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Abstract

We study the performance of the newly invented rateless codes
(LT and Raptor codes) on noisy channels such as the BSC and the
AWGNC. We find that Raptor codes outperform LT codes, and have
good performance on a wide variety of noisy channels.

1 Introduction

Recent advances in coding theory, especially the invention of regular [1] and
irregular [2] low density parity check (LDPC) codes, have shown that very
efficient error correction schemes are possible. LDPC codes, decoded using
the belief propagation algorithm, can achieve capacity on the binary era-
sure channel (BEC) [2, 3] and achieve rates very close to capacity on other
channels such as the binary symmetric channel (BSC) and the additive white
Gaussian noise channel (AWGNC)[4]. Because of this, one could say that the
problem of reliable communication over many practical channels has been
solved. However, such a statement comes with a caveat: both the transmit-
ter and the receiver must know the exact channel statistics a-priori. While
this assumption is valid in many important cases, it is clearly not true in
many other equally important cases. For example, on the internet (which is
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modeled as a BEC), the probability p that a given packet is dropped varies
with time, depending on traffic conditions in the network. A code designed
for a good channel (low p) would result in decoding failure when used over a
bad channel (high p). Conversely, a code designed for a bad channel would
result in unnecessary packet transmissions when used over a good channel.

We can solve this problem by using rateless codes. Instead of encoding
the k information bits to a pre-determined number of bits using a block code,
the transmitter encodes them into a potentially infinite stream of bits and
then starts transmitting them. Once the receiver gets a sufficient number of
symbols from the output stream, it decodes the original k bits. The number
of symbols required for successful decoding depends on the quality of the
channel. If decoding fails, the receiver can pick up a few more output symbols
and attempt decoding again. This process can be repeated until successful
decoding. The receiver can then tell the transmitter over a feedback channel
to stop any further transmission.

The use of such an “incremental redundancy” scheme is not new to coding
theorists. In 1974, Mandelbaum [5] proposed puncturing a low rate block
code to build such a system. First the information bits are encoded using a
low rate block code. The resulting codeword is then punctured suitably and
transmitted over the channel. At the receiver the punctured bits are treated
as erasures. If the receiver fails to decode using just the received bits, then
some of the punctured bits are transmitted. This process is repeated till
every bit of the low rate codeword has been transmitted. If the decoder still
fails, the transmitter begins to retransmit bits till successful decoding. It is
easy to see such a system is indeed a rateless code, since the encoder ends
up transmitting a different number of bits depending on the quality of the
channel. Moreover, if the block code is a random (or random linear) block
code, then the rateless code approaches the Shannon limit on every binary
input symmetric channel (BISC) as the rate of the block code approaches
zero. Thus such a scheme is optimal in the information theoretic sense.

Unfortunately, it does not work as well with practical codes. Mandelbaum
originally used RS codes for this purpose and other authors have investigated
the use of punctured low rate convolutional [6] and turbo [7] codes. In addi-
tion to many code-dependent problems, all these schemes share a few common
problems. Firstly, the performance of the rateless code is highly sensitive to
the performance of the low rate block code i.e., a slightly sub-optimal block
code can result in a highly sub-optimal rateless code. Secondly, the rateless
code has very high decoding complexity, even on a good channel. This is

2



because on any channel, the decoder is decoding the same low-rate code, but
with varying channel information. The complexity of such a decoding grows
at least as O(k/R) where R is the rate of the low rate code.

In a recent landmark paper, Luby [8] circumvented these problems by de-
signing rateless codes which are not obtained by puncturing standard block
codes. These codes, known as Luby Transform (LT) codes, are low density
generator matrix codes which are decoded using the same message passing
decoding algorithm (belief propagation) that is used to decode LDPC codes.
Also, just like LDPC codes, LT codes achieve capacity on every BEC. Un-
fortunately, LT codes also share the error floor problem endemic to capacity
achieving LDPC codes. Shokrollahi [9, 10] showed that this problem can be
solved using raptor codes, which are LT codes combined with outer LDPC
codes. These codes have no noticeable error floors on the BEC though their
rate is slightly bounded away from capacity.

The aim of this paper is to study the performance of LT and raptor codes
on channels other than the BEC. Since LDPC codes designed for the BEC
perform fairly well on other channels, one might conjecture that such a result
holds for LT codes as well. We test this conjecture using simulation studies
and density evolution [11].

2 LT codes

The operation of an LT encoder is very easy to describe. From k given infor-
mation bits, it generates an infinite stream of encoded bits, with each such
encoded bit generated as follows:

1. Pick a degree d at random according to a distribution µ(d).
2. Choose uniformly at random d distinct input bits.
3. The encoded bit’s value is the XOR-sum of these d bit values.

The encoded bit is then transmitted over a noisy channel, and the decoder
receives a corrupted version of this bit. Here we make the non-trivial assump-
tion that the encoder and decoder are completely synchronized and share a
common random number generator i.e., the decoder knows which d bits are
used to generate any given encoded bit, but not their values. On the inter-
net, this sort of synchronization is easily achieved because every packet has
an uncorrupted packet number. More complicated schemes are required on
other channels; here we shall just assume that some such scheme exists and
works perfectly in the system we’re studying. In other words, the decoder
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Figure 1: Tanner graph of (a) LDPC code (b) LT code.

can reconstruct the LT code’s Tanner graph without error.
Having done that, the decoder runs a belief propagation algorithm on this

Tanner graph. The message passing rules are straightforward and resemble
those of an LDPC decoder. However there is one important difference: the
Tanner graph of an LDPC code contains only one kind of variable node (figure
1(a)), while that of an LT code contains two kinds of variable nodes (figure
1(b)) These are the information bit variable nodes which are not transmitted
(and hence have no channel evidence) and the encoded bit variable nodes
which are transmitted over the channel. Clearly, for large block lengths, the
performance of such a system depends mostly on the degree distribution µ.
Luby uses the Robust Soliton (RS) distribution, which in turn is based on
the ideal soliton distribution, defined as follows:

ρ(1) = 1/k

ρ(i) = 1/i(i − 1) ∀i ∈ {2, 3, ..., k} (1)

While the ideal soliton distribution is optimal in some ways (see [8]), it
performs rather poorly in practice. However, it can modified slightly to yield

the robust soliton distribution RS(k, c, δ). Let R
4

= c · ln(k/δ)
√

k for some
suitable constant c > 0. Define

τ(i) =











R/ik for i = 1, . . . , k/R − 1

R ln(R/δ)/k for i = k/R

0 for i = k/R + 1, . . . , k

(2)
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Now add τ(.) to the ideal soliton distribution ρ(.) and normalize to obtain
the robust soliton distribution:

µ(i) = (ρ(i) + τ(i))/β (3)

where β is the normalization constant chosen to ensure that µ is a probability
distribution.

Luby’s analysis and simulation studies show that this distribution per-
forms very well on the erasure channel. The only disadvantage is the de-
coding complexity grows as O(k ln k), but it turns out that such a growth
in complexity is in fact necessary to achieve capacity [9]. However, slightly
sub-optimal codes called raptor codes, can be designed with decoding com-
plexity O(k) [9]. On the BEC, theoretical analysis of the performance of LT
codes and raptor codes is feasible, and both codes have been shown to have
excellent performance. In fact, raptor codes are currently being used by Dig-
ital Fountain, a Silicon Valley based company, to provide fast and reliable
transfer of large files over the Internet.

On other channels such as the BSC and the AWGNC, there have been
no studies in the literature on the use of LT and raptor codes, despite the
existence of many potential applications (Eg: Transfer of large files over a
wireless link, multicast over a wireless channel). We hope to fill this void
by presenting some simulation results and some theoretical analysis (density
evolution). In this paper, we focus on the BSC and the AWGNC, but we
hope to extend our studies to time varying and fading channels.

3 LT codes on noisy channels

When the receiver tries decoding after picking up a finite number n of symbols
from the infinite stream sent out by the transmitter, it is in effect trying to
decode an (n, k) code, with a non-zero rate R = k/n. As R decreases, the
decoding complexity goes up and the probability of decoding error goes down.
In this paper, we have studied the variation of bit error rate (BER) and word
error rate (WER) with the rate of the code on a given channel.

In figure 2, we show some results for LT codes on a BSC with 11% bit flip
probability. We mention that the results are similar in nature on other BSCs
and other AWGNCs as well. In this figure, we plot R−1 on the x-axis and
BER/WER on the y-axis. The receiver buffers up kR−1 bits before it starts
decoding the LT code using belief propagation. On a BSC with 11% bit flip
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Figure 2: LT codes generated using the RS(k,0.01,0.5) distribution on a BSC
with p = 0.11

probability, the Shannon limit is R−1 = 2 i.e., a little over 2k bits should
suffice for reliable decoding in the large k limit. We see from the figure that
an LT code with k = 10000 drawn using the RS(10000,0.1,0.5) distribution
can achieve a WER of 10−2 at R−1 = 2.5 (or n = 25000). While this may
suffice for certain applications, neither a 25% overhead nor a WER of 10−2

is particularly impressive. Moreover, the WER and BER curves bottom out
into an error floor, and achieving very small WERs without huge overheads in
nearly impossible. Going to higher block lengths is also not practical because
of the O(k ln k) complexity.

The error floor problem is not confined to LT codes generated using a
robust soliton distribution. Codes generated using distributions optimized
by Shokrollahi for the BEC1[9] also exhibit similar behaviour. The main
advantage of these distributions is that the average number of edges per node
remains constant with increasing k, which means the decoding complexity
grows only as O(k). On the minus side, there will be a small fraction of
information bit nodes that are not connected to any check node. This means
that even as k goes to infinity, the bit error rate does not go to zero and
consequently, the word error rate is always one.

1Note that these distributions were not designed to be used directly in LT codes.
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Figure 3: LT codes generated using right distribution in Eqn. 4 on a BSC
with p = 0.11

In this paper, we discuss the performance of one particular distribution
from [9]:

µ(x) = 0.007969x + 0.493570x2 + 0.166220x3

+0.072646x4 + 0.082558x5 + 0.056058x8 + 0.037229x9

+0.055590x19 + 0.025023x65 + 0.0003135x66 (4)

Shown in figure 3 is the performance of codes generated using the distribution
in Eqn 4 at lengths 1000, 10000 and infinity. The performance at length
infinity is computed using density evolution [11]. Again, we observe fairly
bad error floors, even in the infinite blocklength limit.

We must mention that these error floors are not just due to the presence
of information bit variable nodes not connected to any check nodes. For
example, when R−1 = 3.00, only a very small fraction of variable nodes
(2.25×10−8) are unconnected, while density evolution predicts a much larger
bit error rate (1.75 × 10−4). This can be attributed in part to the fact that
there are variable nodes which are connected to a relatively small number of
output nodes and hence are always unreliable.
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4 Raptor Codes

The error floors exhibited by LT codes suggest the use of an outer code.
Indeed this is what Shokrollahi does in the case of the BEC [9, 10] where
he introduces2 the idea of raptor codes, which are LT codes combined with
outer codes. Typically these outer codes are high rate LDPC codes. In this
paper, we use the distribution in Eqn 4 for the inner LT code. For the outer
LDPC code, we follow Shokrollahi [9] and use a left regular distribution (node
degree 4 for all nodes) and right Poisson (check nodes chosen randomly with
a uniform distribution).
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Figure 4: Comparing LT codes with raptor codes on a BSC with p=0.11.
The LT code has k = 10000 and is generated using the distribution in Eqn.
4. The raptor code has k = 9500 and has two components: an outer rate-0.95
LDPC code and an inner rateless LT code generated using the distribution
in Eqn. 4.

The encoder for such a raptor code works as follows: the k input bits are
first encoded into k′ bits to form a codeword of the outer LDPC code. These
k′ bits are then encoded into an infinite stream of bits using the rateless
LT code. The decoder picks up a sufficient number (n) of output symbols,

2We must mention here that Maymounkov [12] independently proposed the idea of
using an outer code.
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constructs a Tanner graph that incorporates both the outer LDPC code and
the inner LT code, and decodes using belief propagation on this Tanner
graph.

Simulation studies, such as the one shown in figure 4 clearly indicate
the superiority of raptor codes. Figure 4 shows a comparison between LT
codes and raptor codes on a BSC with bit flip probability 0.11. The LT
code has k = 10000 and is generated using the distribution in Eqn. 4. The
raptor code has k = 9500 and uses an outer LDPC code of rate 0.95 to get
k′ = 10000 encoded bits. These bits are then encoded using an inner LT
code, again generated using the distribution in Eqn 4. Figure 4 clearly shows
the advantage of using the outer high-rate code.

Raptor codes not only beat LT codes comprehensively, but also have
near-optimal performance on a wide variety of channels as shown in figure
5, which shows the performance of the aforementioned raptor code on four
different channels. On each of these channels, the raptor code has a waterfall
region close to the Shannon capacity, with no noticelable error floors. Of
course, this does not rule out error floors at lower WERs.
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Figure 5: Performance of raptor code with k=9500 and k’=10000 on different
channels: (a) BSC with p = 0.11 and AWGNC with E

s
/N0 = −2.83dB. Both

channels have capacity 0.5. (b) on BSC with p = 0.2145 and AWGNC with
E

s
/N0 = −6.81dB. Both channels have capacity 0.25

Another indicator of the performance of a rateless code on any given
channel is the number of bits required for successful decoding. We must note
here this indicator not only depends on the code, but also on the number
of decoding attempts made by the receiver. For example, the decoder could
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Figure 6: Histogram of number of bits required for successful decoding of
raptor code with k = 9500 on an AWGNC with E

s
/N0 = −2.83dB. The

capacity of this channel is 0.5. The receiver first attempts decoding after
receiving 19000 noisy bits (Shannon limit). Whenever decoding fails, the
receiver waits for another 100 bits before attempting to decode again.

attempt decoding each time it receives a new noisy bit. While such a decoder
would be optimal in terms of number of bits required for successful decoding,
it would have prohibitively high decoding complexity. A more practical de-
coder would wait for more bits to come in before decoding. Such a decoder
would have a vastly lower complexity at the expense of slightly larger num-
ber of bits received. Note that such a tradeoff is absent in the case of the
BEC. This is because the decoder fails when the Tanner graph is reduced to
a stopping set. After new bits are received, further decoding can be done on
the stopping set instead of the original Tanner graph. Such a scheme is not
appplicable to noisy channels where the decoder must start over every time
new bits are received.

Figure 6 shows a histogram of the number of noisy bits needed for de-
coding the previously described raptor code with k = 9500. We observe that
the expected number of noisy bits required for successful decoding (20737)
is fairly close to the Shannon limit (19000).
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5 Conclusion

We have conducted simulation studies of rateless codes on channels such
as the BSC and the AWGNC. We found that raptor codes have excellent
performance on such channels, while the performance of LT codes is not
as good. These results suggest that raptor codes are ideal for use in data
transfer protocols on noisy channels. A similar observation has already been
made on the BEC [9] and consequently, commercial applications that use
raptor codes on the Internet are already in the market.

We must point out here that we have not explicitly designed any forward
error correction based data transfer scheme for noisy channels. We have only
shown that raptor codes are likely to outperform any other known class of
rateless codes in such a scheme. Therefore, a natural direction for future work
is the design of a raptor code based protocol and a study of its performance
on relevant noisy channels, such as fading channels.
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