent says "d is needed because..."
Agent says "Now, perform d (click the button at which I am pointing)."
Blocked performing e.

User inappropriately performs e.
Agent says "Whoops, your performing e was premature."

Done showing how to recover from performing e.
Agent says "Recovering from prematurely performing e is needed because..."
Agent says "Now, we should recover from performing e."
User says "Ok."
Done showing how to perform UndoE.

Agent says "First, you should perform UndoE."
User performs UndoE.
Agent says "Good job."

Agent says "You succeeded in recovering from performing e."
Blocked performing e.

User performs e.
Agent says "Whoops, you’ve made this mistake before."

Done showing how to recover from performing e.
Agent says "You take it from here (say ’what next?’ for additional help)."
User says "What next?"
Agent says "Now, we should recover from performing e."
Done showing how to perform UndoE.

User performs UndoE.
Agent says "Great."

Agent says "Please perform d."

Figure 4: Sample behavior by a tutoring agent.

In Figure 3, the agent is acting as an assistant; in Fig-
ure 4, the agent is acting as a tutor. In both cases, the dis-
course state is being updated in the same way. However, since
the basic response mechanisms for assistants and tutors dif-
fer, the behavior of the agent differs in the two figures. For
example, the assistant is willing to proactively start doing the
actions needed to recover, whereas the tutor treats recovery
as another opportunity to teach. Another example is that the
tutor generically points out when any non-primitive action is

accomplished, and thus says “You succeeding in recovering
from performinge.”

The utterance “Whoops, you’ve made this mistake before,”
is generated in a generic way, by taking advantage of auser
model. By consulting the user model, the agent can iden-
tify when mistakes are repeats, can identify when the user
knows how to accomplish tasks (“You take it from here”),
and can suppress repeating explanations (such as explaining
why recovering from prematurely performinge is needed).

5



Note that it both difficult and risky to try to identify the
misconception in the user’s head that led them to execute
an incorrect action. For example, if the user executed some
action c that should have been executed afterb, they may
not have known about the ordering constraint or they may
have mistakenly thought thatb didn’t need to be performed in
this case because its postcondition was fortuitously true. Our
agent’s response, “Whoops, you can’t do that yet”, is accurate
and hopefully helpful in either case.

As another example, suppose a user executes actiond
which they think is necessary to achieve the current goalA. If
d never contributes toA, our agent will say “Whoops,d was
not relevant to our task.” But ifd’s postcondition was fortu-
itously true, our agent will say “Whoops, you didn’t need to
do that”. We believe these different types of feedback help
the user correct their misconception and learn the tasks, with-
out requiring the agent to know exactly which misconception
the user has.

6 Related research and conclusion

There has been an impressive variety of work on algorithms
and heuristics for repairing plans (e.g., [7, 8, 11]). Some of
this work addresses repairs that we have not considered, such
as replacing an action that just failed with a different action
to achieve the same goal [1]. These methods typically oper-
ate on a nearly-correct plan and attempt to minimally add or
remove actions in order to make it correct. This work is com-
plementary to our efforts in that we present techniques for
inferring the intentions of mistakes, and techniques for how
to incorporate recovery actions into a plan, not on how to gen-
erate the necessary recovery actions.

The STEVE tutoring system [14] has similar behavior to
our system, but neither represents or discusses error recov-
eries. There has also been a great deal of work on tutoring
systems in math and physics (e.g., [4]) in which the tutoring
system diagnoses and provides feedback on the errors made
by the students. These domains are extremely different than
the procedural tasks we have been working on. For example,
no recovery is required,per se, when a mistake is made while
solving a math problem.

Probabilistic plan recognition (e.g., [3, 2]) can be robust
to user mistakes, but does not try to diagnose or recovery
from them as do the techniques in this paper. This work
presumes that decomposition knowledge would be applied
without specifying how it could be acquired, which might be
through learning or a knowledge-acquisition tool [16].

In conclusion, this work extends prior research so that
collaborators can maintain mutual beliefs when a user per-
forms a non-contributor, be it a mistake or an interruption.
We presented methods to infer the intentions of mistakes,
to repair shared plans, and to generate utterances about both
non-contributors and recoveries. Our methods explicitly rep-
resent recovery goals, so our generic mechanisms for inter-
pretation and planning operate on recoveries as they would
on any goal.

References
[1] R. Alterman. Adaptive planning.Cognitive Science, 12:393–

421, 1988.

[2] M. Bauer, S. Biundo, D. Dengler, J. Kohler, and Paul G. PHI
— A Logic-based Tool For Intelligent Help Systems. InProc.
13th Int. Joint Conf. AI, pages 460–466. 1993.

[3] E. Charniak and R. Goldman. A probabilistic model of plan
recognition. InProc. 9th Nat. Conf. AI, volume 1, pages 160–
5, July 1991.

[4] C. Conati, A. Gertner, K. VanLehn, and M. Druzdzel. On-line
student modeling for coached problem solving using Bayesian
networks. InProc. 6th Int. Conf. on User Modeling, pages
231–242, Sardinia, Italy, 1997.

[5] G. Ferguson and J. Allen. TRIPS: An integrated Intelligent
Problem-Solving Assistant. InProc. 15th Nat. Conf. AI, pages
567–572, 1998.

[6] B. J. Grosz and C. L. Sidner. Plans for discourse. In P. R.
Cohen, J. L. Morgan, and M. E. Pollack, editors,Intentions
and Communication, pages 417–444. MIT Press, Cambridge,
MA, 1990.

[7] K. Hammond. Explaining and repairing plans that fail.Artifi-
cial Intelligence, 45:173–228, 1990.

[8] Steven Hanks and Daniel S. Weld. A domain-independent
algorithm for plan adaptation. J. of Artificial Intelligence
Research, 2:319–360, January 1995.

[9] N. Lesh, C. Rich, and C. Sidner. Collaborating with focused
and unfocused users under imperfect communication. InProc.
9th Int. Conf. on User Modeling, pages 64–73, Sonthofen, Ger-
many, July 2001.

[10] K. E. Lochbaum. A collaborative planning model of inten-
tional structure. Computational Linguistics, 24(4):525–572,
December 1998.

[11] Bernhard Nebel and Jana Koehler. Plan reuse versus plan gen-
eration: a theoretical and empirical analysis.Artificial Intelli-
gence, 76:427–454, 1995.

[12] C. Rich, N. Lesh, J. Rickel, and A. Garland. A plug-in archi-
tecture for generating collaborative agent responses. InProc.
1st Int. J. Conf. on Autonomous Agents and Multi-agent Sys-
tems, pages 782–789, Bologna, Italy, July 2002.

[13] C. Rich, C. Sidner, and N. Lesh. Collagen: Applying collab-
orative discourse theory to human-computer interaction.AI
Magazine, 22(4):15–25, Winter 2001. Special Issue on Intelli-
gent User Interfaces.

[14] J. Rickel and W. L. Johnson. Animated agents for procedu-
ral training in virtual reality: Perception, cognition, and motor
control. Applied Artificial Intelligence, 13:343–382, 1999.

[15] J. Rickel, N. Lesh, C. Rich, C. Sidner, and A. Gertner. Using
a model of collaborative dialogue to teach procedural tasks. In
Proc. 10th Int. Conf. on Artificial Intelligence in Education,
pages 592–594, San Antonio, TX, May 2001.

[16] G. Tecuci, M. Boicu, K. Wright, S. Lee, D. Marcu, and
M Bowman. An integrated shell and methodology for rapid
development of knowledge-based agents. InProc. 16th Nat.
Conf. AI, pages 250–257, 1999.

6


	Title Page
	Title Page
	page 2


	Responding to and Recovering from Mistakes during Collaboration
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


