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is then applied to detect the signal and further update the channel estimate alternately. A small
delay is introduced for the symbol detection and the decision feedback to smooth the noise im-
pact. An automatic switch between the above two operations is also proposed by exploiting the
evolution of path metrics and the linear constraint inherent in the trellis mapping. Simulation has
shown an overall excellent performance of the proposed scheme in terms of mean square error
(MSE) for channel estimation, robustness to the initial channel guess, computational complexity,
and channel equalization.
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A Trellis-based Technique for Blind Channel Estimation
and Equalization

Lei Cao, Chang Wen Chen, Philip Orlik, Jinyun Zhang, and Daqing Gu

Abstract: In this paper, we present a trellis-based blind channel
estimation and equalization technique coupling two kinds of adap-
tive Viterbi algorithms. First, the initial blind channel estimation
is accomplished by incorporating the list parallel Viterbi algorithm
with the least mean square (LMS) updating approach. In this oper-
ation, multiple trellis mappings are preserved simultaneously and
ranked in terms of path metrics. Equivalently, multiple channel
estimates are maintained and updated once a single symbol is re-
ceived. Second, the best channel estimate from the above opera-
tion will be adopted to set up the whole trellis. The conventional
adaptive Viterbi algorithm is then applied to detect the signal and
further update the channel estimate alternately. A small delay is
introduced for the symbol detection and the decision feedback to
smooth the noise impact. An automatic switch between the above
two operations is also proposed by exploiting the evolution of path
metrics and the linear constraint inherent in the trellis mapping.
Simulation has shown an overall excellent performance of the pro-
posed scheme in terms of mean square error (MSE) for channel
estimation, robustness to the initial channel guess, computational
complexity, and channel equalization.

Index Terms: Adaptive Viterbi algorithms, blind channel estimation

and equalization, least mean square (LMS) updating.

I. INTRODUCTION

Channel estimation and channel equalization in communica-
tions are two highly related technologies that are often con-
sidered jointly. For a finite discrete channel model h(k), k =
0, 1, . . . , L, given the transmitted symbol sequence x(n), n =
1, 2, . . . , N , where each symbol is an element of an alphabet set
with size M , the received sequence y(n), n = 1, 2, . . . , N with
inter-symbol interference (ISI) is

y(n) =
L∑

k=0

h(k)x(n − k) + v(n), (1)

where v(n) is the i.i.d. additive Gaussian noise with zero mean
and variance σ2. For a block of N received symbols, in which
the channel response is assumed time-invariant, the probability
density function of y(n), conditioned on knowledge of h(n) and
x(n), n = 1, . . . , N , is
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The problem of joint channel estimation and equalization now
becomes an optimization problem. Essentially we want to find
the estimates of the channel parameters �h∗ and the transmitted
data �x∗ so that the above probability is maximized, i.e.,

(�x∗,�h∗) = arg max�x,�hP (�y|�x,�h)

= arg min�x,�h

N∑
n=1

|y(n) −
L∑

k=0

h(k)x(n − k)|2 (3)

where arg max (or arg min) is the argument to maximize (or
minimize) the following expression. When the input signal �x is
known, we may differentiate equation (3) over �h and set it equal
to zero to generate a set of linear equations. The maximum like-
lihood channel estimate can then be obtained by solving these
linear equations. On the other hand, when the channel impulse
response is known, the maximum likelihood sequence estima-
tion (MLSE) of the source symbols can be accomplished by us-
ing Viterbi algorithm. However, difficulty arises when neither �h
nor �x is known. This is the problem of blind channel estimation
and equalization with only the knowledge of received observa-
tions �y. A direct approach is that for each possible source data
sequence �x we determine the maximum likelihood estimate of
�h, and then, we select the data sequence �x∗ and the correspond-
ing �h∗ so that equation (3) is satisfied. Unfortunately, the num-
ber of possible data sequences in this exhaustive search is huge
and equals MN . Therefore, this method is prohibitive due to its
extreme complexity.

Another way to solve the problem is to use Hidden Markov
Model (HMM). With this model, the Baum-Welch algorithm [1]
can be applied to iteratively estimate [�h, σ2]. This approach is
actually an EM (Expectation-Maximum) algorithm that is im-
plemented alternately between the calculation of a likelihood
function P (�y|�h, σ2) and the maximization of it over the target
variables [�h, σ2]. It was proved [2] that the likelihood func-
tion is locally maximized as the iteration number increases. In
[3], the trellis branch values rather than �h itself are updated in
each iteration to reduce the computational complexity in solv-
ing linear equations. In general, the Baum-Welch algorithm
has very high computational complexity. Therefore, many re-
searches have been focused on the Viterbi algorithm-based joint
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channel estimation and signal detection. A practical method to
use Viterbi algorithm is illustrated in Figure 1. This kind of
schemes generally includes three functionalities: channel esti-
mation, Viterbi signal detection and channel updating. In typi-
cal non-blind schemes, channel estimation is usually completed
through a training sequence. For blind channel estimation and
signal detection, iterative algorithms proposed in [4] and [5] op-
erate alternately between channel estimation, assuming that the
symbols are known, and a Viterbi sequence detection, assuming
the channel parameters are known. However, these algorithms
are very sensitive to the initial channel guess [4]. In [6], a list
parallel adaptive Viterbi algorithm (LPA-VA) was proposed to
maintain multiple survivors for each state at any time instant
along trellis diagram so that the multiple corresponding channel
estimates are then maintained and updated individually based
on LMS. A quantized channel estimation approach is also pro-
posed in [7]. While these techniques have advantages in parallel
structure and robustness to the initial channel guess, they have
a major disadvantage of high complexity either by always us-
ing the parallel list Viterbi algorithm [6] or by simultaneously
operating a set of Viterbi decoding algorithms [7].

Estimation
Channel

Input y Output x

H

Viterbi
Algorithm

Fig. 1. ML based channel estimation and signal detection. Three
functions include initial channel estimation, signal detection, decision
feedback for channel updating.

In this paper, we propose a trellis based technique for blind
joint channel estimation and signal detection. It is actually a
two-mode process coupling two kinds of adaptive Viterbi algo-
rithms. We first take advantage of the scheme proposed in [6]
to achieve the robustness to the initial channel guess. Then, we
propose to switch to a conventional adaptive Viterbi algorithm
for signal detection and grained channel update. Noise impact
is smoothed by introduction of a small delay in the signal detec-
tion and decision feedback. The switch between the two modes
is designed by exploiting the linear constraint in the trellis map-
ping and the evolution of path metrics. This technique not only
preserves the benefits of scheme of [6] such as robustness to
initial channel guess, but also provides some other significant
advantages. For example, the computational complexity and re-
quired memory resources are greatly reduced; the mean square
error (MSE) of the channel estimates is decreased as well. The
rest of the paper is organized as follows. Section 2 addresses
the proposed technique in detail. We first describe the trellis
mapping from the received symbols to the trellis branches, and
derive the total number of mappings. Then, we discuss the list
parallel adaptive VA and the conventional adaptive VA (CA-VA)
for the operation of initial channel estimation and the operation
of signal detection and channel update, respectively. The switch

design between the two operations is also proposed. Section 3
presents the simulation results. Finally, Section 4 concludes this
paper.

II. SYSTEM DESCRIPTION

The whole system couples two operations of Viterbi algo-
rithms to complete different functions in channel estimation and
equalization. First, the list parallel Viterbi algorithm with LMS
adaptation is used to obtain the initial channel estimate. Second,
the conventional adaptive Viterbi algorithm is employed to de-
tect the symbols and finely update the channel estimate through
feedback. In this section, we will introduce the mapping be-
tween the received symbols and the trellis structure determined
by the channel impulse response, and the linear constraint in the
mapping. We then describe LPA-VA and CA-VA, respectively.
We also present the switch design between the two operations.

A. Trellis Mapping and Linear Constraint

For a binary signal M = 2 (x(n) = 1 or −1, n = 1, . . . , N ),
and a channel impulse response h(k), k = 0, . . . , L, the re-
ceived symbols are the convolution of the both. Acting ex-
actly the same as the code generators in convolutional codes, the
channel impulse response determines the trellis structure. The
length (L+1) of the channel response determines the total num-
ber of states in the trellis structure to be 2L, while the amplitudes
of the each h(k), k = 0, . . . , L determine the branch values of
the trellis. Figure 2 is an example of trellis structure for M = 2
and L = 2 (channel impulse response is thus {h0, h1, h2}). As
a result, in order to find the channel impulse response, we need
to map the received symbols to the trellis branches.

C

A

D

B

h0+h1+h2

(−1,−1)

−h0+h1−h2

−h0+h1+h2

h0−h1−h2

h0−h1+h2

−h0−h1+h2

h0+h1−h2

(−1, 1)

( 1, 1)

( 1,−1)

−h0−h1−h2

Fig. 2. The trellis for M=2 and L=2. Branch values are determined by
the channel response.

In the absence of noise, the maximum number of different
symbols received is 2L+1, which is the same as the number of
branches in the trellis structure. We also assume differential cod-
ing at the transmitter. The total number of trellis mappings that
map these symbols to the branches can be formulated as

Ntrellis = 2L(2L+1 − 2)(2L+1 − 4) · · · (2L+1 − 2L)
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=
2L(2L)!

(2L − L − 1)!
. (4)

This equation can be interpreted as follows. Suppose the re-
ceived channel symbols are
{c1, c2, . . . , c2L ,−c2L , . . . ,−c2,−c1}. The symbol c1 can be
mapped to one of 2L branches (rather than 2L+1 because of dif-
ferential coding). Then, −c1 is assigned automatically due to
the symmetry of the trellis branches. Therefore, symbol c 2 can
be mapped to one of the following 2L+1 − 2 branches. Con-
sequently, −c2 will be assigned to the branch symmetric to the
one with c2. Similarly, c3 will be mapped to one of 2L+1 − 4
branches. This process may continue to the final symbol. How-
ever, as long as symbols up to cL+1 are allocated, we are able
to choose L + 1 branches from the totally mapped 2(L + 1)
branches to set up L + 1 linear equations. From these linear
equations the L+1 components of the channel impulse response
�h can be solved uniquely. Consequently, the remaining sym-
bols, {±cL+2, . . . ,±c2L}, will be automatically set to their cor-
responding branches determined by the solved �h. This feature is
the linear constraint in the trellis mapping. Notice that it has not
been considered in [6] and the total number of trellis mappings
represented by equation (10) in [6] is

Ntre = 2L(2L+1−2)(2L+1−4) · · · 4 ·2 ·1 = 22L

(2L)!/2. (5)

This value is much higher than the actual number considering
the linear constraint. From equations (4) and (5), it is easy to
find that Ntre/Ntrellis = 22L−L−1(2L −L − 1)!. A simple ex-
ample to demonstrate the trellis mapping and linear constraint
can be shown by Figure 2, where up to 8 different symbols
c1, c2, c3, c4,−c4,−c3,−c2,−c1 will be received assuming a
noise free channel. If c1 is allocated to branch AC, −c1 will
be automatically assigned to branch DB due to the linear con-
straint. After we have mapped c2 and c3 to branches such as
BA, CB, respectively, we can choose three linearly indepen-
dent branches, such as AC, BA, and CB, so that h0, h1, and h2

will be solved completely. Consequently, the c4 and −c4 will be
automatically assigned according to the solved channel impulse
response. Therefore the linear constraint significantly reduces
the number of trellis mappings that need to be considered. We
will show later that the linear constraint can also be exploited to
design the switch between the operation of initial channel esti-
mation and the operation of signal detection and further channel
updating.

It should be pointed out that the assumption of differential
coding in the beginning is not necessary. It only affects the al-
location of the first symbol in trellis mapping. Without this as-
sumption, the actual number of trellis mapping will be doubled,
i.e., c1 can be mapped to any one of 2L+1 branches rather than
2L branches. As a result, the estimated channel and the detected
data sequence will be either the original versions or the versions
only with different signs. It also means for the blind channel
estimation and signal detection without any knowledge of the
transmitted sequence, we can not tell the difference between the
true results and their “mirror” versions, because X(z)H(z) and
(−X(z))(−H(z)) produce the same output Y (z).

Clearly, the number of mappings in equation (4) still grows
large as L increases. It is impossible to compare all these map-

pings in order to find the best one. However, it is practical to
consider a subset of the most appropriate mappings at the same
time. This suboptimal method can be realized by incorporating
the list parallel Viterbi algorithm with the LMS updating method
[6]. Simulation results in [6] show that a good channel estimate
occurs within the first 50 symbols for three considered channels
in [8] (pp. 631) when SNR > 10dB.

B. List Parallel Adaptive Viterbi Algorithm

In order to maintain multiple trellis mappings (corresponding
to multiple channel estimates) at the same time, the list Viterbi
algorithm is adopted to retain the K best candidates for each
state at each time instant. The corresponding channel estimates
are updated whenever a single symbol has been received and
detected according to the path metrics. As shown in Figure 2,
from any time instant t to t + 1, we will compare the received
symbol y(t) with each branch value and compute a set of path
metrics for each state at t + 1. Channel estimates will also be
immediately updated for each state at time t+1, t = 1, . . . , N1,
where N1(< N) is the number of stages for initial channel esti-
mation. The whole process may be exemplified by considering
operations at state C in Figure 2. Note that state C has 2 prede-
cessors: states A and B. Let M t

B,i (or M t
A,j) be the ith (or jth),

i, j = 1, . . . , K , smallest path metric in state B (or A) at time
instant t. The corresponding channel estimate in state B (or A)
at time t are �ht

B,i (or �ht
A,i). At the next time instant t + 1, for

state C, we calculate its path metrics from both states B and A
as

M t+1
CB,i = M t

B,i + dist{�ht
B,i(1,−1, 1)′, y(t)} (6)

M t+1
CA,j = M t

A,j + dist{�ht
A,j(1,−1,−1)′, y(t)} (7)

where i, j = 1, 2, . . . , K , (·)′ is the transpose of vector (·), and
dist{·, ·} is the distance between the two elements. Note that the
last two digits in (1,-1,1) (or (1,-1,-1)) in the above equations
represent the state B (or A), while the first digit “1” is the input
bit that leads state B (or A) to state C. Then, the K smallest
path metrics M t+1

C,l , l = 1, . . . , K for state C at time t + 1 will

be selected from the union of M t+1
CB,i and M t+1

CA,i

M t+1
C,l = arg lth min {M t+1

CB,i, M
t+1
CA,j}, i, j = 1, . . . , K, (8)

where arg lth min means to select the lth minimum value from
the following set. After the K minimum path metrics for each
state are obtained at time instant t+1, the corresponding channel
estimates can be updated. For example, if the r th

1 smallest path
metric of state C at t+1 is calculated from the rth

2 smallest path
metric in state B at t, we say that the rth

1 best channel estimate
of C at t+1, �ht+1

C,r1
, is updated from the rth

2 best channel estimate

of B at t, �ht
B,r2

. The update is computed using least mean square
(LMS) method as

�ht+1
C,r1

= �ht
B,r2

+∆·dist{�ht
B,r2

(1,−1, 1)′, y(t)}(1,−1, 1), (9)

where ∆ is the step size used in LMS.
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C. Conventional Adaptive Viterbi Algorithm (VA)

After a good initial channel estimate is obtained at a cer-
tain time instant, continuously maintaining multiple survivors
per state will consume more memories and computational re-
sources than a conventional adaptive VA. Moreover, this more
complicated algorithm does not guarantee the best convergence
performance, though it generally finds a roughly good channel
estimate very quickly. As stated in last section, at any time in-
stant, we first compute K minimum path metrics for each state
(equation (6)-(8)). Then, the updating of the channels is con-
ducted immediately (equation (9)). The best channel estimate
at a time instant is selected to be the one corresponding to the
minimum path metric among all states. This LPA-VA operation
has two direct consequences.

First, suppose that at time t the best channel is �ht correspond-
ing to state A. When a symbol with additive noise is received,
according to equation (6)-(8) and due to the noise and previ-
ous channel estimates, the smallest path metric at time t + 1
may be in any state, assuming in state B. Therefore, the best
channel estimate �ht+1 at time t + 1 is evolved from a channel
estimate in state C or D but not the best one �ht in A at time
t. This feature is very helpful in the beginning for channel es-
timation when we do not have any knowledge of the channel
and the initial channel vector is generally set to �0. However,
when a good channel estimate is obtained, this effect will di-
vert the correct channel updating direction. That is, the best
channel estimate in each time stage may not be updated from
its own previous version, but from a previous version of another
different channel estimate. Second, in the Viterbi algorithm for
signal detection, even though the trellis is fixed without updat-
ing, a decoding depth is needed to reduce the truncation error
that occurs when the information bits are released before the en-
tire codeword has been processed. Forney [9] has shown that
the probability of truncation error decreases exponentially with
the decoding depth. At low SNR, the error is negligible if the
decoding depth is 5 times more than the number of memories
that equals the channel length L here. When using LPA-VA for
signal decision, however, signals are detected immediately with-
out any delay (zero coding depth) after one symbol is received.
Therefore, any error in signal decision may divert the update of
the channel estimate. This, in turn, further affects the following
symbol detection. As a result, the list parallel adaptive VA that
keeps a number of channel candidates and uses the zero decod-
ing delay is appropriate for initial channel estimation but not for
the signal detection and channel further updating when a good
channel estimate has been achieved.

Therefore, in this research, we propose the use of a conven-
tional adaptive Viterbi algorithm to alternately detect the signal
and further update the channel estimate. When a good chan-
nel estimate is obtained, it is adopted to set up the whole trellis.
Signal decision and channel updating are all started from this
channel estimate. The path metric calculation is still the same
with equations (6) (7) except that K = 1 and all the channel
estimates are the same in this case. However, before the sig-
nal detection and decision feedback, a delay of small number of
symbols is introduced. The delay here has the effect to smooth
the noise in several delayed symbols so that the impact of a sin-

gle high value noise is alleviated. As shown later in simulation,
both better MSE convergence and less computational complex-
ity are achieved with this method.

D. Switching Design Between Two Operations

As described above, when a good channel estimate is ob-
tained from the list parallel adaptive VA, the operation should
be switched to the conventional adaptive VA to finely update the
channel estimate and detect the symbols. Each state sequence
along the trellis actually represents one input bit sequence. The
associated trellis path (branch sequence) is the convolution of
the input sequence with channel impulse response. The blind
channel estimation and equalization is to find the closest trellis
path matched to the received symbols (including channel noise)
with the minimum distance.

The linear constraint stated before for the mapping of chan-
nel symbols to trellis branches not only reduces the num-
ber of mappings to achieve good channel estimation with a
short length of received symbols, but also provides a poten-
tial technique to design the switch between the two opera-
tions. As shown in Figure 2 with 8 different channel symbols
{(c1,−c1), (c2, ,−c2), (c3,−c3), (c4,−c4)} in the absence of
noise, a received symbol sequence with as few as 5 symbols
may be enough to complete the channel estimation. For ex-
ample, if the received symbol sequence is: c1, c2, c3, c4, c4, · · ·,
then the state sequence along the trellis must be A → C →
B → A → A → · · ·. This bit state sequence corresponds
to the input bit sequence of 1 → 0 → 0 → 0 → 0 → · · ·.
Any other sequence will violate the linear constraint in the trel-
lis mapping. Therefore, by choosing three branches along the
path to constitute three linear independent equations, the chan-
nel estimate h(k), k = 0, 1, 2 can be easily solved. For non-
differential coding, there is another symmetrical state sequence
D → B → C → D → D → · · · corresponding to a channel es-
timate. This channel estimate is the same as above except each
channel tap has its sign reversed.

Apparently, the best channel estimate is the one correspond-
ing to a state sequence that has the smallest path metric. Further-
more, this state sequence must be along a valid trellis path due
to the linear constraint. Otherwise, the best channel estimate at
a certain time stage is not evolved from the previous version of
itself. This characteristic can be exploited to decide whether a
good channel estimate has been obtained. In the operation of
LPA-VA, the total number of channel estimates is equal to the
multiplication of the number of trellis states and the number of
survivors per state. From the initial channel guess �0, these chan-
nel estimates are updated in different directions. From any time
stage t to t+1, t = 1, . . . , N, we can find a branch that causes a
state at time t+1 having the smallest path metric. Since the path
metrics are calculated from different channels, in the beginning
steps of channel estimation, these branches are not likely to form
a valid path, which means any two consecutive such branches
may not have a common node (state). But as the algorithm con-
tinues, one good channel estimate will stand out. As such, the
states with the smallest path metrics caused by this channel es-
timate will construct a single valid path. As a result, when the
observed number of consecutive connected best states is larger
than a pre-defined threshold, we know a roughly good channel
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estimate has been obtained and it is the time to switch the opera-
tion to the second mode. Actually when the smallest path metric
stands out in LPA-VA, it will eventually dominate the following
path metric calculation and hence affect the updating of other
channel estimates. Eventually, after a certain steps many chan-
nel estimates will converge to a small neighborhood of the best
one. This feature may also supplement the design of a switch.

It needs to point out that the switch based on the linear con-
straint relies only on heuristic considerations. As consequence,
it is not guaranteed to take place always. A very small number
of cases that it does not happen have been found in low SNR
conditions. As a result, in a practical system, this “soft” switch
determined by the linear constraint should be coupled with a
“hard” switch that sets to a certain maximum number of pro-
cessed symbols.

III. SIMULATION RESULTS

In this simulation, we use 2-PAM signal and test the proposed
approach over three channels proposed in [8] (page 631). These
channels are: a={-0.2, -0.5, 0.7, 0.36, 0.2}, b={0.407, 0.815,
0.407}, and c={0.227, 0.460, 0.688, 0.460, 0.227}. Channel
b and c exhibits only amplitude distortion while channel a has
both amplitude and phase distortion. Channel b has a spectral
null at the band edge while channel c has an in-band null. The
MSE of channel estimation is calculated as

MSE(t) =
1
Q

Q∑
i=1

{ 1
L + 1

L∑
k=0

[ĥi
t
(k)−horg(k)]2}, t = 1, · · · , N

(10)
where Q is the number of data blocks tested to get the aver-
age MSE value. N is the number of bits in each block. L + 1
is the number of taps of channel impulse response. ĥi

t
(k) is

the value of the kth tap in the estimated channel response at
the tth time stage in the ith data block. horg(k) is the ac-
tual channel the signal goes through. SNR is calculated as
10 log{∑L

k=0 |h(k)|2/σ2}, where σ2 is the variance of i.i.d.
white Gaussian noise. We set each block to have 200 symbols
(t ≤ 200). A step size of 0.1 is used in the LMS adaptive method
in both Viterbi algorithms.

First, for channel b we compare the LPA-VA having 4 sur-
vivors per state with the CA-VA for channel updating. De-
lays tested in CA-VA are 0 and 10 symbols, respectively. SNR
is set to 13 dB. An initial channel estimate is assumed as
{0.577, 0.577, 0.577}. Figure 3 shows the results as the aver-
age of 100 trials. Both algorithms converge in terms of channel
estimation MSE. Since the LA-VA retains 4 channel estimates
for each state, it shows the fastest initial channel estimation. The
CA-VA with 0 delay makes a signal decision and feeds it back to
update the channel estimate immediately after the current sym-
bol is received. This method is especially vulnerable to isolated
high noise and shows the worst performance in both initial chan-
nel estimation and final channel updating. The CA-VA with a
delay of 10 symbols has achieved the lowest MSE in final chan-
nel estimation. In this case, the impact of isolated high noise is
alleviated by smoothing within the delayed symbols. {0, 0, 0}
was also tested as the initial channel guess. We found LPA-VA
with 4 survivors per state converged for all 100 trials, while the
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Fig. 3. Comparison between the LPA-VA and CA-VA with delay = 0, 10
for channel b estimation and updating. SNR is 13 dB.

conventional adaptive VA with 10 symbols delay had 4 trials
that converged to wrong channel estimates with the final square
error larger than 0.1. This simulation demonstrates that com-
pared with CA-VA, LPA-VA is more robust to initial channel
guess and reaches a good channel estimate more quickly. How-
ever, it does not achieve the best convergence performance in
the following channel updating.
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Fig. 4. Comparison between the proposed approach and the one that
only uses LPA-VA with 4 survivors/state for channel b. SNRs are
13dB and 26dB, respectively. Average switch point for 13dB is the
49th symbol, while that for 26dB is the 31th symbols.

Second, we compare the proposed two-mode scheme with
one that only uses LPA-VA for channel b. 4 survivors per state
are adopted in LPA-VA. In our approach, the switch is set when
the number of consecutive states with the minimum path metrics
along a single path is greater than 20. The channel correspond-
ing to the minimum path metric is then chosen to set the whole
trellis. CA-VA is applied for signal detection and further chan-
nel update. 100 trials were conducted in conditions of 13dB
and 26dB SNRs. Figure 4 shows the simulation results. Chan-
nel estimation results over channel a and c are also shown in
Figure 5 and Figure 6, respectively. Eight survivors per state
are used in LPA-VA in these two cases because of the longer
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impulse responses. Number of consecutive states along a valid
path for switch is set to 30. The average switching positions are
shown in Table 1. Apparently, the position number is smaller
for a higher SNR value, which is consistent with the fact that
good channel estimates are easy to achieve in high SNR situa-
tions. The channels with more taps also need more symbols to
conduct the initial channel estimation. As shown in the results,
The proposed scheme indeed takes advantages of LPA-VA and
CA-VA. It obtains a good channel estimate very fast, and at the
same time, achieves a better MSE performance in the following
channel updating. Moreover, the computational complexity is
significantly reduced in the proposed approach since only one
channel estimate is maintained in the second mode of process.
Other step sizes are also tested in LMS and all shows the lower
MSE using CA-VA than using LPA-VA. In all above cases, the
channel estimation start from vector of �0. This also shows that
this scheme can also achieve the automatic gain control very
well from the initial zero amplitude to the appropriate channel
estimate.
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Fig. 5. Comparison between the proposed approach and the one that
only uses LPA-VA with 8 survivors/state for channel a. SNR is 26dB.
Average switch point is the 51th symbols.
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Fig. 6. Comparison between the proposed approach and the one that
only uses LPA-VA with 8 survivors/state for channel c. SNR is 26dB.
Average switch point is the 54th symbols.

Table 1. Switch positions for various conditions.

Mean pos Min pos Max pos dB
channel b 48.6 26 103 13
channel b 30.8 26 60 26
channel a 50.8 38 73 26
channel c 53.5 36 85 26

We also show in Figure 7 the channel equalization results of
the scheme over channel b compared to the MLSE method in
which the channel impulse response is assumed known while
signal detection is via the Viterbi decoding. In this simulation,
we set each block have 1000 bits, bits starting from minimum
number of 250 and the switch position are used for the BER
calculations. We find the equalization results are very close to
the MLSE signal detection with less than 0.5dB loss. The BER
result for data without ISI is also shown in the figure for com-
parison.
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Fig. 7. Equalization result of the proposed approach for channel b.

IV. CONCLUSION

In this paper, we present a trellis based blind channel esti-
mation and signal detection method. From the received sym-
bols only, an initial channel estimation is conducted using a list
parallel adaptive Viterbi algorithm in which multiple channel
estimates are maintained simultaneously. Upon getting a good
initial channel estimate, the process is switched to signal detec-
tion and decision feedback that is realized using a conventional
adaptive Viterbi algorithm. Switching between these two oper-
ations is designed by exploiting the evolution status of the path
metrics and the linear constraint in trellis mapping. Simulation
results show that this method achieves a good overall perfor-
mance in terms of lower MSE for channel estimation, robustness
to initial channel estimation, less computational complexity, and
good equalization results.
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