
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Constructing Free Energy Approximations
and Generalized Belief Propagation

Algorithms

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss

TR2002-35 August 2002

Abstract

Note: This technical report is superseded by MERL TR2004-040, available at http://www.merl.com/papers/TR2004-
040/.The region graph method is the most general of these methods, and it subsumes all the other
methods. Region graphs also provide the natural graphical setting for GBP algorithms. We ex-
plain how to obtain three different versions of GBP algorithms and show that their fixed points
will always correspond to stationary points of the region graph approximation to the free energy.
We also show that the region graph approximation is exact when the region graph has no cycles.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2002
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Constructing Free Energy Approximations
and Generalized Belief Propagation

Algorithms

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss

TR-2002-35 August 2002

Abstract

Important inference problems in statistical physics, computer vision, error-correcting
coding theory, and artificial intelligence can all be reformulated as the computation of
marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an
efficient way to solve these problems that is exact when the factor graph is a tree, but
only approximate when the factor graph has cycles.

We show that BP fixed points correspond to the stationary points of the Bethe ap-
proximation to the free energy for a factor graph. We explain how to obtain region-
based free energy approximations that improve the Bethe approximation, and corre-
sponding generalized belief propagation (GBP) algorithms.

We emphasize the conditions a free energy approximation must satisfy in order to be
a “valid” approximation. We describe the relationship between four different methods
that can be used to generate valid approximations: the “Bethe method,” the “junction
graph method,” the “cluster variation method,” and the “region graph method.”

The region graph method is the most general of these methods, and it subsumes all
the other methods. Region graphs also provide the natural graphical setting for GBP
algorithms. We explain how to obtain three different versions of GBP algorithms and
show that their fixed points will always correspond to stationary points of the region
graph approximation to the free energy. We also show that the region graph approxi-
mation is exact when the region graph has no cycles.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such
whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research
Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions
of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment
of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.



Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2002
201 Broadway, Cambridge, Massachusetts 02139



This technical report has been superseded by MERL TR2004-040, which was posted in May, 2004.



1

ConstructingFreeEnergy Approximationsand
GeneralizedBelief PropagationAlgorithms

JonathanS.Yedidia
�
, William T. Freeman� , andYair Weiss �

Abstract— Important inferenceproblemsin statistical physics,
computer vision, error-correcting coding theory, and artificial in-
telligencecan all be reformulated asthe computation of marginal
probabilities on factor graphs. The belief propagation(BP) algo-
rithm is an efficient way to solve theseproblemsthat is exactwhen
the factor graph is a tr ee,but only approximate when the factor
graph hascycles.

We show that BP fixed points correspond to the stationary
points of the Betheapproximation to the fr eeenergy for a factor
graph. Weexplainhow to obtain region-basedfr eeenergy approx-
imations that impr ove the Betheapproximation, and correspond-
ing generalizedbelief propagation(GBP) algorithms.

Weemphasizethe conditionsa fr eeenergy approximation must
satisfy in order to be a “v alid” approximation. We describethe
relationship betweenfour differ ent methods that can be used to
generatevalid approximations: the “Bethe method,” the “junction
graph method,” the “cluster variation method,” and the “r egion
graph method.”

The regiongraph method is the most generalof thesemethods,
and it subsumesall the other methods.Regiongraphsalsoprovide
the natural graphical settingfor GBP algorithms. Weexplain how
to obtain thr eediffer entversionsof GBP algorithms and show that
their fixed points will alwayscorrespondto stationary points of the
regiongraph approximation to the fr eeenergy. Wealsoshow that
the region graph approximation is exact when the region graph
hasno cycles.

I . INTRODUCTION

Problemsinvolving probabilistic inferenceusing graphical
modelsare importantin a wide variety of disciplines,includ-
ing statisticalphysics,signalprocessing,artificial intelligence,
and digital communications[1], [2]. Message-passingalgo-
rithmsareapracticalandpowerful wayto solvesuchproblems.
The centrality of such problemsand the utility of message-
passingalgorithmsfor solving themis an explanationfor the
factthatequivalentor veryclosely-relatedmessage-passingal-
gorithmshave now beenindependentlyinventedmany times.
They arewell-known by nameslike the forward-backwardal-
gorithmfor HiddenMarkov Models[3], theViterbi algorithm
[4], [5], Gallager’s sum-productalgorithmfor decodinglow-
densityparitycheckcodes[6], the“turbo-decoding”algorithm
[7], [8], Pearl’s “belief propagation”algorithmfor inferenceon
Bayesiannetworks [9], the“Kalman filter” for signalprocess-
ing [10], [11], andthe“transfermatrix” approachin statistical
mechanics[12].�

MERL CambridgeResearchLab, 201Broadway, 8th Floor, Cambridge
MA 02139.yedidia@merl.com�

ElectricalEngineeringandComputerScience,MIT Artificial Intelligence
Laboratory, NE43a,CambridgeMA 02139.wtf@ai.mit.edu�

Schoolof ComputerScienceandEngineering,TheHebrew Universityof
Jerusalem,91904Jerusalem,Israel.yweiss@cs.huji.ac.il

In this list of “standard”belief propagation(BP) algorithms,
we have blurreda distinctionbetweentwo differentobjectives
that onemight have, andthe slightly differentalgorithmsthat
result.Sometimes,onemightbeinterestedin obtainingtheone
globalstateof a systemthat is mostprobableor otherwiseop-
timal. In othercases,one is interestedin obtainingmarginal
probabilitiesfor somesubsetof thenodesof thesystem,given
evidenceaboutothernodesin thesystem.In thispaper, wewill
focusexclusively on this latterproblem.

In all standardBP algorithms,messagesaresentfrom one
nodein a graphicalmodel to a neighboringnode. The algo-
rithms are exact when the graphicalmodel is free of cycles.
Thus,a commonapproachfor dealingwith graphicalmodels
thatdohavecyclesis to try to convertthemto equivalentcycle-
free graphicalmodels,and then to usethe standardBP algo-
rithm [13]. In somecases,this is possible,but for many other
casesof practicalinterest,suchanapproachis intractable,and
onemustsettlefor approximatemethods.

Fortunately, thestandardBPalgorithmsarewell-defined,and
oftengive surprisinglygoodapproximateresults,for graphical
modelswith cycles. Nevertheless,in suchcasesthereareno
guarantees,andsometimestheresultsarequitepoor, or theal-
gorithmfails to give any resultat all becauseit doesnot con-
verge[14]. Two majorgoalsof thispaperareto explainwhy the
standardBP algorithmoften worksso well even for graphical
modelswith cycles,andto usethat understandingto develop
improvedalgorithmsfor caseswhenit doesnotwork well.

Theclassof algorithmsthatwe will describe,which we call
generalizedbelief propagation (GBP)algorithms,all have the
characteristicthatsetsor regionsof nodeswill sendmessagesto
otherregionsof nodes.Theregionsof nodesthatcommunicate
with eachothercanbe easilyvisualizedin termsof a region
graph. The standardBP algorithmis a specialcaseof a GBP
algorithm,with aparticularchoiceof regions.Differentchoices
of region graphswill give differentGBP algorithms,and the
usercanchooseto tradeoff complexity for accuracy.

In practice,GBP algorithmscanoften dramaticallyoutper-
form BP algorithmsin termsof either their accuracy or their
convergenceproperties,for minimalcomputationalcost,if one
makesan intelligentchoiceof regions. However, how to opti-
mally chooseregionsfor aGBPalgorithmremainsat thispoint
moreanart thana science.We hopethatthis papercontributes
to thisproblemby delineatingwhatclassesof constructionsare
likely to givegoodresults.

We shall give a theoreticaljustificationof GBP algorithms
by showing thattheir fixedpointsareidenticalto thestationary
pointsof a region-basedfreeenergy, whichis anapproximation
to anotherfreeenergy thatcanbe justifiedby a rigorousvari-



ationalprinciple. The first specializedexamplesof suchfree
energies� wereintroducedlong agoin thephysicsliteratureby
by Bethe[15] andKikuchi [16]. For theimportantspecialcase
of thestandardBP algorithm,we show that its fixedpointsare
thesameasthestationarypointsof theBethefreeenergy, thus
establishingan importantbasiclink betweena classicalalgo-
rithm anda classicalapproximationfrom physics.

One must be careful in constructinga region graphin or-
der to ensurethat the resultingapproximationsare accurate.
In our original work introducingGBPalgorithms[17], we fo-
cusedon a sub-classof GBP algorithmsthat wereequivalent
to freeenergy approximationsbasedon Kikuchi’sclustervari-
ation method[16], [18], [19]. We shall show that this method
is only oneof a variety of methodsto generateregion graphs
andtheir correspondingfreeenergiesandmessage-passingal-
gorithms.

In our original work, we alsofocusedon graphicalmodels
definedin termsof pair-wise or higher-orderMarkov random
fields(MRFs). In this paper, we shall insteadfocuson graphi-
calmodelsdefinedin termsof factorgraphs.All ourresultscan
be re-expressedfor othergraphicalmodelswithout difficulty.
Usingfactorgraphshascertainpracticaladvantages–inpartic-
ularwecanrefertheneophytereaderto theexcellentreview by
Kschischanget.al. [20]. That review explainstheequivalence
to factorgraphsof othergraphicalmodelssuchasBayesiannet-
works, Tannergraphsfor error-correctingcodes,or pair-wise
MRFs, andexplains the standardBP algorithmin its various
guisesasanalgorithmthatoperateson factorgraphs.

Otherformulationsof thestandardBPalgorithmprovidedif-
ferentinsights,andwe refer the interestedreaderto a number
of importantrecentpapersthatexploit alternative views of the
BPalgorithm[21], [22], [23], [24], [25], [26].

After our original work which introducedregion-basedfree
energies and GBP algorithmsbasedon the cluster variation
method,Aji and McEliece introduceda classof free energy
approximationsandGBPalgorithmsbasedon junctiongraphs
[27]. Oneof thegoalsof thispaperis to unify ourpreviousap-
proachwith theonethatAji andMcEliecepresented.McEliece
andYildirim have independentlydevelopeda unifiedapproach
to belief propagationwhich is largely equivalentto our region
graphapproach,and we recommendtheir elegant exposition
[28]. PakzadandAnantharamhavealsorecentlypresentedpar-
allel ideasin a brief paper[29].

Theoutlinefor therestof thepaperis asfollows. In section
II, we review andintroduceour notationfor factorgraphsand
thestandardBPalgorithm.In sectionsIII andIV, we introduce
andexplain thephysicalintuition behindvariationalfreeener-
giesandregion-basedapproximationsto them.In sectionV, we
considertheBetheMethodwhichcanbeusedto obtainparticu-
larly simpleregion-basedfreeenergy approximations.We also
show in that sectionthat the standardBP algorithmhasfixed
pointsequivalentto thestationarypointsof theBetheapprox-
imationto the freeenergy. In sectionVI, we developa theory
that canbe usedto determinewhich region-basedfree energy
approximationswill be likely to give accurateresults. In par-
ticular, we describetheRegion GraphMethod, a very general
methodfor generatingvalid region graphsandtheir associated
freeenergies.In sectionVII, weintroduceGBPalgorithms,and

show thatthereareactuallyavarietyof waysto defineGBPal-
gorithmsfor any givenregiongraph,all of whichhaveidentical
fixedpoints.Wefocusononeparticulartypeof GBPalgorithm,
whichwecall theparent-to-child algorithm.Finally, in section
VIII, we give a detailedexampleof the implementationof the
parent-to-childGBPalgorithm.

We have chosento put an unusuallylarge amountof mate-
rial in the appendicesof this paper. We did this in an attempt
to help the readergraspthe fundamentalconceptsbehindour
work andnot losesight of the forestbecauseof all the trees.
Theappendicesdescribea varietyof othermethodsto generate
regiongraphsandGBPalgorithmswhichcouldeasilyproveto
beasimportantin practiceasthemethodsdescribedin themain
text.

I I . FACTOR GRAPHS AND BELIEF PROPAGATION

Let �	��

��������������������� be a set of � discrete-valued ran-
dom variablesand let ��� representthe possiblerealizations
of random variable ��� . We considerthe joint probability
massfunction � �!� 
#" � 
 ��� �#" � � ����������� �$" � �&% , which
we shall write more succintly as � �!' % , where ' standsfor�	� 
 ��� � �	��������� � � . We supposethat � �(' % factorsinto a product
of functions.Thatis, wesupposethat � �!' % hastheverygeneral
form �)�(' %*",+-/.1032 0 �!' 0 % � (1)

Here 4 is an index labeling 5 functions 2�6 � 2�7 � 2�8 �	������� 2:9 ,
wherethefunction 2 0 �(' 0 % hasarguments' 0 thataresomesub-
setof �;�<

�����=�����������>��� . - is a normalizationconstant.

A factor graph [20] is a bipartite graphthat expressesthe
factorizationstructurein equation(1). A factor graphhasa
variablenode(whichwedraw asa circle) for eachvariable� � ,
a factornode(whichwedraw asasquare)for eachfunction 2 0 ,
with anedgeconnectingvariablenode? to factornode 4 if and
only if � � is anargumentof 2 0 . (Weshallalwaysindex variable
nodeswith lettersstartingwith ? , andfactornodeswith letters
startingwith 4 .) As anexample,thefactorgraphcorresponding
to� �!�<
:���>�:���>@=���BA %C" +- 2 6D�(�E
������ %�2 7F�!���G���>@=���BA %�2 8H�!�BA % (2)

in shown in figure1.

Fig. 1. A small factor graphrepresentingthe joint probability distributionIKJ�LKM1N!L=O	N!L:P	NQL:R1S�T MUWVYX J�LKMZN!L=O1S V1[ J�L=O	N!L:P;N\L:R1S V1] J�L:R^S`_
Weshallfocusontheproblemof computingmarginalproba-

bility distributions.We call thepossiblevaluesof � � thestates
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of variablenode ? . If a is a set of variablenodes,we use'cb to denote
d

the statesof the correspondingvariablenodes.�<bc�!'cb % will denotethemarginal probability functionobtained
by marginalizing � �!' % ontothesetof variablenodesa , i.e.,�<bc�!'cb %*"feg=h�gGi � �(' % � (3)

Herethesumover ' j
'cb indicatesthatwesumoverthestatesof
all thevariablenodesnot in theset a . We shallwrite �>���!��� % for
themarginalprobabilityfunctionwhentheset a consistsof the
singlenode ? . Oneshouldnotethat theproblemof computing
marginalprobabilityfunctionsis in generalhardbecauseit can
requiresumminganexponentiallylargenumberof terms.

Thebeliefpropagation(BP) algorithmis a methodfor com-
puting marginal probability functions. We describethe algo-
rithm in termsof operationson a factorgraph. As we already
mentionedin the introduction,the computedmarginal proba-
bility functionswill beexact if the factorgraphhasno cycles,
but theBP algorithmis still well-definedandempiricallyoften
gives good approximateanswerseven when the factor graph
doeshavecycles.

To definetheBP algorithm,we first introducemessagesbe-
tweenvariablenodesand their neighboringfactor nodesand
vice versa.The messagek 0^l �Y�(�>� % from the factornode 4 to
thevariablenode? is avectoroverthepossiblestatesof ��� . This
messagecanbeinterpretedasastatementfrom factornode4 to
variablenode? abouttherelativeprobabilitiesthat ? is in its dif-
ferentstates,basedon thefunction 2 0 . Themessagem � l�0 �(� �`%
from the variablenode ? to the factornode 4 may in turn be
interpretedasa statementaboutthe relative probabilitiesthat
node ? is in its differentstates,basedon all the information ?
hasexceptfor thatbasedon thefunction 2 0 .

Themessagesareinitialized to k 0^l ���!��� %F" mn� lo0 �(�>� %p" +for all factornodes4 , variablenodes? , andstates� � . In fact,
other initializationsarealsopossible,andthe overall normal-
izationof themessagescanalsobechosenarbitrarily. Theonly
importantnormalizationconditionis on thebeliefs,introduced
below, which mustsumto one in order to properly represent
probabilities. The messagesareupdatedaccordingto the fol-
lowing rules: m � lo0 �(� �Q%Hqr" .sut �pv���w h 0 k s l � �!� �`% � (4)

and k 0^l �Y�(�>� %Dqx"yeg=z�h�{;| 2 0 �!' 0 % .} t �pv 0 w h � m } lo0 �!� } % (5)

Here, �~�(? % j:4 denotesall the nodesthat that areneighborsof
node? exceptfor node4 , and � g z hY{ | denotesasumoverall the
variables' 0 thatareargumentsof 2 0 except � � . Themessages
may be normalizedin any way that is convenient,asonly the
ratios of the termsin a messageare relevant. This standard
BPalgorithmis sometimescalledthe“sum-product”algorithm
becauseof thesumandproductthatoccurson the right-hand-
sideof equation(5).

In somecases,it is convenientto eliminate the m � l�0 �(� �`%
messagesand write the message-updateequationsentirely in

termsof the k 0�l � �!� �`% messages.Alternatively, of course,one
could chooseto eliminatethe k 0^l � �(� �Q% messagesin favor of
the m � lo0 �(� �Q% messages.

These message-updaterules may initially appear quite
mysterious–amajor goal of this paperwill be to explain, jus-
tify, andultimately improve uponthem. First though,to com-
pleteourpreliminarydescriptionof thestandardBPalgorithm,
we introducethebelief �Z���(�>� % at a variablenode ? , which is the
BP approximationto the exact marginal probability function�����!��� % . Thebelief �Z���!��� % canbecomputedfrom theequation� � �(� �`%C� .0 t �pv���w k 0^l � �(� �Q% � (6)

wherewe have usedthe proportionalitysymbol � to indicate
that one must normalizethe beliefs so that they sum to one.
TheBPmessage-updateequationsareiterateduntil they (hope-
fully) converge,at whichpoint thebeliefscanbereadoff from
equation(6).

We canalsousethe BP algorithmto computejoint beliefs�^bn�!'cb % over setsof variablenodes a that may containmore
than one node. Considerthe importantcasewhen the set a
consistsof all the variablenodesattachedto the 4 th function2 0 �(' 0 % . We will denotethe correspondingbelief by � 0 �(' 0 % ,
whichwill begivenwithin theBPapproximationby� 0 �(' 0 %�� 2 0 �!' 0 %�.� t �Fv 0 w m � l�0 �(� �`%� 2 0 �!' 0 % .� t �Fv 0 w .s�t �Fv���w h 0 k s l � �!� �`% � (7)

We candirectly derivethemessageupdaterules(4) and(5)
from thebelief equations(6) and(7), alongwith themarginal-
izationcondition � � �!� ��%*"yeg=z^hY{;| � 0 �(' 0 % (8)

which holds when � � is one of the argumentsin the set ' 0 .
Thus,thebelief equations(6) and(7) canbeconsideredto de-
fine the BP algorithm,a point of view that will prove useful
later.

TheBP algorithmis normally justifiedasbeinganexactal-
gorithm when the factor graphhasno cycles (i.e., it hasthe
topologyof a tree.) We shallnot prove thatpropertyhere,but
will simply give a smallexample:considerthe joint probabil-
ity distribution givenby equation(2) asillustratedin figure1.
Supposethat we would like to compute� 
 �(� 
�% , the marginal
probability distribution at variablenode + . Repeatedlyusing
theBPequations,wefind� 
 �!� 
	%�� k 6 l 
 �!� 
	%� e {;� 2 6D�(�E
������ % mn� l 6D�(��� %� e { � 2�6 �(� 
 ��� �
% k 7 l � �(� �;%� e {;� e {	� e {�� 2 6��!�<
:����� %�2 7F�(�>�=����@G����A % mn@ l 7��(�>@ % mEA l 7p�(��A %
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� e { � e { � e { � 2�6 �(� 
 ��� �;%�2�7 �(� � ��� @ ��� A�% k 8 l A �(� A
%� e {	� e {;� e {	� 2 6D�(�E
������ %�2 7p�(���G���>@=���BA %�2 8H�!�BA % (9)

which is exactly thedesiredmarginal probabilityfunction. We
could similarly demonstratethat equation(7) would give ex-
actmulti-nodemarginalprobabilitiesfor graphswith nocycles.
We canalreadyseefrom this examplethat for graphswith no
cycles,theBPalgorithmis essentiallyadynamicprogramming
algorithmthat organizesthe computationsnecessaryto com-
putemarginal probabilitydistributionsin sucha way that they
becometractable.

The BP algorithmwasintroducedinto the codingliterature
by Gallagerasa sub-optimalprobabilisticdecodingalgorithm
for linearblock error-correctingcodes,andsomereadersmay
be most familiar with the BP algorithm in that context [6].
Other readersmay be most familiar with the form of the BP
algorithmintroducedandpopularizedby Pearl[9] for proba-
bilistic inferencewith Bayesiannetworks. Readerswho are
more familiar with the BP algorithmwritten on one of these
forms may want to consult the review by Kschischanget.al.
[20], which explains the equivalencebetweentheseforms of
theBPalgorithmandtheonewehavechosento usehere.

I I I . FREE ENERGIES

In this section,we turn from simply describingtheBP algo-
rithm to explaining its success.In sectionII, we saw that the
BPalgorithmcanbedefinedin termsof thebeliefequations(6)
and(7). We shall eventuallyshow that thesebelief equations
correspondto thestationarityconditionsfor a functionalof the
beliefscalledthe Bethefreeenergy, � �����!�	�
�Q� � �1� 0 % . This fact
servesin somesenseto justify theBPalgorithmevenwhenthe
factorgraphit operateson hascycles,becauseminimizing the
Bethefree energy is a sensibleapproximationprocedurethat
hasa long andsuccessfulhistoryin physics.It alsopointsto a
varietyof waysto improveuponor generalizeBP, especiallyby
improving upontheapproximationsusedin theBethefreeen-
ergy. In therestof thepaper, wewill discussall of theseissues,
but wefirst turnto anexplanationof thenotionof a freeenergy.

Supposethatonehasa systemof � particles,eachof which
canbe in oneof a discretenumberof states,wherethe states
of the ? th particle are labeledby ��� . (As an example, one
might make a variety of simplificationsand characterizethe
statesof the atomsin a magneticcrystalby whethera given
electronin eachatom has an “up” spin or a “down” spin.)
The overall stateof the systemwill be denotedby the vector' " �	� 
 ��� � ����������� � � . Eachstateof the systemhasa corre-
spondingenergy ���(' % . A fundamentalresultof statisticalme-
chanicsis that,in thermalequilibrium,theprobabilityof astate
will begivenby Boltzmann’sLaw� �(' %�" +- �(� %=�=�<� v g w\��� � (10)

Here,� is thetemperature,and
- �(� % is simplyanormalization

constant,known asthepartition function:- �(� %�"�eg t b � �<� v g w!�Y� (11)

wherea is thespaceof all possiblestates' of thesystem.
A substantialpart of statisticalmechanicstheoryis devoted

to the justificationof Boltzmann’s Law. On theotherhand,if
onebegins with a joint probability distribution �)�(' % for some
non-physicalsystem,onecanview Boltzmann’s law asa pos-
tulatethatservesto defineanenergy for thesystem,wherethe
temperaturecanbe setarbitrarily, asit simply setsa scalefor
the units in which one measuresenergy. We shall take this
point of view andset � " + throughoutthe restof this paper.
For thecaseof a factorgraphprobabilitydistribution function� �(' %�" � +
� - %B� 90Z� 
 2 0 �!' 0 % , we definethe energy ���(' % of a
state' to be ���(' %*"�� 9e0Z� 
¡ �¢ 2 0 �(' 0 % (12)

in orderto beconsistentwith Boltzmann’sLaw.
TheHelmholtzfreeenergy �c£ �`¤ ¥W��¦Y¤ �!§ of a systemis� £ �`¤ ¥W�	¦�¤ �!§ "��  �¢ - � (13)

Thisfreeenergy is afundamentallyimportantquantityin statis-
tical mechanics,becauseif onecancalculatethefunctionalde-
pendenceof � £ �`¤ ¥W�	¦�¤ �!§ on quantitieslike a macroscopicmag-
neticfield ¨ or temperature� , thenit is easyto computeex-
perimentallymeasurablequantitieslike theresponseof thesys-
temto a changein ¨ or � . Physicistshave thereforedevoted
considerableenergy to developingtechniqueswhich give good
approximationsto � £ �`¤ ¥W�	¦�¤ �!§ .

Oneimportanttechniqueis basedon a variationalapproach.
Supposeagainthat �)�(' % is the true probability distribution of
thesystem,which obeys Boltzmann’s Law � �!' %F" � �>� v g w � - .
It may be that even if we know � �(' % exactly, it is of a form
that makesthe computationof � £ �`¤ ¥W��¦Y¤ �!§ difficult. We there-
fore introducea “trial” probabilitydistribution ���!' % , anda cor-
respondingvariational freeenergy (oftencalledtheGibbsfree
energy) definedby ���\� %C"ª© �\� %W� ¨«�Q� % � (14)

where © �Q� % is thevariationalaverageenergy:© �\� %C"�eg t b �:�(' % ���(' % (15)

and ¨«�\� % is thevariationalentropy:¨«�Q� %C"¬�«eg t b �:�(' %  �¢ ���(' % � (16)

It followsdirectly from ourdefinitionsthat���\� %C" � £ �`¤ ¥W�	¦�¤ �!§)­~® �Q�:¯�¯ � % (17)

where ® �Q�:¯�¯ � %C° eg t b ���(' %  �¢ ���(' %� �!' % (18)

is the Kullback-Leibler divergencebetween �:�(' % and �)�(' % .
Sincethereexists a theorem[30] that ® �\�:¯�¯ � % is alwaysnon-
negative and is zero if andonly if ���(' %±" � �!' % , we seethat���\� %³² � £ �`¤ ¥W��¦Y¤ �!§ , with equalitypreciselywhen ���!' %*" �)�(' % .
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Minimizing theGibbsfreeenergy ���Q� % is thereforeanexact
procedure´ for computing � £ �`¤ ¥W��¦Y¤ �!§ andrecovering � �!' % . Of
course,as � becomeslarge, this procedureis alsototally in-
tractable,as �:�(' % will take exponentiallylargememoryjust to
store.A morepracticalpossibilityis to upper-bound� £ �`¤ ¥W�	¦�¤ �!§
by minimizing ���Q� % overarestrictedclassof probabilitydistri-
butions. This is the basicideaunderlyingthe meanfield ap-
proach.Onevery popularmean-fieldform for ���(' % is the fac-
torizedform: � 9¶µ �!' %*" �.� � 
 � � �!� ��% � (19)

Usingthis �^9¶µH�!' % , andanenergy function ���(' % of thefactor
graphform given in equation(12), we caneasilycomputethe
meanfield freeenergy � 9¶µ·"¸©C9¶µ¹� ¨ 9¶µ for anarbitrary
factorgraph:

© 9¶µH�`����

�	�������1�Z�&� %C"º� 9e0Z� 
 e g z  �¢ 2 0 �!'E» % .� t �pv 0 w �Z���(��� % �
(20)¨ 9¼µ �u�
� 
 ���������Y� � � %C"¬� �e � � 
 e {;| � � �(� ��%  �¢ � � �(� ��% � (21)

Minimizing ��9¶µ½�\��
����������Y�^� % over the �Z� will give us self-
consistentequationsfor the �Z� , whichcanbesolvednumerically
to obtainamean-fieldapproximationfor thebeliefs � � �(� �`% .

Insteadof a factorizedform, onemight considerothermore
complicatedformsfor ���(' % whichstill leadto tractableapprox-
imations. This is the ideabehindthe “structuredmean-field”
approach[31]. We will not follow that path,andwill instead
describea quite differentapproachto approximating���\� % in
thenext section;onewhichunderliestheBP algorithm.

IV. REGION-BASED FREE ENERGY APPROXIMATIONS

Kikuchi andthe otherphysicistswho further developedthe
so-calledclustervariation method[16], [18], [19] introduced
a classof approximationsto the Gibbsfreeenergy ���Q� % . The
ideabehindtheseapproximationsis similar, but slightly differ-
entfrom themeanfield approximation.Whereasthefactorized
mean-fieldfreeenergy ��9¶µ is afunctionof single-nodebeliefs�Z���(�>� % , in a Kikuchi approximation,the approximatefree en-
ergy �)¾ ��¿^À
Á`Â;� will bea functionof beliefs �^b �('cb % over larger
sets a of variablenodes. Onedrawbackof the clustervaria-
tion methodis that in contrastwith the mean-fieldapproach,
onecannotnormallyexplicitly constructan overall “trial” be-
lief vector ���!' % that is consistentwith the multi-nodebeliefs�^b �('cb % , andthereforeonedoesnot normallyobtainany upper
boundon � [32]. On the otherhand,onecanmake approxi-
mationsthataremuchmoreaccuratethanthefactorizedmean-
field approximation,andthereis agreatdealof flexibility in the
exactchoiceof approximation.As we shallalsoseein further
detail,theseapproximationscanbeexploitedto yield message-
passingalgorithms,andaparticularlysimpleversion–theBethe
approximation–willgive resultsthatareequivalentto thestan-
dardBP algorithm.

Weshallactuallydescribehereaclassof approximationsthat
generalizethosegeneratedby theclustervariationmethodasit

hasbeendescribedin thephysicsliterature,andwill therefore
refer to suchapproximationsas region-basedapproximations.
We refer to thesub-classof approximationsspecificallygener-
atedusingtheclustervariationmethodasKikuchi approxima-
tions.

Fig.2. An illustrationof thedefinitionof a region. Regionsaresetsof variable
and factor nodesin a factor graphsuchthat all variablenodesconnectedto
any includedfactor nodesare included. Thus, the setsof nodes Ã�Ä N�Å�Æ andÃ1Ç N�È)NQÅ;NQÉ;N\Ê	Æ couldberegions,but Ã1Ç N`É�Æ couldnotbearegion(sincefactor
node Ç wasincluded,variablenodesÅ and Ê mustalsobeincluded.)

Webegin by assumingthat �)�(' % hasthefactorgraphform of
equation(1). We definea region Ë of a factorgraphto bea setÌBÍ

of variablenodesandaset � Í of factornodes,suchthatif a
factornode4 belongsto � Í , all thevariablenodesneighboring4 arein

ÌBÍ
. We give examplesof setsof nodesthat could or

could not be consideredregionsin figure 2. Note that the set� Í maybeempty, andthata factor 4 neednot be includedin� Í evenif all its neighboringvariablenodesarein
Ì Í

.
We definethestate' Í of a region Ë to bethecollective set

of variablenodestates�	� � ¯ ?pÎ Ì Í � . Themarginal probability
functionovera region Ë will bedenotedby � Í �!' Í % , by which
we meana marginalizationof � �!' % onto thevariablenodesinÌ Í

. Thecorrespondingbelief � Í �!' Í % will beanapproximation
to thetrue � Í �!' Í % .

We definetheregionenergy � Í �!' Í % to be� Í �(' Í %C"���e0 t µGÏ  �¢ 2 0 �!' 0 % � (22)

where,sinceall the variablenodesneighboringa factornode4ÐÎª� Í areguaranteedto be in the region Ë , we canalways
determineany neededstate ' 0 from the state ' Í . We further
definethe region average energy © Í �Q� Í % , the region entropy¨ Í �Q� Í % , andtheregion freeenergy � Í �\� Í % , by© Í �Q� Í %C" e g Ï � Í �!' Í % � Í �!' Í % (23)

¨ Í �\� Í %*"º�#e g Ï � Í �!' Í %  �¢ � Í �(' Í % (24)

and � Í �Q� Í %*"·© Í �Q� Í %)� ¨ Í �Q� Í % � (25)

Theintuitive ideabehindaregion-basedfreeenergy approx-
imationis thatwewill try to breakupthefactorgraphinto aset
of largeregionsthatincludeeveryfactorandvariablenode,and
saythattheoverallfreeenergy is thesumof thefreeenergiesof
all theregions.Of course,if someof thelargeregionsoverlap,
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thenwewill haveerredby countingthefreeenergy contributed
by someÑ nodestwo or moretimes,sowe thenneedto subtract
out thefreeenergiesof theseoverlapregionsin suchaway that
eachfactorandvariablenodeis countedexactlyonce.

To make thesenotionsprecise,we say that a region-based
approximation�cÒ for theGibbsfreeenergy will bedefinedin
termsof a setof regions Ó , andan associatedsetof counting
numbers Ô Í . Ô Í will alwaysbeaninteger, but mightbezeroor
negativefor someË .

Wesaythatasetof regionsÓ andcountingnumbersÔ Í give
avalid region-basedapproximationwhen,for everyfactornode4 andeveryvariablenode? in thefactorgraph,eÍ t Ò Õ 4�ÎÖ� Í)× Ô Í "$eÍ t Ò Õ ?CÎ Ì Í)× Ô Í " + � (26)

where
Õ Ø Î - × is the set-membershipindicatorfunction equal

to + if
Ø Î - andequalto 0 otherwise.

Theseconditionsensurethatevery factorandvariablenode
will be countedexactly onetime in the approximationto the
freeenergy. If a givenfactoror variablenodeis addedinto the
freeenergy in two differentregions,thentheremustbeanother
regionwhereit is subtractedbackout.

Givenavalid setof regions Ó andcountingnumbersÔ Í , the
region-basedapproximationto theGibbsfreeenergy is simply� Ò �`��� Í � %C"$eÍ t Ò Ô Í � Í �Q� Í % � (27)

Notethattheregion-basedaverageenergy© Ò¼�`�
� Í � %Ù" eÍ t Ò Ô Í © Í �\� Í %" �ÚeÍ t Ò Ô Í e g Ï � Í �(' Í %Ûe0 t µ Ï  �¢ 2 0 �(' 0 % (28)

will always be exact, provided that the beliefs ��� Í �!' Í % �
are equal to the correspondingexact marginal probabilities�Y� Í �(' Í % � . We canseethis by comparingwith the exact av-
erageenergy

©¬"Úeg t b � �!' % ���!' %�"º� 9e0^� 
 e g z � 0 �!' 0 %  �¢ 2 0 �(' 0 % (29)

andnotingthat in theovercountingnumbersÔ Í guaranteethat
eachfactornodeis countedexactly oncein equation(28), and
thatif all the �
� Í � areexactin equation(28),they will properly
marginalizeto givethenecessaryfactorsof � 0 �(' 0 % in equation
(29).

On theotherhand,theregion-basedentropy¨ Ò �`��� Í � %�" eÍ t Ò Ô Í ¨ Í �Q� Í %" � eÍ t Ò Ô Í e g Ï � Í �(' Í %  �¢ � Í �!' Í % (30)

will normally only be an approximationeven if the beliefs� Í �!' Í % wereexactly equalto the true marginal probabilities,
althoughtheconditionthateachvariablenodeis countedonce

makesit a quite “reasonable”approximation,in thesensethat
if theprobabilitydistribution �)�(' % wasflat, this entropy would
at leastcountthenumberof degreesof freedomcorrectly. The
region-basedentropy will alsobeexactin certaincasesthatwe
describelater.

How doesoneselecta valid setof regions Ó andcounting
numbersÔ Í for a givenfactorgraph?Therearein factaninfi-
nite numberof waysto do that. In thenext sectionwe will de-
scribeaverystraightforwardapproachwhichwecall theBethe
method, which is guaranteedto returnvalid setsof regionsand
countingnumbers.We thenprove that the fixed pointsof the
standardBP algorithmcorrespondto stationarypoints of the
Betheapproximationto thefreeenergy.

In thefollowing section,we will introducethe region graph
method, which is a very generalapproachto finding valid ap-
proximations,basedon constructinga region graph. Region
graphsplay a central role in the descriptionboth of the re-
giongraphfreeenergy, andin theconstructionof corresponding
GBPalgorithms,andprovide theclearway of visualizingand
understandingaregion-basedapproximation.

The Bethemethodis a specialcaseof the muchmoregen-
eral region graphmethod.In appendicesA andB, we discuss
two otherimportantmethodsthat arealsospecialcasesof the
region graphmethod:the junctiongraphmethodandtheclus-
ter variation method. In appendixC, we discussin detail the
relationshipbetweenthedifferentmethods.

Fig. 3. A factorgraphwhichweuseto illustrateavarietyof region-basedfree
energy approximations.

V. THE BETHE METHOD

The origins of the Bethe method date back to 1935,
andBethe’s famousapproximationmethodfor magnets[15].
Kikuchi, in his 1951paperthatpioneeredtheclustervariation
method[16], recognizedthat Bethe’s approximationwas the
simplestexampleof anapproximationthatcouldbegenerated
usingthatmethod.Of course,from themodernpoint of view,
theseearly papersfocusedon very specialgraphicalmodels,
andwe warn the readerwho wantsto readtheoriginal papers
thatourdescriptionof Bethe’sandKikuchi’smethodswill bear
little resemblanceto theirexpositions.

In theBethemethod, wetakethesetof regionsincludedin Ó
to beof two types.First,wehaveasetof largeregionsÓ�Ü such
thatthe 5 regionsin Ó�Ü eachcontainexactlyonefactornode
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andall thevariablenodesneighboringthatfactornode.Second,
we haveÑ a setof small regions ÓÛb , suchthat the � regionsinÓÛb eachcontaina singlevariablenode.

We take asan examplethe factorgraphshown in figure 3,
which hassix factor nodeswhich we label Ý���Þ��1ß�� ® �Y�����
and nine variable nodes which we label + �Yà�����������á . For
this example, we would have the following large regions
in Ó Ü : �
Ýo� + �Yà���âB�1ãK� , �;Þ��Yà���ä��1ãå�Yæå� , �
ß���âB�1ãK� , � ® �Yã���æå� ,�
����â��Yãå�ZçK�Yèå� , and �;�D�Yã���æB��è��Yáå� , andthe following small re-
gionsin ÓÛb : � + � , �
àå� , �
äå� , �	âB� , �
ãK� , �
æå� , ��çK� , �
èå� , and �;áå� .
Thecompletesetof regions Ó������!�	� includedin theBetheap-
proximationis Ó������!�	� " Ó�Ü�é�ÓÛb .

If Ë 
 and Ë � aretwo regions,wesaythat Ë 
 is a sub-region
or Ë � and Ë � is a super-region of Ë 
 if thesetof variableand
factornodesin Ëê
 area subsetof thosein Ë�� .

In theBethemethod,the countingnumbersÔ Í for eachre-
gion Ë�ÎÛÓ aregivenby

Ô Í " + � eb t:ë v Í w Ô	b (31)

whereìp�\Ë % is thesetof regionsthataresuper-regionsof Ë .
Using this definitionwe seethat for every region ËíÎ«Ó Ü ,Ô Í " + , while for everyregion Ë�Î±Ó b , Ô Í " + �±î � , whereî �

is thedegree(numberof neighboringfactornodes)of thevari-
ablenode ? . It is easyto confirmthat theBetheapproximation
will alwaysbea valid approximation,aseachfactorandvari-
ablenodewill clearlybecountedonceasrequiredin equation
(26).

We canuseourexpressionsfor Ô Í in equation(28) to obtain
the Betheapproximation to the Gibbs free energy � �����!�	� "© �����!��� � ¨ �����!�	� , where

© �����!�	� "º� 9e0Z� 
 e g=z � 0 �(' 0 %  �¢ 2 0 �!' 0 % (32)

and

¨¶�����!�	� " � 9e0Z� 
 e g z � 0 �(' 0 %  �¢ � 0 �!' 0 %
­ �e � � 
 � î � � + % e { | �^���(�>� %  �¢ �^���(�>� % � (33)

NotethattheBetheentropy will beexactif thefactorgraphhas
nocycles,becausein thatcasewehavetheexactformula[13]

� �(' %�" � 90Z� 
 � 0 �!' 0 %� �� � 
 �ï� � �!� ��%�%Yð | � 
 � (34)

whichwecansubstituteinto theformulafor thevariationalen-
tropy to recover ¨ �����!��� .

Weshallnow show thatminimizingtheBetheapproximation
to thefreeenergy will alwaysgiveresultsthatareequivalentto
the standardBP algorithm,so the exactnessof the Betheap-
proximationfor factorgraphswith nocyclesis nosurprise.

A. Equivalenceof theBetheApproximationandStandard BP

Wenow show thatthestandardBPalgorithmis equivalentto
theBetheapproximation,andexploresomeof theimplications
of thatequivalence.In particular, weshow thatthe“messages”
sentin BP areexponentiatedcombinationsof Lagrangemulti-
pliers.

Theorem: Let �;k 0^l � �!� ��% ��m � lo0 �!� ��% � be a set of BP mes-
sagesand let ��� 0 �(' 0 % �Y� � �(� ��% � be the beliefs calculatedfrom
thosemessages.Thenthebeliefsarefixedpointsof theBP al-
gorithmif andonly if they arezerogradientpointsof theBethe
freeenergy � �����\��� , subjectto theconstraintthatall thebeliefs
arenormalizedandconsistent.

Proof: We wantto minimizetheBethefreeenergy, while in-
sistingthatall thebeliefs �Z���(��� % and � 0 �!' 0 % areconsistent.To
thisend,weaddLagrangemultipliers ñ 0 �(�>� % whichenforcethe
constraintthat � g z hY{ |å� 0 �(' 0 %¼" �^���!��� % for every factornode4 andall its neighboringvariablenodes? . We alsoneedto add
Lagrangemultipliers to normalizethe beliefs, but we do not
clutter our equationswith them,astheir effectsareautomati-
cally takeninto accountif wesimplynormalizeourbeliefs.

Settingthederivativeof theresultingLagrangianò �����!�	� with
respectto thebeliefs �Z���!��� % and � 0 �(' 0 % equalto zerogives:� 0 �!' 0 %C�·2 0 �(' 0 % .� t �pv 0 w ��ó zu| v { | w (35)

and � � �(� ��%C� ôõ .0 t �Fv���w ��ó zu| v { | w�ö÷ øù |�ú ø � (36)

If wemake theidentificationñ 0 �Y�(�>� %�"  �¢ mn� 0 �!��� %C"  �¢ .s�t �pv���wYû�c0 k 0�l ���!��� % (37)

thenwe find that we recover the standardBP belief equations
(6) and (7), which meansthat the standardBP fixed points
correspondto stationarypoints of the constrainedBethefree
energy. ü

The fact that òC�B���!��� is boundedbelow implies that the BP
equationsalwayspossessa fixedpoint (obtainedat the global
minimumof òC�����\��� ). To our knowledge,this is thefirst proof
of theexistenceof BP fixedpointsfor a generalgraphwith ar-
bitrarypotentials.Of course,theexistenceof afixedpointdoes
not imply thattheBP algorithmwill convergestartingfrom ar-
bitrary initial conditions.

Theconditionsfor theuniquenessof BPfixedpointsarealso
clarifiedby the equivalencewith theBetheapproximation.In
graphswith no morethana singlecycle, it wasknown that if
all factorsarestrictly positive ( 2 0 �!' 0 %�ýÿþ for all 4 and ' 0 ),
thentherewasauniqueBPfixedpoint.[33]For generalgraphs,
wecanusetheequivalenceestablishedaboveto answeraques-
tion abouttheuniquenessof stationarypointsfor theBethefree
energy. The issueof the numberof stationarypoints of ap-
proximatefreeenergiesis well studiedin physics.To bemore
precise,wecanimaginedefininga sequenceof probabilitydis-
tributions wheresomeor all of our original functionsare all
raisedby a power: 2 0 �(' 0�� � % " 2 0 �(' % 
��Y� . This is equiva-
lent to changingthe temperaturein a physicalsystem,where
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� is the temperature.Many systems,for exampleIsing fer-
romagnets,� will have differentnumbersof solutionsabove or
below a critical temperature � Á within the Betheapproxima-
tion [34]. Above � Á , theconstrainedfreeenergy is convex and
hasa uniquestationarypoint, while below � Á , therearemulti-
plestationarypoints.Usingthisequivalenceit is easyto define
small factorgraphsthatshow a similar behavior. Althoughthe
topologydoesnot changeandthe factorsarealwayspositive,
aswe smoothlychangethefactorswe go from a regimewith a
uniquefixedpoint to onewith multiplefixedpoints.

While we have shown that standardBP can only converge
to stationarypoints of the constrainedBethe free energy, it
is importantto realizethat BP doesnot perform constrained
minimization of the Bethe free energy; i.e. it doesnot de-
crease� �����!��� at every iteration. Indeed,the marginalization
constraintsaretypically not satisfiedat intermediateiterations
of BP: it is only at a fixed point that the beliefsare in a fea-
sible set. Basedon the equivalence,first notedin our earlier
work [17], othershaverecentlydevisedalgorithmsthatdirectly
minimize the free energy on the feasibleset [35], [36], [37].
Suchfreeenergy minimizationsaresomewhatslower thanthe
BPalgorithm,but they areguaranteedto converge.

VI . THE REGION GRAPH METHOD

We now introduceregion graphs, which are central to the
region graphmethodfor generatingvalid freeenergy approxi-
mations,andalsowill provide a graphicalframework for GBP
algorithms.

Let � be thesetof indicesfor the factorandvariablenodes
in a factorgraph. A region graph is a labeled,directedgraph� " � Ì �����Yò % in which eachvertex �¹Î Ì

(correspondingto
a region) is labeledwith a subsetof � . We denotethe labelof
vertex � by òp��� % . A directededge(or arc) mayexist pointing
from vertex ��� to vertex � Á if òp��� Á1% is asubsetof òp����� % . If such
anarcexists,wesaythat � Á is achild of ��� , that ��� is aparentof� Á , andthatthey belongto differentgenerations.. If thereexists
adirectedpathfrom vertex � 0 to vertex � ð , wesaythat � 0 is an
ancestorof � ð , and � ð is a descendantof � 0 . Notethatbecause
of thetransitivity of thesubsetrelationship,aregiongraphmust
bea directedacyclic graph,in thesensethatthearrows cannot
looparound.

A regiongraphis closelyrelatedto theHassediagram for a
partially orderedset, or poset[38], if we considerour regions
to beorganizedinto a poset,with theorderingrelationshipbe-
tweentheregionsto begivenby theancestor-descendantrela-
tionship[28], [29]. Thereare,however, somedifferencesbe-
tweenregion graphsandHassediagrams.First, region graphs
are labeledgraphs,andwe will insist on some“region graph
conditions,” describedbelow, that the labelsmustsatisfy. Sec-
ond,regiongraphscanincludeanarcbetweentwo regionsthat
arealsoconnectedby a pathof lengthtwo or greater, which is
forbiddenfor Hassediagrams.

WedefineacountingnumberÔ
	 for everyvertex in theregion
graph,by Ô�	 " + � eÀ t 6)v�À
w Ô^À�� (38)

where Ý���� % is thesetof verticesthatareancestorsof � . Thus,
the countingnumbersfor the regionsof a region graphcorre-
spondto theMöbiusfunctionof thecorrespondingpartiallyor-
deredset[38].

For a graph
�

to qualify asa region graph,we further insist
on the region graph condition, which requiresthat for every?�Î
� , thesubgraph

� �(? %&" � Ì �(? % �Y���(? % ��òF�!? %�% formedby just
thoseverticeswhoselabelsinclude ? is a connectedgraphthat
satisfiesthecondition e	 t�� v���w Ô 	ê" + � (39)

Having definedregion graphs,it is almosttrivial to define
a correspondingmethodfor generatingvalid region-basedfree
energy approximations.We simply createa region graphsuch
thattheverticescorrespondto regions,with labelscorrespond-
ing to the factor and variablenodesin a region, and we re-
quire that every factor and variablenode be containedin at
leastone region. We associatethe countingnumbersÔ Í for
regions directly with the countingnumbersÔ
	 for the region
graph,andtheregion graphfreeenergy � Í�� will begivenby� Í�� " � Í Ô Í � Í , where � Í is the freeenergy of the regionË .

Fig. 4. An exampleof aregiongraph.Wehave listedthecountingnumber���
next to eachregion.

In figure4, wegiveanexampleof a regiongraphfor thefac-
tor graphthat we alreadyintroducedin figure 3. This region
graphwasconstructedto demonstratewhat is and is not per-
mitted in a legal region graph,ratherthanwhat would likely
givegoodresults.Notethata regiongraphneednotobey some
propertiesthat onemight considerimportant(including some
which are enforcedin the junction graph methoddescribed
in appendixA and the clustervariation methoddescribedin
appendixB). For examplethereneednot be any cleardelin-
eationof “generations”(region �;èå� is a child of both regions�
ß�������âB�1ãå�ZçK��è�� andregions �;�D�Yã���æB��è��Yáå� , while region �
ãå�
is a grand-childof region �
ß��Y����â��Yãå�ZçK�Yèå� anda child of re-
gion �;�D�Yã���æB��è��Yáå� .) Notealsothatregionsmayhave counting
numberequalto zero(e.g. region �
ã���æ�� ), andthatthefactthat
a region is a sub-setof anotherregion neednot imply that it is
alsoadescendantof thatregion(e.g.regions �;�D�Yã���æB��è��Yáå� and�
ãå�Yæå� ).

What is essentialis that theregion graphconditionsthatwe
describedabove areobeyed. We insiston theseconditionsfor
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thefollowing reasons.First,to reiteratethecommentswemade
aboutvalid� region-basedfreeenergy approximations,thecon-
dition thateveryfactornodein thefactorgraphis countedonce
whenwe do theweightedsumoverall regionsensuresthatthe
regiongraphaverageenergy is exactif theregionbeliefsareex-
act;andtheconditionthatevery variablenodeis countedonce
ensuresthat the region graphentropy is a reasonableapproxi-
mation. Theconditionthat the regionscontaininga particular
variablenodeform a connectedsub-graphwill ensurethat the
marginal probability at any nodeis consistentirrespective of
which region’sbeliefsoneusesto computeit. Empirically, we
have found in limited experimentsthat if oneattemptsto run
a GBP algorithm(as describedbelow) on graphsthat do not
satisfyall theregiongraphconditions,theresultswill bepoor.

Fig.5. An exampleof agraphof regionsthatis notaregiongraphbecausethe
sumof thecountingnumbersof regionscontainingvariablenode5 is notone.

An exampleof a“f alseregiongraph”or graphof regionsthat
doesnotsatisfytheregiongraphconditionsis shown in figure5.
Theproblemwith thisplausible-lookingconstructionis thatthe
sumof thecountingnumbersof theregionscontainingvariable
node5 is zero, ratherthan one. We could modify this false
regiongraphin a varietyof waysto obtaina realregiongraph.
For example,we couldsimply remove node5 from theregion��àå�Yãå� . The resultingregion graphwould be an exampleof a
junctiongraph; seeappendixA. Alternatively, we couldadda
region �
ãå� which just containedvariablenode ã , andconnect
the regions ��àå�1ãK� , ��ß���â��YãK� , � ® �Yãå�Yæå� , and ��ãå��è�� to it (the
resultof usingtheclustervariationmethod;seeappendixB).

JustastheBetheapproximationwill beexactwhenthe fac-
tor graphis a tree,aregiongraphapproximationwill alwaysbe
exactwhenthecorrespondingregion graphis a tree. This can
bedemonstratedby recursivelyapplyingthefollowing junction
graphformulafor theprobabilitydistribution of a factorgraph
dividedinto largeregionsÓ Ü , andsmallregionsÓ b whichsep-
aratethelargeregions(seeAppendixA for moredetails):� �!' %C" � Í t Ò�� � Í �(' Í %� Í t Ò i � Í �!' Í % ð Ï � 
 � (40)

We illustrate the ideawith an example,that hasthe factor
graphgiven in figure 6, and the region graphgiven in figure
7. We will recursively breakdown the full joint probability
distribution andshow that it is equalto a productof marginal
probabilitydistributionsoverregionsthathaspreciselytheform
necessarysothattheregiongraphfreeenergy is exact.

Fig. 6. A factorgraphthathasa treeregiongraphshown in figure7.

Fig. 7. A region graphwith no cyclesthathasa correspondingregion graph
freeenergy approximationwhich is exact.

Notethat for this region graph,theregion �;â�� separatesthe
left part of the treeandthe right part of the tree. That means
thatwehave� �(� 
 �	����������� %C" �)�(�E
�����@:���BA¡����� % � �(�>�=���BAG�����G��� � %�)�(� A
% � (41)

The marginal probability distributions �)�(�<
:���>@:���BA¡����� % and� �(�>�:���BA¡�����G��� � % can in turn be written in termsof marginal
probabilitiesof smallerregions. For example,we seethat the
region �
ä���â�� separatestheregions �;Ýo� + �Yä���âB� and �
ß��Yä���âB��æ�� ,
sothat�)�(� 
 ��� @ ��� A ��� �;%*" �)�(� 
 ��� @ ��� A�% �)�(� @ ��� A ��� �;%� �!��@G����A % � (42)

Expandingeverythingout, we obtainthat the joint probability
distribution � �!� 
 ������������� % equals� �!� 
 ��� @ ��� A
% � �!� @ ��� A ��� �;% � �(� � ��� A ��� �
% �)�(� A ��� � ����� %� �!� @ ��� A;% �)�(� A ��� �
% � �!� A�% � (43)

Substitutingthis result into the formula for the exact entropy,
we recover the region graphentropy. Sincethe region graph
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averageenergy is alwaysexactwhentheregionbeliefsare,this
demonstrates� thattheapproximationis exactin thiscase.

We note that eachterm in the numeratorof the expression
(43) hasa power of + , andeachterm in the denominatorhas
a power of � + , correspondingexactly to thecountingnumber
of the correspondingregion. In the generalcaseof a region
graphwith no cycles,the recursive applicationof the junction
treeseparatorformula(40) will alwayssimilarly reproducethe
countingnumbersgivenby theregiongraphprescriptionequa-
tion (38).

We have alreadyseenthat thestationarypointsof theBethe
approximationto the free energy are equivalent to the fixed
pointsof thestandardBPalgorithm,whichoperatesona factor
graph.In thefollowingsections,weshallintroducegeneralized
beliefpropagationalgorithmswhich operateon region graphs,
anddemonstratethat their fixed pointscorrespondto the sta-
tionarypointsof theregiongraphfreeenergy.

In appendicesA, B, wediscusstwo othermethods(thejunc-
tion graphmethodandtheclustervariation method) thatgen-
eratevalid freeenergy approximations.Both of thesemethods
canbeconsideredspecialcasesof theregiongraphmethod.In
appendixC, wedescribetherelationshipbetweenall thediffer-
entmethodsdescribedin thispaperin moredetail.

VI I . GENERALIZED BELIEF PROPAGATION ALGORITHMS

Justasthe standardBP algorithmcorrespondsto the Bethe
approximation,onecanconstructgeneralizedbelief propaga-
tion (GBP)algorithmscorrespondingto any region graphfree
energyapproximation.In fact,therearemany waysto construct
message-passingalgorithmswhosefixedpointsareequivalent
to thestationarypointsof aregiongraphfreeenergy. In all these
algorithms,messagesof somesortaresentbetweenregionson
a regiongraph.

Oneshouldfirst notethatonecanobtaindifferentGBPalgo-
rithmscorrespondingto thesamefreeenergy by usingdifferent
regiongraphsthathavethesamefreeenergy. For example,one
could modify a region graphby connectinga grandparentre-
gion directly to a grandchildregion. TheGBPalgorithmsthat
wedescribebelow wouldbemodified,but theapproximatefree
energy wouldnotbechanged.Makingsuchamodificationwill
alterthedynamicsof a GBPalgorithm,but not its fixedpoints.

Evenif onefixesone’sattentiononaparticularregiongraph,
thereare still a variety of different GBP algorithmsthat one
cancreate.In themaintext of this paper, we will describeone
possibleapproach,whichwecall theparent-to-child algorithm.
In appendicesD andE, we describetwo otherapproaches(the
child-to-parent algorithm and the two-wayalgorithm) which
give algorithmswith equivalentfixed points,andwhich have
their own advantages.An importantadvantageof the parent-
to-childalgorithmis thatthemessage-passingalgorithmmakes
noreferenceto regioncountingnumbers,justasin thestandard
BPalgorithm.

The standardBP algorithmis a specialcaseof all threeal-
gorithmswhen the region graph is obtainedusing the Bethe
method.

A. TheParent-to-ChildAlgorithm

As we saw, thestandardBP message-passingequationscan
bederivedusingthefactthatthebeliefatasinglevariablenode
is just theproductof all themessagesbearinginformationfrom
neighboringfactornodes,while thebelief at theregionof vari-
ablenodesadjoiningasinglefactornodeis theproductof their
internalfactors,multipliedby all themessagescominginto the
groupof nodesfrom factornodesoutsidetheregion.

The parent-to-childalgorithmgeneralizesthis idea. In this
algorithm(which in previousexpositionswecalledthe“canon-
ical” GBPalgorithm[17]) thebeliefatany region Ë will bethe
productof thelocal factorsin thatregion,multiplied by all the
messagescominginto region Ë from outsideregions.Thereis
onecomplication,however: to make the algorithmequivalent
to minimizing theregiongraphfreeenergy, weneedto include
additionalmessagesinto regionswhich aredescendantsof Ë
from otherparentregionsthatarenot themselvesdescendants
of region Ë .

To bemorespecific,in theparent-to-childalgorithm,weonly
have onekind of messagek�� l Í �!' Í % from a parentregion to
achild region. Eachregion Ë hasabelief � Í �!' Í % givenby

� Í �!' Í % � .0 t 6 Ï 2 0 �(' 0 %
ôõ .� t�� v Í w k � l Í �(' Í % ö÷ �����

����� ôõ .!Dt�" v Í w .�$# t�� v ! w h&% v Í w k � # l ! �!' ! % ö÷ �(44)

Here '��!Ë % is the setof regionsthat areparentsto region Ë ,( �!Ë % is thesetof all regionsthataredescendantsof region Ë ,) �!Ë %C° Ë«é ( �\Ë % is thesetof all regionsthataredescendants
of Ë andalsoregion Ë itself, and '�� ® % j ) �!Ë % is thesetof all
regionsthatareparentsof region ® exceptthosethatarealso
descendantsof region Ë or region Ë .

Fig. 8. A region graphusedto illustratethe parent-to-childGBPalgorithm.
Notethatwe do not explicitly give thevariableandfactornodelabelsfor each
region,asfor ourpurposes,weareonly interestedin thetopologyof theregion
graph.

An examplemayhelpmakethebeliefequationclearer. Con-
sidertheexampleshown in figure8. Thebelief � Í �(' Í % at re-
gion Ë is the productof its local factors � 0 t 6nÏ 2 0 �(' 0 % , the
messagesfrom its parentsk±6 l Í �(' Í % and kÖ7 l Í �(' Í % , and
themessagesinto descendantsfrom otherparentswho arenot
descendants:k 8 l � �(' � % , k 8 l+* �!' * % , and k µ l,* �(' * % .
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Oneobtainsself-consistentequationsfor themessagesby re-
quiring consistency betweenthebeliefsbetweenevery pair of
parentandchild regions. Thusin figure8, we might focuson
theregion Ë andits child � . Thebeliefat region Ë is givenby� Í � k 6 l Í k 7 l Í k 8 l � k 8 l,* k µ l,* .0 t 6 Ï 2 0 �(' 0 %

(45)
(wherewe have lightenedthe notationby removing the obvi-
ousfunctionaldependenciesof themessages)andthebelief at
region � is givenby� � � k Í l � kÖ8 l � k ! l � kÖ8 l+* kÖµ l,* .0 t 6$- 2 0 �(' 0 %

(46)
Using the marginalization constraint, � Í �!' Í % "� g/.�h�g Ï �Z6D�('n6 % we obtain a relation between messages
thatwecaninterpretasthemessageupdaterulek Í l � �!' � % k ! l � �(' � %³qx"eg Ï h�g - k 6 l Í �!' Í % k 7 l Í �!' Í % .0 t 6 Ï h 6 - 2 0 �(' 0 % � (47)

Of course,similar messageupdateruleswould be obtained
for all the pairsof parentandchildrenregions. Therewill be
enoughconditionsto determineeverymessage.

In general,theparent-to-childmessage-updateruleswill bek � l Í �(� Í %³qr"� {�021 Ï � 0 t µ 021 Ï 2 0 �!� 0 % � v43�5 6=w t �pv � 5 Í w k 3 l 6 �!� 6B%� v43�5 6=w t/! v � 5 Í w k 3 l 6 �(� 6B% (48)

wherethesets�«�87D��Ë % and ® �97D�YË % canbecalculatedin ad-
vance.Recallthat

) �\Ë %�" Ë¹é ( �\Ë % . Then �~�97D��Ë % is theset
of all connectedpairsof regions �9���
: % suchthat : is in

) �97 %
but not

) �!Ë % while � is not in ���97 % . ® �97D�YË % is thesetof all
connectedpairsof regions �8�B��: % suchthat : is in

) �\Ë % , while� is in
) �87 % , but not

) �\Ë % .
We now prove a central theoremaboutthe parent-to-child

GBPalgorithm,which is definedby the messageupdaterules
(48)combinedwith thebeliefequations(44).

Theorem: A setof messagesandbeliefsdefinea fixedpoint
of theparent-to-childGBPalgorithmif andonly if thebeliefs
areastationarypointof theregiongraphfreeenergy, wherethe
region graphfreeenergy is constrainedto have beliefsthatare
consistentandnormalized.

Proof: To simplify theproof, we will assumethatno regionË in theregiongraphhascountingnumberÔ Í "/þ . In appendix
F, we discussthis technicallyusefulassumptionin detail. In
particular, weshow thatit is easyto removeany Ô Í "/þ regions
to get an equivalentregion graph;andalsothat even if we do
permit them,theparent-to-childGBPalgorithmwill still work
properly, althoughthefollowing proofno longerholds.

Recallthattheregiongraphfreeenergy is simply� Ò �`��� Í � %C"$eÍ t Ò Ô Í � Í �Q� Í % � (49)

To derive thestationarityconditions,weneedto createa La-
grangianò for the freeenergy which enforcesconsistency be-
tweenthe beliefs in every pair of connectedregions. To that

end,weaddLagrangemultipliers ñ;� 8 �(' 8�% whichenforcethat�Z8½�!'n8 %C" eg 0 h�g/< � � �!' � % (50)

for everypairof parentandchild regions 7 and ß .
Of course,we alsoneedto includeLagrangemultipliers = Í

whichenforcethenormalizationof thebeliefs: � g Ï � Í �(' Í %C"+ . Setting the derivatives of ò with respectto the beliefs� Í �(' Í % equalto zerogivesus the following stationaritycon-
ditions: Ô Í  �¢ � Í �(' Í %�" = Í ­ Ô Í e0 t 6 Ï  �¢ 2 0 �(' 0 % ������ e� t�� v Í w ñ � Í �(' Í % ­ e8 t�> v Í w ñ Í 8F�('n8 % � (51)

where '��\Ë % is thesetof regionsthatareparentsof region Ë ,
and ?C�!Ë % is thesetof regionsthatarechildrenof region Ë . In
thisexpression,' 0 and 'n8 areentirelydeterminedby thevalue
of ' Í .

Our proof will now work backwardsfrom the belief equa-
tionsthatwe wantto derive. We wantto show thatthereexists
a “rotation” from our Lagrangemultipliers ñ to anothersetof
Lagrangemultipliers @ suchthatthestationarypointconditions
canbere-writtenasÔ Í  �¢ � Í �(' Í %C" = Í ­ Ô Í e0 t 6 Ï  �¢ 2 0 �(' 0 % ����� (52)

­ e� t�� v Í w @$� Í �(' Í % ­ e!Dt�" v Í w e� # t�� v ! w h&% v Í w @$� # ! �!' ! % �
Clearly, if we canshow this, thenby identifying the messagek � l Í �!' Í %#"BA
C2D �9@ � Í �(' Í %�% , we will recover our desired
beliefequations.

So what do the Lagrangemultipliers @$� Í �!' Í % constrain?
Theansweris thatthey imposetheconstraintÔ Í � Í �(' Í % ­ e6 t/E v Í w h v �GF E v � w(w Ô�6 eg/.�h�g Ï �^6³�!'n6 %C"/þ � (53)

In words,theLagrangemultiplier @$� Í constrainstheweighted
belief in region Ë plusthesumof theweightedbeliefsin all the
ancestorregionsof region Ë , exceptfor regions 7 andall its
ancestors,to beequalto zero. If we make a Lagrangianusing
theseLagrangemultipliers,it is straightforwardtowork outthat
its stationarypointsaregivenby equation(52).

Now we needto show thatthenew setof @ Lagrangemulti-
pliersandtheir associatedconstraintsareequivalentto theold
setof ñ Lagrangemultipliersandtheirconstraints.Wefirst note
thatbecauseÔ Í ­ � 6 t/E v Í w Ô 6 " + , and Ô
� ­ � 6 t/E v � w ß 6 "+ , wecansubtractthesetwo equationsandobtainÔ Í ­ e6 t/E v Í w h v �HF E v � w(w Ô^6 "3þ (54)

If we start with the ñ;� 8 �(' 8*% constraintsthat � 8 �(' 8�% "� g 0 h�g < �I�H�('$� % for everypairof parentandchild regions,we
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canuseequation(54) asa basisfor deriving theconstraintsas-
sociated

d
with the @ Lagrangemultipliers. It is alsoalwayspos-

sibleto go in theotherdirection:The @ constraintswill belin-
earlyindependent,sothatif webegin with them,wecanderive
the ñ constraints[28]. (This is wherethe proof breaksdown
if thereareregionswith countingnumberÔ Í "ÿþ ; the @ con-
straintsmaybelinearlydependentin thatcase.)ü

Note that we have not given a generalformula relating the
new @ Lagrangemultipliers to the ñ Lagrangemultipliers, as
we only needto show the existenceof a rotationto a new set
of Lagrangemultipliers,without constructingit explicitly. It is
difficult to derivea generalformularelatingthetwo setsof La-
grangemultipliers,but for regiongraphswith only two “genera-
tions” of regionslikethoseconstructedusingthejunctiongraph
method(seeappendixA), we canin fact give the relationship
explicitly: ñ � Í �(' Í %C" e�$# t�� v Í w h � @ � # Í �(' Í % � (55)

VI I I . DETAILED EXAMPLE OF A GBP ALGORITHM

Fig. 9. A factorgraphthat we will usefor our detailedexampleof how to
constructaGBPalgorithm.

We will now give a detailedexampleof how to construct
a GBP algorithm. Considerthe factor graphdrawn in figure
9, which hasseven variablenodesand ten factornodes. For
this factorgraph,it is convenientto slightly alter our labeling
conventionssothatsomeof thefactornodes(theonesattached
to asinglevariablenode)arelabeledwith anumberratherthan
a letter. This factorgraphcorrespondsto the joint probability
distribution

� �(�E

�����G����������� � %C" +- J �.� � 
 2 ���(�>� %LK ����� (56)2�6 �!� 
 ��� � ��� @ ��� �
%�2�7 �(� 
 ��� � ��� A ��� �;%�2�8 �(� 
 ��� @ ��� A ����� %
We will work out a GBPalgorithmmakingno assumptions

aboutthe actualforms of the functions,but we note that this
particularfactorgraphcanbeusedto representtheprobability
distributionthatoccurswhendecodingablockerror-correcting
code[20]. In particular, if eachof thevariablenodesis binary,
with possiblestates0 or1, andthefunctions2�6 , 2:7 , and 2�8 are
parity-checkfunctions(equalto + if thesumof theirarguments

areeven,and þ otherwise),thenthis factorgraphcorresponds
to the linear block �Qçå��â���ä % Hammingcodewith parity check
matrix ¨ " ôõ + + + þ + þ þ+ + þ + þ + þ+ þ + + þ þ + ö÷ � (57)

For the decodingproblem,the functions 2�� �!� �`% representthe
likelihoodsof thepossiblestatesof thebits, in light of the re-
ceivedblockfrom thechannelandtheassumedchannelmodel.

Fig. 10. A region graphobtainedfor the factorgraphof figure 9 usingthe
clustervariationmethod.

To obtaina GBPalgorithm,we first needto createa region
graph.Weusetheclustervariationmethod,with largestregions� 2 6�� 2 
�� 2 �=� 2 @:� 2 �=� + �1àå�Yä��Yãå� , � 2 7H� 2 

� 2 �:� 2 A=� 2 ��� + �Yà���â���æå� and� 2 8D� 2 

� 2 @�� 2 A=� 2 � � + ��äB��âB�Zç¡� . Following the clustervariation
methodprescriptionfor finding intersectionregionsdetailedin
appendixB, weobtaintheregiongraphshown in figure10.

Now that we have a region graph,we needto choosewhat
kind of GBP algorithmwe want to useand then write down
the belief andmessageequationsfor the GBP algorithm. We
chooseto usetheparent-to-childalgorithm.

Notethatalthoughtheregiongraphfreeenergy is usefulfor
theoreticallyjustifyingaGBPalgorithm,it will notbenecessary
for constructingthe algorithm. Instead,we canwork directly
with thebeliefequations.

Recallthatin theparent-to-childalgorithm,weonlyhaveone
kind of messagek�� l Í �(' Í % from a parentregion to a child
region. Eachregion Ë hasa belief � Í �(' Í % givenby equation
(44)whichwe re-writehere:

� Í �!' Í % � .0 t 6 Ï 2 0 �(' 0 %
ôõ .� t�� v Í w k � l Í �(' Í % ö÷ �����

����� ôõ .!Dt�" v Í w .�$# t�� v ! w h&% v Í w k � # l ! �!' ! % ö÷ �(58)

In words,this equationsaysthat the belief at eachregion is a
productof the local factorsin that region, the messagesfrom
parents,andthe messagesinto descendantregionsfrom other
parentswhoarenotalsodescendants.

In our region graph, we have seven regions that can be
groupedinto threetypesof regions: the threeregions exem-
plified by � 2�6 � 2=
 � 2�� � 2�@ � 2M� � + �1àå�Yä��Yãå� that containfive factor
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nodesand four variablenodes;the threeregions exemplified
by � 2G
 � 2�� � + �YàK� thatcontaintwo factornodesandtwo variable
nodes;and the single region � 2=
 � + � that containsone factor
nodeandonevariablenode.

We will usean abbreviatednotation,droppingexplicit ' Í
dependence,for beliefsandmessagesandfactorfunctions.The
notationis bestexplainedwith someexamples:wewrite ��
���@N� ,��
�� and ��
 for the beliefs at the regions listed in the previ-
ousparagraph;we write k @&� l 
�� for themessagefrom region� 2�6 � 2=
 � 2�� � 2�@ � 2M� � + �Yà���äB�YãK� to region � 2=
 � 2:� � + �Yàå� , k � l 
 for
themessagefrom region � 2=
 � 2�� � + �1àK� to region � 2=
 � + � , andwe
abbreviate 2�6 �(� 
 ��� � ��� @ ��� �;% as 2�6 .

In this abbreviated notation, the belief equationsfor the
largestregionswill be� 
��Y@&�F�·2�6W2=
^2��;2�@	2�� k AN� l 
�� k A � l 
�@ k A l 
 � (59)� 
���AO�F�·2:7�2=
�2���2
A
2M� k @&� l 
�� k A � l 
uA k @ l 
 � (60)

and � 
�@�A � �ª2�8C2=
^2:@	2
A
2 �^k �&� l 
�@ k �&� l 
uA k � l 
 � (61)

Note thatsincetheseregionsdo not have parents,all the rele-
vant messagesare into descendantregionsfrom otherparents
whoarenotdescendants.

The belief equationsfor the intermediate-sizedregionswill
be ��
�� �·2 
 2 �^kÖ@N� l 
��^k±AO� l 
��	k±@ l 
1k±A l 
�� (62)��
�@ �/2 
 2 @�k±�N� l 
u@	kÛA � l 
u@�k±� l 
^kÛA l 
 (63)

and ��
uA �·2 
 2 A�kÖ�N� l 
uA�kÖ@ � l 
uA;k±� l 
1kÖ@ l 
�� (64)

Finally, thebeliefequationfor theregion � 2G
 � + � will be��
 �·2 
1kÖ� l 
ZkÖ@ l 
1k±A l 

� (65)

The message-updaterulesareobtainedby combiningthese
belief equationswith the marginalizationconditionsbetween
parentandchild regions:� 8 �(' 8�%C" eg 0 h�g/< �I�H�('$� % � (66)

For example,requiringconsistency betweenthe beliefsat the
region � 2=
 � + � andtheregion � 2=
 � 2�� � + �Yàå� tells usthat� 
 �(� 
	%*"ªe { � � 
u� �(� 
 ��� �	% (67)

from whichweobtainkÖ� l 
 qx" e {;� 2 �^kÖ@N� l 
��	kÛAO� l 
u�G� (68)

The othermessage-updaterules,obtainedin the sameway
(or equivalentlyby usingequation(48),will bekÖ@ l 
 qx" e { � 2 @^kÖ�N� l 
�@	kÛA � l 
u@G� (69)

k±A l 
 qx"ªe {	� 2 A�kÖ�N� l 
uA;k±@ � l 
`A¡� (70)

k @ l 
 k @N� l 
��&qx" e{ � 5 {�P 2�6W2�@;2M� k A � l 
�@ � (71)

k � l 
 k �N� l 
�@&qx" e{ � 5 {�P 2�6W2��;2M� k AN� l 
�� � (72)

k A l 
 k AN� l 
��&qx" e{ � 5 {�Q 2�7�2�A;2M� k @ � l 
uA � (73)

kÖ� l 
ZkÖ�&� l 
uA qx" e{;� 5 { Q 2 7 2 � 2 �ZkÖ@N� l 
��G� (74)

k±A l 
Zk±A � l 
�@ qx" e{	� 5 {SR 2 8 2 A 2 � kÖ�N� l 
uA=� (75)

and k @ l 
 k @ � l 
uA&qx" e{;� 5 {SR 2�8C2�@;2 �^k �N� l 
�@ � (76)

In practice,it oftenhelpsconvergenceto only stepthemes-
sagespart-way to their newly computedvalues. This simple
heuristiccaneliminate“over-shooting”problems.

Wenotehereonepotentialpracticalpitfall to avoid whenus-
ing inertia. Let ussupposethatwe have a setof old messages�	k ¦�¤ T � , whichweusein theupdateequationsto calculateaset
of messages�	k U�V T�W��!� � , andthatwe want to setour new mes-
sagesto behalf-waybetweentheold messagesandtheupdated
messages:�	k X �ZY � " 
� �;k ¦Y¤ T � ­ 
� �;k[U\V T�W��!� � . Werecommend
whenusinganupdateequationwith morethanonemessageon
the left handside, that all thosemessagesare k[U\V T\W��\� equa-
tions. Mixing in k X �ZY or k ¦Y¤ T messageson theleft handside
empirically often resultsin poor convergenceproperties.For
example,the updateequation(71) givenabove shouldexplic-
itly be k U\V T\W��\�@ l 
 k U�V T�W��!�@&� l 
�� qx" e{ � 5 {�P 2�6W2�@;2M� k ¦�¤ TA � l 
�@ � (77)

Fortunately, it is alwayspossibleto schedulethemessageup-
datessothatonecomputestheupdatedmessagesinto thesmall-
estregionsfirst (e.g. messageslike k U\V T\W��\�@ l 
 ), so that they are
availablewhenneededto computethe updatedmessagesinto
largerregions.

Therearemany otherdetailsthatcanbehandledin different
waysin iteratingthemessageupdateequations.For example,
themessagescanbeinitialized in any way onelikes;two pop-
ular choicesarerandomor uniform messages.The algorithm
typically terminatesaftera fixednumberof iterations,or after
someconvergencecriterion is satisfied,but other termination
conditionsarepossible. In a decodingapplication,one typi-
cally checksat eachiterationwhetherthe thresholdedbeliefs
correspondto a code-word, andterminatesthedecodingalgo-
rithm if they do, stoppingotherwisewhensomefixednumber
of iterationshaspassed.

IX. DISCUSSION

In this paper, we have presenteda generaltheory, basedon
region graphs,for constructinggeneralizedbelief propagation
(GBP)algorithms.Region graphspermiteasyvisualizationof
thestructureof GBPalgorithms–messagesarealwayssentbe-
tweentheneighboringregionson thegraph.For region graphs
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that have no cycles, the GBP algorithmsareexact. We have
alsoseenÑ thatthefixedpointsof theGBPalgorithmalwayscor-
respondto thestationarypointsof anapproximateregion-based
freeenergy, sothatevenwhentheregiongraphhascycles,GBP
algorithmsseemto bedo somethingreasonable.Thestandard
BPalgorithmturnedoutto beaspecialcaseof aGBPalgorithm
obtainedwhentheregion graphis constructedusingtheBethe
method.

Given a factor graphand limited computationalresources,
a key remainingproblemis how to choosean“optimal” region
graph–i.e.onethatgivesthemostaccurateresultswith theleast
computationaleffort. Welimit ourselveshereto suggestingtwo
sensibleheuristics.First, it is wiseto try to collecttheshortest
cyclesin a factorgraphinto regions,sothatthey arehandledas
accuratelyaspossible.Second,in orderthat the region graph
freeenergy beasaccurateaspossible,oneshouldtry to make
theregiongraphresembleatree–thatis, oneshouldavoid short
cyclesin theregiongraph.

Wehavepreviouslyreportedpromisingnumericalresultsob-
tainedusingGBPalgorithmsfor inferenceon randomMarkov
RandomFields [17] and for decodingerror-correctingcodes
[39].

ACKNOWLEDGEMENTS

We thankDave Forney andRobertMcEliecefor helpful and
encouragingdiscussions,andDavid MacKayfor hiscomments
onadraft of thispaper.

APPENDIX A: THE JUNCTION GRAPH METHOD

A naturalideato generalizetheBetheMethodis to keepthe
notionthat Ó shouldbetheunionof a setof largeregions Ó Ü
anda setof small regions Ó b , but to let the regionsin Ó Ü orÓ b containmorenodes.The junction graph method, that we
describehere,exploits this idea,andis basedon a generaliza-
tion of the “junction graphs”that wereintroducedby Aji and
McEliece[27].

We definea junction graph to be a labeledbipartitegraph� " � Ì Ü � Ì b �����Yò % in which thereare large vertices(corre-
spondingto largeregions) �M]�Î Ì Ü , smallvertices(correspond-
ing to small regions) �/^ Î Ì b , and directededges(or arcs)� Î � connectinglargeverticesto smallvertices.Thevertices
in the junctiongrapharelabeled,andthe label of vertex � � is
denotedòF��� ��% . The labelswill besubsetsof a setof indices �
representingfactoror variablenodesof a factorgraph.

For thegraph
�

to beconsidereda junctiongraph,we insist
upontwo conditions.First, if �/^ is a smallvertex neighboring
the _ largevertices� ] ø �&� ] � �	�������&� ]a` , thenwerequirethat òF�9�/^ % is
a subsetof eachof òF�9� ] ø % ��òp��� ] � % ������������òF�9� ]a`:% , or equivalently,
that òF�9� ^ %�b òp���M] ø %�c òp���M] � %�c ����� c òF�9�M]a` % � (A-1)

Secondly, we requirethat for any index ?FÎd� , thesubgraphof�
consistingonly of theverticeswhichcontain? in their labels,

is a connectedtree.
The“junction graphs”introducedby Aji andMcEliece[27]

are a specialcaseof thosedescribedhere. In their junction
graphs,small verticeswere restrictedto have preciselytwo

neighboringlargevertices,sothatthesmallverticescanbein-
terpretedaslabeled“edges”betweenthe large vertices. They
furtherrequiredthatsmallregionlabelsnot includeany indices
representingfactornodes.

Givena setof regions Ó 6 � " Ó�Ü�é ÓÛb thatareorganized
into ajunctiongraph,wecanalwaysobtainavalid region-based
approximationby definingasetof countingnumbersÔ Í asfol-
lows. For all regions Ë Î/Ó�Ü , we let Ô Í " + , while for all
region Ë Î¸ÓÛb , we let Ô Í " + � î Í where î Í is the de-
gree(numberingof neighboringlargeregions)of region Ë . It
is throughthis prescriptionthat thearcsthejunctiongraphbe-
comerelevant–asmall region’s contribution to the freeenergy
is subtractedout from thatof a largeregion only if thetwo re-
gionsareconnectedby anarc. It is straightforwardto confirm
thatthis prescriptionfor thecountingnumbersgivesusa valid
region-basedfreeenergy approximation,asthe junctiongraph
condition that the sub-graphfor eachvariableor factor node
is a treeguaranteesthat eachvariableandfactornodewill be
countedonceasrequiredin equation(26).

Aji andMcElieceproveda theoremthat tells us that given
anysetof largeregions Ó Ü thatcontainall thefactorandvari-
ablenodesin a factorgraph,wecanfind acorrespondingsetof
smallregionsÓ b andorganizetheregionsin Ó[6 � " Ó Ü éFÓ b
into a junctiongraph.Their theoremgeneralizeswithout diffi-
culty to ourversionof junctiongraphs.

As an example,considerthe factor graphwhich we intro-
ducedin themaintext andre-draw in figure11. We couldtake
asoursetof largeregionsÓ Ü thefour regions �;Ýo�1ß�� + �Yàå��âB�1ãK� ,�;Þ�� ® �Yà���äB�Yãå�Yæå� , ��ß�������âB�1ãå�1çå��è�� , and �
�D�Yã���æ��Yè��Yáå� . An
acceptableset of correspondingsmall regions ÓÛb would be�
àå�1ãK� , ��ß���â��YãK� , �
ãå�Yæå� , and �;è�� , with a junction graph as
shown in figure11. Becausein this caseeachof thesmall re-
gionsis connectedto two largeregions,they would eachhave
ancountingnumberof � + .

Fig. 11. A junctiongraph(on theright) for thefactorgraphon theleft.

Thesetof regionsgivenby theBethemethodcanalsoalways
beorganizedinto a junctiongraph(thoughnot necessarilythe
restrictedAji-McEliece versionof a junction graph);usingas
anexamplethesamefactorgraph,theresultingjunctiongraph
is shown in figure12. It is obviousfrom thisexamplethatthere
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Fig. 12. A junction graphfor the factorgraphshown in figure 3 generated
usingthe Bethemethod. Note the isomorphismbetweenthis junction graph
andtheoriginal factorgraph.

will always be a one-to-oneisomorphismbetweenthe origi-
nal factorgraphandthecorrespondingjunctiongraphobtained
from theBethemethod.

Thejunctiongraphapproximationfor theGibbsfreeenergy
is �e6 � �`��� Í � %C" © 6 � �`��� Í � %)� ¨f6 � �`��� Í � % � (A-2)

where©g6 � �u�
� Í � %C" eÍ t Òh� © Í �Q� Í % ­ eÍ t Ò i � + ��î Í %Y© Í �\� Í % � (A-3)

and¨ 6 � �u�
� Í � %C" eÍ t Ò�� ¨ Í �\� Í % ­ eÍ t Ò i � + � î Í % ¨ Í �Q� Í % �
(A-4)

Junctiongraphsarea specialcaseof region graphs,where
thereare only two “generations”of regions. It follows that
minimizingthejunctiongraphfreeenergy � 6 � will onceagain
give beliefs �
� Í � that areequivalentto thoseobtainedfrom a
message-passingBP algorithm. That algorithmis sometimes
knownasthegeneralizeddistributivelaw [24]. Againit follows
asacorrollaryof ourmoregeneralresultsfor regiongraphsthat
thejunctiongraphapproximationto theGibbsfreeenergy will
beexact,andthegeneralizeddistributivelaw will giveexactre-
sults,whenthejunctiongraphis atree.In thatcase,wecancall
thejunctiongrapha junctiontree, andthegeneralizeddistribu-
tive law reducesto thefamousjunctiontreealgorithm.

Ourjunctiontreesareactuallyaslightgeneralizationof what
is normallycalleda“junction tree,” in thatweallow separators
(i.e., the small regions) to neighbormore than just two large
regions. We cangeneralizethewell-known result[13] for the
joint probabilityfunctionin junctiontreestoourcaseandobtain

� �!' %C" � Í t Ò � � Í �(' Í %� Í t Ò i � Í �!' Í % ð Ï � 
 � (A-5)

To obtainthis result,we notethat while we have described
region graphsandjunctiongraphsasdirectedgraphs,from the

pointof view of statisticalgrphicalmodels,they areequivalent
to undirectedgraphs. In particular, one can re-write the full
joint probabilitydistribution � �!' % for a factorgraphin theform�)�(' %*" +- .v Í b w/i Í b �(' Í ��' b % . Íkj Í �!' Í % (A-6)

where �\Ë&a % denotespairsof connectedregionsin a given re-
gion graph for that factor graph. Specifically, when we setj Í �!' Í %¼"ml � 0 t 6 Ï 2 0 �(' 0 %&n Á Ï and i Í bc�(' Í ��'cb % equalto 1
if ' Í is consistentwith 'cb andequalto 0 otherwise,this form
of thejoint probabilitydistributionwill beequivalentto theone
in the original factorgraphform. Sincethe formula (A-5) is
truefor pairwiseMarkov RandomFieldswhenthesetof nodes
in Ó Ü areseparatedby the setof nodesin Ó b , andwe have
shown how to convert a region graphinto an equivalentpair-
wise Markov RandomField, we have justified using formula
(A-5) for regiongraphsaswell.

APPENDIX B: THE CLUSTER VARIATION METHOD

Anothermethodfor selectinga valid setof regions Ó and
countingnumbersÔ Í is theclustervariationmethodintroduced
by Kikuchi in 1951 and further developedin the physicslit-
eraturesincethen [19]. The main featuredistinguishingthis
methodfrom the junction graphmethodis that Ó may be the
unionof morethanjust two generationsof regions.

In the clustervariationmethod,we begin with a setof dis-
tinct largeregions Ópo suchthatevery factornode 4 andevery
variablenode ? in our factorgraphis includedin at leastone
region Ë Î Ópo . We alsorequirethat no region Ë ÎªÓpo be
a subregion of any otherregion in Ópo . We thenconstructthe
setof regions Ó 
 by formingall possibleintersectionsbetween
regionsin Ópo , but discardingfrom Ó 
 any intersectionregions
that aresub-regionsof other intersectionregions. If possible,
we thenconstructin thesameway thesetof regions Ó�� from
theintersectionsbetweenregionsin Ó±
 . As long astherecon-
tinue to be intersectionregions, we constructsetsof regionsÓ�@:�uÓ�A¡������� Ó ¾ in thesameway. Finally, thesetof regionsused
in theclustervariationmethodwill be Ó " ÓpoBéDÓ 
 é&�����!éHÓ�¾ .

We define the counting numbersin the cluster variation
methodto be Ô Í " + � eb t:ë v Í w Ô b (B-1)

whereì��!Ë % is thesetof all regionswhicharesuper-regionsof
region Ë .

Returningto ourexamplefactorgraphdrawn in figure3, we
can choosethe baseset of regions Ó o to consistof the four
regions �
Ýo�1ß�� + �1àå��âB�Yãå� , �;Þ�� ® �Yà���äB�Yãå�Yæå� , �
ß��Y����â��Yãå�ZçK�Yèå� ,and � ® ���D�1ãå�Yæ���èB��á�� . Oncethesetof baseregions Ó o is cho-
sen,thereis no furtherchoicein theclustervariationmethod.
In our case,the set of intersectionregions Ó±
 would be the
regions �
à��YãK���
ß���âB�1ãK� , � ® �Yãå�Yæå� , �
ã���è�� , andthesetof inter-
sectionregions Ó � wouldbe �
ãK� .

Eachof theregions ËºÎ±Ó o wouldhaveancountingnumberÔ Í " + . Becauseeachof theregions Ë¸Î#Ó±
 is thesubregion
of two regionsin Ó o , they eachhave an countingnumberofÔ Í " + � à "�� + . Finally sinceevery region in Ópo and Ó 
 is
asuper-regionof �
ãK� , its countingnumberis + � â ­ â " + .
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We canrepresentthis setof regionsandcountingnumbers
with theÑ regiongraphshown in figure13.

Fig. 13. A regiongraphgeneratedusingtheclustervariationmethod.

Note that theBetheapproximationwill bea specialcaseof
theclustervariationmethodif andonly if no factornodeshares
morethanonevariablenodewith anotherfactornode(or equiv-
alently, thereareno cyclesof lengthfour in the factorgraph.)
The factorgraphshown in figure 13 is thereforeoneexample
of a factorgraphfor which theBetheapproximationcannotbe
generatedby theclustervariationmethod.

We remarkthatin thephysicsliterature,theclustervariation
methodhasnormallybeenappliedto a restrictedclassof fac-
tor graphsthatareparticularlyrelevantasmodelsof magnetic
materials.In particular, thefactorgraphnormallyrepresentsa
translationallyinvariantcrystallattice,andthefactornodesnor-
mallyhavedegreetwo,correspondingto two-bodyinteractions.
Translationalsymmetryin the factorgraphoften dramatically
simplifiestheproblemof minimizing theKikuchi freeenergy,
andwhenthefactornodeshave degreetwo, theBethemethod
will alwaysbea specialcaseof theclustervariationmethod.

APPENDIX C: RELATIONSHIPS BETWEEN DIFFERENT

METHODS

In this appendix,we summarizethe relationshipsbetween
thedifferentmethodsfor generatingvalid setsof regionsfor a
region-basedfreeenergy approximation.Firstof all, asis clear
from its definition, a junction graphwill always be a region
graph(thoughtheconverseis not true).Thesetsof regionsand
countingnumbersgeneratedby theclustervariationmethodcan
alsoalwaysberepresentedby a region graph.We alreadysaw
oneexamplein figure13.

We emphasizethatonecanconstructregion graphapproxi-
mationsthatcannotbegeneratedwith eitherthejunctiongraph
or clustervariationmethods.We alreadysaw suchanexample
whenwe introducedregion graphsin the main text in section
VI. Constructionsthataremoregeneralthanthoseconstructed
usingtheclustervariationmethodor thejunctiongraphmethod
maybeusefulfor a varietyof reasons,including reducingthe
computationalcomplexity of aGBPalgorithm.

Fig.14. For this factorgraph,thechoiceof regions ÃNq N Ä NQÅ;N\Ê	Æ , Ã1Ç N Ä NQÉ;NZr�Æ ,Ã È)N\Å;NQÉ;NZs�Æ , and Ã�Ä N�Å;N\É�Æ , with correspondingcountingnumbersof Ä , Ä , Ä ,andt Ä , will giveavalid region-basedapproximationthatcannotberepresentedby
a regiongraph.

Note,however, thatalthoughtheregiongraphmethodis the
mostgeneralmethodwe have introduced,theredo exist valid
region-basedfreeenergy approximationsthatdo not have a re-
gion graphrepresentation.We demonstrateanexamplein fig-
ure14.

Fig.15. A Venndiagramillustratingtherelationshipsbetweendifferentmeth-
odsof generatingvalid region-basedfree energy approximations.The Bethe
methodis alwaysanexemplarof thejunctiongraphmethod,but is only a spe-
cial caseof theclustervariationmethodif thefactorgraphhasnopairof factor
nodesthatsharemorethanonevariablenode,andis only a specialcaseof Aji
andMcEliece’s junctiongraphmethodif therelevant factorgraphis a Forney
“normal” graph(novariablenodeis connectedto morethantwo factornodes).

In summary, we have the following relationships,as illus-
trated in the Venn diagramof figure 15. For a given factor
graph,the clustervariationmethodand the generalizedjunc-
tion graphmethodeachgeneratevalid region-basedfree en-
ergy approximationsthataresubclassesof all thepossiblevalid
approximations.Neither the clustervariationmethodnor the
generalizedjunction graphmethodis more generalthan the
other, andbotharesubsumedby themoregeneralregiongraph
method. The setof regionsgeneratedby the Bethemethodis
alwaysan examplarof thosegeneratedby the junction graph
method,andwill beanexamplarof thosegeneratedby theclus-
tervariationmethodif andonly if thefactorgraphhasnocycles
of lengthfour. In general,theBethemethodwill not bea spe-
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cial caseof theAji-McEliece junctiongraphmethod,thoughit
will befor

u
factorgraphssuchthateachvariablenodeis adjacent

to no morethantwo factornodes(Forney’sso-called“normal”
factorgraphs[21]).

In addition to being a more generalmethodthan the clus-
ter variationmethodor thejunctiongraphmethod,we feel that
theregion graphmethodis easierto understandon anintuitive
level. We simply selecta set of regions and countingnum-
berssuchthateveryvariableandfactornodegetscountedonce,
and suchthat we can enforceconsistency for the belief over
any variablenode,no matterwhich region we choose.Region
graphsalso have the importantadvantageof being a natural
graphicalstructurefor describinggeneralizedbelief propaga-
tion algorithms.

PakzadandAnantharamhavesuggestedstrengtheningthere-
giongraphrequirementsdescribedin sectionVI sothatfor ev-
ery sub-setof variablenodesin thefactorgraph,thesub-graph
of regionscontainingthatsub-setmustbeconnectedandmust
have a sum of countingnumbersequal to one [29]. Sucha
strengtheningwould ensurethat the beliefscomputedfor any
sub-setof nodeswould beconsistent,no matterwhich regions
wereusedto computeit. Theclustervariationmethodproduces
region graphsthat satisfythesestrongerrequirements,but we
chosenot to insist on thesestrongerrequirementsin general,
becauseregiongraphscreatedusingtheBetheMethodwill not
necessarilysatisfythem.

APPENDIX D: THE CHILD-TO-PARENT ALGORITHM

The observation underlyingthe “child-to-parentalgorithm”
is that when we minimize the Bethe free energy, the La-
grangemultipliers enforcing the marginalization constraints
correspondexactly(afterexponentiation)to the m � lo0 �!� �`% mes-
sagesfrom variablenodesto factornodesin theBP algorithm.
Consideringthesemessagesasmessagesfrom child regionsto
parentregionsin a region graph,we cantry to generalizethe
approachto arbitraryregiongraphs.Thus,weconstructa GBP
algorithmby simplyminimizingaregiongraphfreeenergy and
identifying Lagrangemultipliers that enforceconsistency be-
tweenbeliefswith messagesfrom child regions to parentre-
gions. Suchan approachwasconsideredin detail by Kappen
andWiegerinckfor regiongraphsconstructedusingthecluster
variationmethod[37].

We begin with thestationarypoint equationsobtainedfrom
differentiatinga Lagrangianò that representsa region graph
free energy � Ò �`�
� Í � % with beliefs �
� Í � that areconstrained
to beconsistentwith their neighborson the region graph. We
obtainedthis equationpreviously (seeequation(51)), andre-
write it here:Ô Í  �¢ � Í �(' Í %C" = Í ­ Ô Í e0 t 6 Ï  �¢ 2 0 �!' 0 % ������ e� t�� v Í w ñ � Í �!' Í % ­ e8 t�> v Í w ñ Í 8p�('n8 % � (D-1)

where '��!Ë % is thesetof regionsthatareparentsof region Ë ,
and ?C�!Ë % is thesetof regionsthatarechildrenof region Ë , andñ�� Í �(' Í % aretheLagrangemultipliersthatenforceconsistency
betweenthebeliefsin region 7 andthosein region Ë .

For Ô Íwv"/þ , wecanre-writethisequationas

� Í �!' Í %*� .0 t 6nÏ 2 0 �(' 0 %
J � 8 t�> v Í w mn8 l Í �('n8 %� � t�� v Í w m Í l �H�!' Í % K 
��1Á Ï �

(D-2)
where m 8 l �H�(' 8³%Ö"xA
C2D �\ñ�� 8 �(' 8*%�% is a “message”from a
child region ß to a parentregion 7 , in analogywith themes-
sagesm � lo0 �(� ��% in standardBP. If Ô Í "·þ , wedonotgetacon-
dition on � Í �(' Í % ( � Í �!' Í % canstill bedeterminedfrom beliefs
in super-regionsvia themarginalizationconditions);insteadwe
obtainthefollowing conditionon themessagesinto andout of
region Ë : J � 8 t�> v Í w mn8 l Í �('n8 %� � t�� v Í w m Í l �½�!' Í % K " + � (D-3)

The messageupdaterules are then obtainedby applying the
marginalizationconditions� 8 �!' 8�%C" � g 0 h�g/< �I�H�('$� % .

A small examplemight help clarify the meaningof these
equationsfor thereader. Considertheprobabilitydistribution� �!�<
:�����G���>@ %*",+- 2 6��!�<
:����� %�2 7F�(�>�=����@ % � (D-4)

We usetheBetheapproximation,whichshouldbeexactin this
casebecausethe factorgraphis a tree. Thus,we obtainlarge
regions �;Ý�� + �YàK� and �;Þ��Yà���äå� , with countingnumbers+ , and
small regions � + � , �
àå� , and �;ä�� , with countingnumbersþ , + ,and þ respectively. Weobtainthefollowing beliefequationsfor
theregionswith Ô Íwv"/þ :� 6 �(� 
 ��� �	%��/2�6 �(� 
 ��� �
% m 
 l 6 �(� 
�% m � l 6 �!� �
% � (D-5)�Z7F�!���G����@ %*�/2 7F�(�>�=����@ % mn� l 7F�!��� % mn@ l 7��(��@ % � (D-6)� � �(� �;%C� m � l 6 �(� �
% m � l 7 �(� �
% � (D-7)

andthe following conditionson messagesfor theregionswithÔ Í "·þ : m 
 l 6D�(�<
 %C" + � (D-8)

and m @ l 7 �(� @;%C" + � (D-9)

Using theseconditionsandthemarginalizationconditions,we
find that mn� l 6H�(��� %C" e {	� 2 7p�(�>�=����@ % � (D-10)

and mn� l 7p�!��� %C" e { ø
2 6D�(�E
������ % � (D-11)

We cannow easilycheckthat in this example,the computed
beliefsgivebackthedesiredmarginalprobabilitiesexactly.

The child-to-parentalgorithm, by its construction,clearly
givesageneralizedBPalgorithmwhosefixedpointscorrespond
to thestationarypointsof theregiongraphfreeenergy. On the
otherhand,it mightbeconsideredinelegantbothbecauseit fo-
cusesonly onthemessagesfrom child regionsto parentregions
and becausethe messageupdateequationswill inevitably be
complicatedand involve the countingnumbersÔ Í . The two-
wayalgorithmdescribedin AppendixE andtheparent-to-child
describedin the main text in sectionVII-A aredifferentGBP
algorithmsthatattemptto amelioratetheseflaws.

17



APPENDIX E: THE TWO-WAY ALGORITHM

To motivatethetwo-wayalgorithm,wereturnto thestandard
BP algorithm,wherewe recall that thebelief equationscanbe
written in theform�Z���(��� %*" .0 t �pv���w k 0^l �Y�(�>� % (E-1)

and � 0 �(' 0 %C"ª2 0 �(' 0 % .� t �pv 0 w m � lo0 �!� ��% (E-2)

where mn� lo0 �!��� %C" .s�t �pv���w h 0 k s l �Y�(�>� % � (E-3)

Giventheseequations,it is naturalto aimfor ageneralization
wherethebeliefequationswill have theform� Í �(' Í %C"zy2 Í �(' Í % .8 t�> v Í w m 8 l Í �(' 8�% .� t�� v Í w k � l Í �('$� % �

(E-4)
In otherwords,we aim to write thebelief equationsso that

the belief in a region is a productof local factorsand mes-
sagesarriving from all theconnectedregions,whetherthey are
parentsor children. It will turn out that we can do this, but
in order that the GBP algorithm be correspondto the region
graphfree energy, we will needto usemodifiedfactorsanda
rathercomplicatedrelationbetweenthe m 8 l �H�(' 8�% messages
and k�� l 8 �('$� % messagesgeneralizingthe relation for stan-
dardBP givenin equation(E-3).

It will beconvenientto denotethenumberof parentsof re-
gion Ë by � Í , anddefinethenumbers{ Í ° � + � Ô
| % � ��| and} Í ° +
� �\à � {�| % . Whena regionhasnoparentsothat � Í "·þ
and Ô Í " + , we take { Í " } Í " + . Notethatwithin theBethe
approximation,{ Í " } Í " + for all regions. We will assume
that { Íkv" à so that

} Í
is well-defined(normally, if onehasa

regiongraphwith aregionsuchthat { Í " à , oneshouldbeable
to changetheconnectivity of Ë to avoid thisproblem).

We first definethesetof pseudo-messagesfor all regions Ë
andtheirparents7 andchildren ß :m o Í l � �!' Í %*" (E-5)y2 Í �(' Í % .� # t�� v Í w h � k � # l Í �!' Í % .8 t�> v Í w mn8 l Í �('n8 %
andk o Í l 8 �(' 8³%C" (E-6)eg Ï h�g < y2 Í �(' Í % .� t�� v Í w k�� l Í �!' Í % .8 # t�> v Í w h 8 m 8 # l Í �(' 8 # % �
where y2 Í �(' Í %C° l � 0 t 6�~ 2 0 �(' 0 % n Á`Ï .

Aside from the fact that we raisedthe productof the local
factorsto a power of Ô Í , thesepseudo-messagesarewhatone
would naively expectthemessageupdatesto look like. To ob-
tain the truemessageupdates,however, oneneedsto combine
the pseudo-messagesgoing in the two directionsof a link as
follows:m Í l �H�(' Í %*" l!m o Í l � �(' Í % n�� Ï l!k o � l Í �!' Í % n�� Ï � 
 (E-7)

andk � l Í �!' Í %C" l\m o Í l � �!' Í % n
� Ï � 
 l\k o � l Í �(' Í % n
� Ï (E-8)

Notethatwhen
} Í " + , themessagesarepreciselythesameas

thepseudo-messages.
Thetwo-wayalgorithmis completedby thebeliefequations,

which have the form alreadygivenin equation(E-4). We now
claim that the above setsof messagesand beliefs are fixed
pointsof two-wayGBPif andonly if they arestationarypoints
of theregiongraphfreeenergy.

Proof: We form a Lagrangianfrom the region graph en-
ergy asalreadyindicatedin the previoussectionon the child-
to-parentalgorithm. If we exponentiateequation(51) derived
there,weobtaintheequation

� Í �(' Í % Á`Ï � y2 Í �(' Í % .8 t�> v Í w ��ó Ï < v g/< w
ôõ .� t�� v Í w ��ó 0 Ï<v g Ï�w�ö÷ �


 �
(E-9)

Supposethatwearegivenasetof ñ and � Í thatsatisfythese
stationaryconditionsof theLagrangian.Now wedefinem Í l �½�(' Í %C" ��ó 0 ÏEv g Ïåw (E-10)

and k � l Í �!' Í %C" � Í �!' Í %�� Ï �G� ó 0 Ï<v g Ï�w (E-11)

Of course,we have one k messageand one m messagefor
every Lagrangemultiplier ñ , so for thesedefinitionsto hold,
we also need to have constraintsrelating the k ’s and m ’s.
Theconstraintswill begivenby thedefinitionsof thepseudo-
messagesand the relations betweenthe messagesand the
pseudo-messagesthatwe definedabove. We wantto show that
theserelations,aswell as the two-way GBP belief equations
previouslydefined,musthold.

First,weshow thatthebeliefequations(E-4)hold. We have� Í �(' Í % Á Ï � y2 Í �(' Í % .8 t�> v Í w � ó Ï < v g < w .� t�� v Í w � � ó 0 Ï v g Ï w� y2 Í �(' Í % .8 t�> v Í w mn8 l Í �!'n8 % .� t�� v Í w�� 2 Í �!' Í %� Í �(' Í %�� � Ï k � l Í �!' Í %� �\� Í �!' Í %�% � � Ï � Ï y2 Í �!' Í % .8 t�> v Í w mn8 l Í �('n8 % .� t�� v Í w k � l Í �!' Í %� �\� Í �!' Í %�% Á`Ï � 
 y2 Í �(' Í % .8 t�> v Í w m 8 l Í �(' 8³% .� t�� v Í w k � l Í �(' Í %
sothatindeed� Í �!' Í % is productof localpotentialsandincom-
ing messages.

Turning to the constraints,we have from the definition ofm o Í l � �(' Í % , thatm o Í l � �(' Í % k�� l Í �!' Í %*" � Í �!' Í % (E-12)" eg 0 h�g Ï �I�H�!'$� % (E-13)

" m Í l �H�!' Í % k o � l Í �(' Í % � (E-14)
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Equations(E-10)and(E-11)imply thatm Í l �½�!' Í % k�� l Í �!' Í %C" � Í �!' Í %�� Ï (E-15)"�l m o Í l � �!' Í % k�� l Í �!' Í %�n � Ï � (E-16)

Togethertheseequationsgive us two equationsfor the two
unknowns k�� l Í �!' Í % and m Í l �F�(' Í % :k � l Í �(' Í %m Í l �H�(' Í % " k o � l Í �(' Í %m o Í l � �(' Í % 2 Í �(' Í % � � Ï (E-17)

andm Í l �½�(' Í % k � l Í �(' Í % 
 � � Ï "�l m o Í l � �(' Í %&n � Ï (E-18)

Theuniquesolutionof theseequationsis givenby equations
(E-7)and(E-8). Thus,wehaveshown thatthemessagepassing
algorithmpreviouslydefinedhasfixedpointsthatareequivalent
to thestationarypointsof theregiongraphfreeenergy.

The two-way algorithm will be particularly elegant wheny2 Í �!' Í %o" 2 Í �!' Í % andwhen
} Í " + for all regions. In that

case,eachregion will sendmessagesto all adjacentregions,
andthemessageupdateruleswill bethenaturalgeneralization
of theordinaryBPruleswrittenwith two kindsof messages.It
is interestingto notethattheconditionthat y2 Í �!' Í %�" 2 Í �(' Í %
canbe ensuredby requiringthat only regionswith no parents
containfactornodes,while the conditionthat

} Í " + for all
regionscanbeensuredby requiringthatthesub-graphobtained
by takingany regionandall of its ancestorregionsmustalways
form a tree.

When
} Í " + for all regions,the two-way GBP algorithm

is equivalentto Pearl’s methodof clustering[9]: we form new
nodesfrom clustersof variablesin theoriginalgraph(theseare
the regions)and run an ordinary BP algorithmon the result-
ing graph.It is importantto bearin mind that this equivalence
only holdsfor a subsetof possibleregion graphs:if oneuses
this methodon a setof regionsthatdoesnot satisfytheregion
graphconditions,or on a region graphfor which

} | v" + for
someregions,theresultingbeliefswill generallybea poorap-
proximation.

APPENDIX F: REGION GRAPHS WITH Ô Í "3þ REGIONS

In our proof thatthefixedpointsof theparent-to-childGBP
algorithmareequivalentto the stationarypointsof the region
graphfree energy (given in sectionVII-A), we assumedthat
no region hascountingnumber Ô Í " þ . That is never diffi-
cult to arrange:if onehasa region graphwith regionswhose
countingnumberequalszero,onecanremove them,andthen
connectdirectly any regionsthatwerepreviously ancestorsor
descendantsof eachother, but areno longerafter the removal
of the Ô Í "ÿþ regions. Theremainingregionswill have iden-
tical countingnumbersby construction,andsincethe regions
with Ô Í "¬þ did not contributeto theregion graphfreeenergy
in any case,it will be unchanged.In figure 16, we illustrate
the “surgery” thatneedsto beperformedon a region graphto
removeregionswith countingnumberzero.

In fact, however, the parent-to-childalgorithm is well-
definedevenwhensomeof theregionshave countingnumbers

Fig. 16. An illustrationof how onecantake aregion graphwith someregions
thathave countingnumberzero,andobtainanotherregion graphwith no such
regions but with an identical free energy. One first removes regions with a
countingnumberof zero,andthendirectly connectsany ancestor-descendant
pairs that have becomedisconnected.In this example,we form new direct
connectionsbetweenregions � and � andbetweenregions Ç and � .

equalto zero,andwhenoneimplementsit, onefinds that the
resultsat its fixed pointsareidenticalto thoseobtainedwhen
onesurgically removesthe Ô Í " þ regions. The reasonthat
thealgorithmstill givesproperresults,even thoughtheabove
proof breaksdown, is that the ñ constraintsthatcannotbede-
rivedfrom the @ constraintsareactuallynotnecessary–they all
involve Ô Í "3þ regionsthatdonotcontributeto thefreeenergy
in any case.

Fig. 17. A small illustrative region graph(seetext). Note that region � has
countingnumber��� T�� .

A small examplemay make this point more comprehensi-
ble. Considerthesmallregiongraphshown in figure(17). The
countingnumbersof the regions are Ô 6 " Ô 7 " Ô 8$" + ,Ô ! " Ô � "Ú� + , and Ô µ~" þ , sothatregion � couldclearlybe
removedto obtainanequivalentregion graph.For thepurpose
of illustration,we leave it in. We have six ñ constraints,each
of which is very straightforward. For example,the constraint
associatedwith ñB6 ! �!' ! % is � ! �(' ! % " � g/.Bh�g�� �Z6D�('n6 % ,
while the constraintassociatedwith ñ ! µ½�!'nµ % is �ZµH�('nµ % "� g/�ch�g�� � ! �!' ! .

Thesix @ constraintsaresomewhatlessstraightforward.Go-
ing backto theprescriptiongivenin equation(53), we seefor
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examplethattheconstraintassociatedwith @ 6 ! �(' ! % isÔ ! � ! �(' ! % ­ Ô 7 eg/�<h�g/� � 7 �(' 7D%C"/þ (F-1)

or equivalently, � ! �!' ! %*" eg/�<h�g/� � 7 �!' 7³% (F-2)

while theconstraintassociatedwith @ ! µH�('nµ % isÔ�µ*�ZµD�('nµ % ­ Ô � eg - h�g/� � � �!' � % ­ Ô^8 eg < h�g/� �Z8F�('n8 %*"/þ (F-3)

or equivalently eg < h�g/� � 8 �(' 8³%C" eg - h�g/� � � �(' � % � (F-4)

BecauseÔ µª" þ , therewill not beany @ constraintdirectly
involving �ZµH�!'nµ % , so we cannotderive someof the ñ con-
straints.On theotherhand,theseconstraintsarenot necessary,
becausetheregiongraphfreeenergy itself alsodoesnotdepend
directly on �ZµH�('nµ % . We alsoseethat the @ constraintsarestill
sufficient to ensurethatall thebeliefsareconsistentwhenthey
aremarginalizeddown to region � . Finally, if we do surgery
on this region graphandremove region � , we cantheneasily
verify that the ñ constraintsarethenentirelyequivalentto the@ constraints.
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