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Constructing-reeEnegy Approximationsand
Generalizedelief Propagtion Algorithms

Jonathar§. Yedidiat, William T. Freemary, andYair Weiss§

Abstract— Important inferenceproblemsin statistical physics,
computer vision, error-correcting coding theory, and artificial in-
telligencecan all be reformulated asthe computation of marginal
probabilities on factor graphs. The belief propagation (BP) algo-
rithm is an efficient way to solve theseproblemsthat is exactwhen
the factor graph is a tree,but only approximate when the factor
graph hascycles.

We show that BP fixed points correspondto the stationary
points of the Bethe approximation to the freeenergy for a factor
graph. Weexplain how to obtain region-basedr eeenergy approx-
imations that impr ove the Bethe approximation, and correspond-
ing generalizedbelief propagation(GBP) algorithms.

We emphasizethe conditionsa fr eeenemgy approximation must
satisfy in order to be a “valid” approximation. We describethe
relationship betweenfour different methodsthat can be usedto
generatevalid approximations: the “Bethe method;’ the “junction
graph method; the “cluster variation method; and the “r egion
graph method?”

The regiongraph method is the most general of thesemethods,
and it subsumesall the other methods.Regiongraphsalsoprovide
the natural graphical settingfor GBP algorithms. We explain how
to obtain thr eediffer ent versionsof GBP algorithms and shaw that
their fixed points will alwayscorrespondto stationary points of the
regiongraph approximation to the freeenemy. We alsoshow that
the region graph approximation is exact when the region graph
hasno cycles.

|. INTRODUCTION

Problemsinvolving probabilisticinferenceusing graphical
modelsare importantin a wide variety of disciplines,includ-
ing statisticalphysics,signalprocessingatrtificial intelligence,
and digital communicationd1], [2]. Message-passinglgo-
rithmsareapracticalandpowerful wayto solve suchproblems.
The centrality of such problemsand the utility of message-
passingalgorithmsfor solving themis an explanationfor the
factthatequialentor very closely-relatednessage-passirat-
gorithmshave now beenindependentlyinventedmary times.
They arewell-known by namedike the forward-backvard al-
gorithmfor HiddenMarkov Models[3], the Viterbi algorithm
[4], [5], Gallagers sum-producialgorithm for decodinglow-
densityparity checkcoded6], the“turbo-decoding”algorithm
[7], [8], Pearls“belief propagation’algorithmfor inferenceon
Bayesiametworks[9], the “Kalman filter” for signalprocess-
ing [10], [11], andthe “transfermatrix” approactin statistical
mechanic$12].
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In thislist of “standard”belief propagatior(BP) algorithms,
we have blurreda distinctionbetweenwo differentobjectves
thatone might have, andthe slightly differentalgorithmsthat
result. Sometimespnemight beinterestedn obtainingtheone
global stateof a systemthatis mostprobableor otherwiseop-
timal. In othercasespneis interestedn obtainingmarginal
probabilitiesfor somesubsebf the nodesof the systemgiven
evidenceaboutothernodesn the system.n this paperwe will
focusexclusively onthis latter problem.

In all standardBP algorithms,messageare sentfrom one
nodein a graphicalmodelto a neighboringnode. The algo-
rithms are exact when the graphicalmodelis free of cycles.
Thus,a commonapproachfor dealingwith graphicalmodels
thatdo have cyclesis to try to corvertthemto equivalentcycle-
free graphicalmodels,and thento usethe standardBP algo-
rithm [13]. In somecasesthis is possible but for mary other
caseof practicalinterest,suchanapproachs intractable and
onemustsettlefor approximatamethods.

FortunatelythestandardP algorithmsarewell-defined and
oftengive surprisinglygoodapproximateaesults,for graphical
modelswith cycles. Neverthelessjn suchcasegshereareno
guaranteesandsometimegsheresultsarequite poor, or theal-
gorithmfails to give ary resultat all becauseat doesnot con-
verge[14]. Two majorgoalsof this paperareto explainwhy the
standardBP algorithm often works so well evenfor graphical
modelswith cycles,andto usethat understandingo develop
improvedalgorithmsfor casesvhenit doesnotwork well.

The classof algorithmsthatwe will describewhichwe call
genearlizedbelief propagation (GBP) algorithms,all have the
characteristithatsetsor regionsof nodeswill sendmessage®
otherregionsof nodes.Theregionsof nodesghatcommunicate
with eachother canbe easily visualizedin termsof a region
graph The standardBP algorithmis a specialcaseof a GBP
algorithm,with aparticularchoiceof regions.Differentchoices
of region graphswill give different GBP algorithms,andthe
usercanchooseo tradeoff compleity for accurag.

In practice,GBP algorithmscan often dramaticallyoutper
form BP algorithmsin termsof eithertheir accurag or their
convergencepropertiesfor minimal computationatost,if one
makesan intelligent choiceof regions. However, how to opti-
mally chooseregionsfor a GBPalgorithmremainsatthis point
moreanartthana science We hopethatthis papercontritutes
to this problemby delineatingvhatclasse®f constructionsre
likely to give goodresults.

We shall give a theoreticaljustification of GBP algorithms
by shaving thattheir fixed pointsareidenticalto the stationary
pointsof aregion-basedreeenegy, whichis anapproximation
to anotherfree enegy that canbe justified by a rigorousvari-



ational principle. The first specializedexamplesof suchfree
enegieswereintroducedong agoin the physicsliteratureby
by Bethe[15] andKikuchi [16]. For theimportantspecialcase
of the standardBP algorithm,we shaw thatits fixed pointsare
the sameasthe stationarypointsof the Bethefreeenegy, thus
establishingan importantbasiclink betweena classicalalgo-
rithm anda classicabpproximatiorfrom physics.

One must be carefulin constructinga region graphin or-
der to ensurethat the resulting approximationsare accurate.
In our original work introducingGBP algorithms[17], we fo-
cusedon a sub-clasof GBP algorithmsthat were equivalent
to free enegy approximationdasedon Kikuchi’'s clustervari-
ation method[16], [18], [19]. We shallshow thatthis method
is only oneof a variety of methodsto generataegion graphs
andtheir correspondindree enegiesand message-passiral-
gorithms.

In our original work, we alsofocusedon graphicalmodels
definedin termsof pairwise or higherorder Markov random
fields (MRFs). In this paper we shallinsteadfocuson graphi-
calmodelsdefinedn termsof factorgraphs.All ourresultscan
be re-expressedor other graphicalmodelswithout difficulty.
Usingfactorgraphshascertainpracticaladvantages—impartic-
ularwe canrefertheneophyteaeadetto theexcellentreview by
Kschischanget.al. [20]. Thatreview explainsthe equivalence
to factorgraphsof othergraphicaimodelssuchasBayesiamet-
works, Tannergraphsfor errorcorrectingcodes,or pairwise
MRFs, and explains the standardBP algorithmin its various
guisesasanalgorithmthatoperate®nfactorgraphs.

Otherformulationsof thestandardBP algorithmprovide dif-
ferentinsights,andwe referthe interestedeaderto a number
of importantrecentpapershat exploit alternatve views of the
BP algorithm[21], [22], [23], [24], [25], [26].

After our original work which introducedregion-basedree
enegies and GBP algorithmsbasedon the cluster variation
method,Aji and McEliece introduceda classof free enegy
approximationsand GBP algorithmsbasedon junctiongraphs
[27]. Oneof thegoalsof this paperis to unify our previousap-
proachwith theonethatAji andMcEliecepresentedMcEliece
andYildirim haveindependentlyevelopeda unifiedapproach
to belief propagatiorwhich is largely equivalentto our region
graphapproach,and we recommendheir elegant exposition
[28]. PakzadandAnantharanhave alsorecentlypresentegar
allel ideasin a brief paper29].

Theoutlinefor therestof the paperis asfollows. In section
I, we review andintroduceour notationfor factorgraphsand
thestandardP algorithm.In sectiondll andlV, weintroduce
andexplain the physicalintuition behindvariationalfree ener
giesandregion-base@pproximationso them.In sectionV, we
considetthe BetheMethodwhich canbeusedto obtainparticu-
larly simpleregion-basedree enegy approximationsWe also
shaw in that sectionthat the standardBP algorithm hasfixed
pointsequialentto the stationarypointsof the Betheapprox-
imationto the free enepgy. In sectionVI, we developa theory
thatcanbe usedto determinewhich region-basedree enegy
approximationswill belikely to give accurateresults. In par
ticular, we describethe Region Graph Method a very general

methodfor generatingsalid region graphsandtheir associated

freeenegies.In sectionVIl, weintroduceGBPalgorithmsand

shaw thatthereareactuallya variety of waysto defineGBPal-
gorithmsfor ary givenregiongraph,all of which haveidentical
fixedpoints.Wefocuson oneparticulartypeof GBPalgorithm,
whichwe call the parent-to-aild algorithm.Finally, in section
VIII, we give a detailedexampleof the implementatiorof the
parent-to-childGBPalgorithm.

We have chosento put an unusuallylarge amountof mate-
rial in the appendice®f this paper We did this in an attempt
to help the readergraspthe fundamentatonceptdbehindour
work and not lose sight of the forestbecauseof all the trees.
Theappendiceslescribea variety of othermethodgo generate
region graphsandGBP algorithmswhich could easilyprove to
beasimportantin practiceasthe methodglescribedn themain
text.

Il. FACTOR GRAPHS AND BELIEF PROPAGATION

Let {X;, Xo,..., Xy} be a setof N discrete-aluedran-
dom variablesand let z; representhe possiblerealizations
of randomvariable X;. We considerthe joint probability
massfunctionp(X; = z1, X2 = za,..., Xy = zn), Which
we shall write more succintly as p(x), where x standsfor
{z1,%2,...,zn}. We supposdhatp(x) factorsinto a product
of functions.Thatis, we supposéhatp(x) hasthevery general
form

)= [ ®
Herea is anindex labeling M functions f4, fB, fc, ..., fu,
wherethefunction f,(x,) hasagumentsk, thataresomesub-
setof {z1, 2, ...,zx}. Z isanormalizationconstant.

A factor graph [20] is a bipartite graphthat expresseghe
factorizationstructurein equation(1). A factorgraphhasa
variablenode(whichwe draw asacircle) for eachvariablez;,
afactornode(whichwe draw asa squarefor eachfunction f,,
with anedgeconnectingvariablenodes to factornodea if and
onlyif z; isanagumenbf f,. (We shallalwaysindex variable
nodeswith lettersstartingwith 7, andfactornodeswith letters
startingwith a.) As anexample thefactorgraphcorresponding
to

p(z1,T2,73,T4) = %fA('Tla$2)fB($271'37$4)fC(1'4) 2

in shavnin figure1.

Fig. 1.
p($1,$2, x3, 564) =

A small factor graphrepresentinghe joint probability distribution
+ fa(z1,32) fB (22,33, T4) fo (24).

We shallfocusontheproblemof computingmarginal proba-
bility distributions.We call the possiblevaluesof X; the states



of variablenodei. If S is a setof variablenodes,we use
xs to denotethe statesof the correspondingrariable nodes.
ps(xs) will denotethe mamginal probability functionobtained
by maminalizingp(x) ontothesetof variablenodess, i.e.,

ps(xs) = Z p(x).

x\xgs

3)

Herethesumoverx\xg indicateghatwe sumoverthestateof
all thevariablenodesnotin thesetS. We shallwrite p;(x;) for
themamginal probabilityfunctionwhenthesetS consistf the
singlenodei. Oneshouldnotethatthe problemof computing
mauginal probabilityfunctionsis in generahardbecausét can
requiresumminganexponentiallylarge numberof terms.

Thebelief propagation (BP) algorithmis a methodfor com-
puting marginal probability functions. We describethe algo-
rithm in termsof operationson a factorgraph. As we already
mentionedin the introduction,the computedmaiginal proba-
bility functionswill be exactif the factorgraphhasno cycles,
but the BP algorithmis still well-definedandempirically often
gives good approximateanswerseven when the factor graph
doeshavecycles.

To definethe BP algorithm,we first introducemessgesbe-
tweenvariable nodesand their neighboringfactor nodesand
vice versa. The messagen,_,;(x;) from the factornodea to
thevariablenodei is avectoroverthepossiblestateof x;. This
messageanbeinterpretedasa statemenfrom factornodea to
variablenode; abouttherelative probabilitiesthati is in its dif-
ferentstatespasedon thefunction f,. Themessage,;_,,(x;)
from the variablenode;: to the factornodea may in turn be
interpretedas a statementboutthe relative probabilitiesthat
nodes is in its differentstatesbasedon all the informations
hasexceptfor thatbasecnthefunction f,.

Themessageareinitialized to m,_,;(z;) = nj—q(x;) =1
for all factornodesa, variablenodesi, andstatese;. In fact,
otherinitializationsare also possible,and the overall normal-
izationof themessagesanalsobechoserarbitrarily. Theonly
importantnormalizationconditionis on the beliefs,introduced
belown, which mustsumto onein orderto properly represent
probabilities. The messageare updatedaccordingto the fol-
lowing rules:

nisa(zi) =[] mesilzi). (4)
bEN(i)\a
and
ma—>i(xi) = Z fa(xa) H nj—)a(xj) (5)

Xa \Ti JEN(a)\i

Here, N (i)\a denotesall the nodesthat that are neighborsof
nodei exceptfor nodea, and}_, ., denotessumoverall the

variablesx, thatareargumentsof f, exceptz;. Themessages b, (z,)

may be normalizedin ary way thatis corvenient,asonly the
ratios of the termsin a messageare relevant. This standard
BP algorithmis sometimesalledthe“sum-product’algorithm
becausef the sumandproductthatoccurson the right-hand-
sideof equation(5).

In somecasesiit is corvenientto eliminatethe n;_,,(x;)
messagesnd write the message-updatequationsentirely in

termsof them,_,;(z;) messagesAlternatively, of courseone
could chooseto eliminatethe m,_,;(x;) messages favor of
then;_,(x;) messages.

These message-updateules may initially appear quite
mysterious—anajor goal of this paperwill beto explain, jus-
tify, andultimately improve uponthem. First though,to com-
pleteour preliminarydescriptiorof the standardBP algorithm,
weintroducethe beliefb;(z;) atavariablenodei, whichis the
BP approximationto the exact marginal probability function
pi(x;). Thebeliefb;(x;) canbecomputedrom theequation

bi(z;) H Ma—i(Ti),

a€N (1)

(6)

wherewe have usedthe proportionalitysymbol « to indicate
that one must normalizethe beliefs so that they sumto one.
TheBP message-updatgjuationsreiterateduntil they (hope-
fully) corverge,atwhich pointthe beliefscanbereadoff from
equation(6).

We canalsousethe BP algorithmto computejoint beliefs
bs(xg) over setsof variablenodessS that may containmore
than one node. Considerthe importantcasewhenthe set.S
consistsof all the variablenodesattachedo the ath function
fa(X4). We will denotethe correspondindelief by b, (x,),
whichwill begivenwithin the BP approximatiorby

ba(xa) o8 fa(xa) H ni—>a(-77i)
€N (a)

x  fa(Xaq) H H mp—i(5).

t€N(a) beEN(i)\a

(7)

We candirectly derivethe messageipdaterules(4) and(5)
from the belief equationg6) and(7), alongwith the maminal-
izationcondition

bi(z:) = Y ba(xXa) ®)

X\ T

which holdswhen z; is one of the agumentsin the setx,.
Thus,thebelief equationg6) and(7) canbe consideredo de-
fine the BP algorithm, a point of view that will prove useful
later

The BP algorithmis normallyjustified asbeingan exactal-
gorithm when the factor graphhasno cycles (i.e., it hasthe
topologyof atree.) We shall not prove that propertyhere,but
will simply give a small example: considerthe joint probabil-
ity distribution givenby equation(2) asillustratedin figure 1.
Supposehat we would like to computep; (), the mamginal
probability distribution at variablenode 1. Repeatedlyusing
the BP equationsyve find

X ma(z1)

X Z fa(zr, 22)noa(22)

Z2

o ZfA($1,$2)mB—>2(372)

Z2

x Z Z Z fa(z1,22) fp(22, T3, T4)n3— B (T3)N4—s B (24)

r2 X3 X4



x Z Z Z fa(zi,z2) fB(®2, T3, 4)MCO54(T4)

r2 T3 T4

o ZZ ZfA($1,wz)f3($2;$3;$4)fc($4)

T2 T3 T4

whichis exactly the desiredmarginal probability function. We
could similarly demonstratehat equation(7) would give ex-
actmulti-nodemarginal probabilitiesfor graphswith nocycles.
We canalreadyseefrom this examplethatfor graphswith no
cycles,the BP algorithmis essentiallya dynamicprogramming
algorithmthat organizesthe computationsnecessaryo com-
pute mamginal probability distributionsin sucha way thatthey
becomdractable.

The BP algorithmwasintroducedinto the codingliterature
by Gallagerasa sub-optimalprobabilisticdecodingalgorithm
for linear block errorcorrectingcodes,and somereadersnay
be most familiar with the BP algorithmin that contet [6].
Otherreadersmay be most familiar with the form of the BP
algorithmintroducedand popularizedby Pearl[9] for proba-
bilistic inferencewith Bayesiannetworks. Readerswho are
more familiar with the BP algorithm written on one of these
forms may want to consultthe review by Kschischanget.al.
[20], which explainsthe equivalencebetweentheseforms of
the BP algorithmandthe onewe have choserto usehere.

I1l. FREE ENERGIES

In this sectionwe turn from simply describinghe BP algo-
rithm to explaining its success.In sectionll, we sav thatthe
BP algorithmcanbedefinedin termsof thebeliefequationg6)
and (7). We shall eventuallyshowv thatthesebelief equations
correspondo the stationarityconditionsfor a functionalof the
beliefs calledthe Bethefree enegy, Fiethe(bi, bs). This fact
senesin somesensdo justify the BP algorithmevenwhenthe
factorgraphit operateson hascycles,becauseninimizing the
Bethefree enepy is a sensibleapproximationprocedurethat
hasa long andsuccessfuhistoryin physics.It alsopointsto a
varietyof waysto improveuponor generalizeBP, especiallyby
improving uponthe approximationsisedin the Bethefreeen-
engy. In therestof the paperwewill discussall of thesdssues,
but wefirst turnto anexplanationof thenotionof afreeeneny.

Supposéhatonehasa systemof N particles eachof which
canbein oneof a discretenumberof stateswherethe states
of the ith particle are labeledby z;. (As an example, one
might make a variety of simplificationsand characterizehe
statesof the atomsin a magneticcrystal by whethera given
electronin eachatom hasan “up” spin or a “down” spin.)
The overall stateof the systemwill be denotedby the vector
x = {z1,22,...,2n}. Eachstateof the systemhasa corre-
spondingenegy E(x). A fundamentatesultof statisticalme-
chanicgs that,in thermalequilibrium,the probability of a state
will begivenby Boltzmanns Law

__L meyT
Here,T is thetemperatureandZ(T') is simply anormalization
constantknown asthe partition function

Z(T) = Z e~ E(x)/T

x€ES

(10)

11)

whereS is thespaceof all possiblestatesx of the system.

A substantiapart of statisticalmechanicgheoryis devoted
tot g'ustificationof Boltzmanns Law. On the otherhand,if
one %inswith a joint probability distribution p(x) for some
non-physicakystem,onecanview Boltzmanns law asa pos-
tulatethat senesto defineanenepy for the systemwherethe
temperatureeanbe setarbitrarily, asit simply setsa scalefor
the units in which one measureenegy. We shall take this
point of view andsetT = 1 throughoutthe restof this paper
For the caseof a factorgraphprobability distribution function
p(x) = (1/2) Hfl‘il fa(x4), we definethe enegy E(x) of a
statex to be

M
E(x) ==Y In fo(xa) (12)
a=1
in orderto be consistentvith Boltzmanns Law.
TheHelmholtzZfreeenegy Fyeimnort Of asystems
FHelmholtz = —In Z. (13)

Thisfreeenengy is afundamentallymportantquantityin statis-
tical mechanicshecauséf onecancalculatethefunctionalde-
pendenc®f Fieimnolsz ON quantitiesike a macroscopienag-
neticfield H or temperaturd’, thenit is easyto computeex-
perimentallymeasurablguantitiedik e theresponsef thesys-
temto achangen H or T. Physicistshave thereforedevoted
considerablenegy to developingtechniquesvhich give good
approximation$o Fieimholtz-

Oneimportanttechniques basedon a variationalapproach.
Supposeagainthatp(x) is the true probability distribution of
the systemwhich obeys Boltzmanns Law p(x) = e~ ¥ /Z.
It may be that even if we know p(x) exactly, it is of a form
that makesthe computationof Fyeimnont. difficult. We there-
foreintroducea “trial” probabilitydistribution b(x), anda cor
respondingr/ariational freeenegy (often calledthe Gibbsfree
enegy) definedby

F(b) =U(b) — H(b) (14)
whereU (b) is thevariational average enegy:
U®) =) bx)E(x) (15)
x€S
andH (b) is thevariational entropy:
H(b) = - b(x)Inb(x). (16)
x€S
It follows directly from our definitionsthat
F(b) = Frelmholtz + D(b]|p) (17)
where b(x)
X
D(b = b(x)In —= 18
(bllp) = 3 b(ex)In o (18)

x€ES

is the Kullback-Leibler divergencebetweenb(x) and p(x).
Sincethereexists a theorem[30] that D(b||p) is alwaysnon-
negative andis zeroif andonly if b(x) = p(x), we seethat
F(b) > Fheimnoltz, With equalitypreciselywhenb(x) = p(x).



Minimizing the Gibbsfreeenegy F(b) is thereforeanexact
procedurefor computingFieimnort. andrecoveringp(x). Of
course,as N becomedarge, this procedurds alsototally in-
tractable asb(x) will take exponentiallylarge memoryjust to
store.A morepracticalpossibilityis to upperboundFyeimnolsz
by minimizing F'(b) overarestrictedclassof probabilitydistri-
butions. This is the basicidea underlyingthe meanfield ap-
proach.Onevery popularmean-fieldform for b(x) is the fac-

torizedform:
N

=[] bi(za)

i=1
Usingthis by, r(x), andanenegy function E(x) of thefactor
graphform givenin equation(12), we caneasilycomputethe
meanfield freeenegy Fyr = Uy — Hpyp fOr anarbitrary
factorgraph:

barr(x) (19)

Unr({b1, -, bn}) = ZZlnfa xa) J[ bi(=),
a=1 X4 1EN(a)
(20)
Hyrr({b1,...,bx}) = ZZb ) Inb;(xz;).  (21)
=1 z;

Minimizing Fasp(by,...,by) over the b; will give us self-
consistenequationgor theb;, whichcanbesolvednumerically
to obtainamean-fieldapproximatiorfor the beliefsb; (z;).
Insteadof a factorizedform, onemight considerothermore
complicatedormsfor b(x) whichstill leadto tractableapprox-
imations. This is the ideabehindthe “structuredmean-field”
approacH31]. We will notfollow that path,andwill instead
describea quite differentapproachto approximatingF'(b) in
thenext sectiononewhich underlieghe BP algorithm.

IV. REGION-BASED FREE ENERGY APPROXIMATIONS

Kikuchi andthe otherphysicistswho further developedthe
so-calledclustervariation method[16], [18], [19] introduced
a classof approximationgo the Gibbsfree enegy F(b). The
ideabehindtheseapproximationss similar, but slightly differ-
entfrom the meanfield approximation Whereaghefactorized
mean-fieldreeenegy F)r is afunctionof single-nodéeliefs
bi(xz;), in a Kikuchi approximationthe approximatefree en-
ey Frikueni Will beafunctionof beliefsbs(xg) overlarger
setsS of variablenodes. One dravback of the clustervaria-
tion methodis thatin contrastwith the mean-fieldapproach,
one cannotnormally explicitly constructan overall “trial” be-
lief vectorb(x) thatis consistentwith the multi-nodebeliefs
bs(xs), andthereforeonedoesnot normally obtainary upper
boundon F' [32]. On the otherhand,one canmale approxi-
mationsthataremuchmoreaccuratehanthefactorizedmean-
field approximationandthereis agreatdealof flexibility in the
exactchoiceof approximation.As we shallalsoseein further
detail,theseapproximationganbeexploitedto yield message
passingalgorithmsandaparticularlysimpleversion—théBethe
approximation—willgive resultsthatareequivalentto the stan-
dardBP algorithm.

We shallactuallydescribéhereaclassof approximationshat
generalizéhosegeneratedby the clustervariationmethodasit

hasbeendescribedn the physicsliterature,andwill therefore
referto suchapproximationsasregion-basedapproximations
We referto the sub-clas®f approximationspecificallygener
atedusingthe clustervariationmethodasKikuchi approxima-
tions

Fig.2. Anillustrationof thedefinitionof aregion. Regionsaresetsof variable
andfactor nodesin a factor graphsuchthat all variable nodesconnectedo
ary includedfactor nodesare included. Thus, the setsof nodes{1, 2} and
{B, C,2,3,4} couldberegions,but { B, 3} couldnotbearegion (sincefactor
nodeB wasincluded variablenodes2 and4 mustalsobeincluded.)

We begin by assuminghatp(x) hasthefactorgraphform of
equation(1l). We definearegion R of afactorgraphto beaset
Vg of variablenodesandasetFr of factornodessuchthatif a
factornodea belonggso Fg, all thevariablenodesneighboring
a arein Vg. We give examplesof setsof nodesthat could or
could not be consideredegionsin figure 2. Note thatthe set
Fr maybe empty andthata factora neednot be includedin
Fg evenif all its neighboringvariablenodesarein Vx.

We definethe statexy, of aregion R to bethe collective set
of variablenodestates{z;|i € Vg}. The mamginal probability
functionoveraregion R will bedenotedy pr(xg), by which
we meana mamginalizationof p(x) onto the variablenodesin
Vr. Thecorrespondingeliefbr(xg) will beanapproximation
tothetruepg(xg).

We definetheregionenegy Er(xr) to be

— Z In fo(x4)-

a€Fg

(22)

where,sinceall the variablenodesneighboringa factornode
a € Fgr areguaranteedo bein theregion R, we canalways
determineary neededstatex, from the statexg. We further
definethe region average enegy Ug(br), the region entopy
Hg(bgr), andtheregionfreeenegy Fr(br), by

Ur(br) = Z br(xr)ERr(xr) (23)
Hg(br) = =) _ br(xr) Inbr(xr) (24)

and
Fgr(br) = Ug(br) — Hr(br)- (25)

Theintuitive ideabehindaregion-basedree enegy approx-
imationis thatwewill try to breakupthefactorgraphinto aset
of largeregionsthatincludeeveryfactorandvariablenode,and
saythattheoverallfreeenegy is thesumof thefreeenegiesof
all theregions. Of coursejf someof thelargeregionsoverlap,



thenwe will have erredby countingthefree enegy contributed
by somenodestwo or moretimes,sowe thenneedto subtract
outthefreeenepiesof theseoverlapregionsin suchaway that
eachfactorandvariablenodeis countedexactly once.

To make thesenotionsprecise,we saythat a region-based
approximationF’z for the Gibbsfreeenegy will be definedin
termsof a setof regionsR, andan associatedetof counting
numbescg. cg Will alwaysbeaninteger, but mightbezeroor
negative for someR.

We saythatasetof regionsR andcountingnumbers:g give
avalid region-basedpproximatiorwhen,for everyfactornode
a andeveryvariablenodes in thefactorgraph,

Y la€Frler= Y li€Valern=1,

ReR ReR

(26)

where[z € Z] is the set-membershindicatorfunction equal
tolif z € Z andequalto O otherwise.

Theseconditionsensurethat every factorandvariablenode
will be countedexactly onetime in the approximationto the
freeenepy. If agivenfactoror variablenodeis addedinto the
freeenegy in two differentregions,thentheremustbeanother
regionwhereit is subtractedackout.

Givenavalid setof regionsR andcountingnumbers:g, the
region-base@pproximatiorto the Gibbsfreeenegy is simply

FPr({br}) = ) crFr(br).

RER

(27)

Notethattheregion-basedverageenegy

> crUr(br)

RER

- Z cRZbR(xR) Z In f,(x,X28)

ReER XR a€FR

Ur({br}) =

will always be exact provided that the beliefs {br(xg)}
are equal to the correspondingexact maiginal probabilities
{pr(xr)}. We canseethis by comparingwith the exact av-
eragesnegy

M
U= ZP(X)E(X) = - Z Zpa(xa) In fo(x4) (29)

x€ES a=1 x,

andnotingthatin the overcountingnumberscr guaranteehat
eachfactornodeis countedexactly oncein equation(28), and
thatif all the{bg} areexactin equation28),they will properly
maminalizeto give the necessaryactorsof p,(x,) in equation
(29).

Ontheotherhand theregion-baseantrogy

> crHg(br)

RER

= - Z CRZbR(XR)lan(XR) (30)

RER

Hr({br}) =

XR

will normally only be an approximationeven if the beliefs
br(xgr) wereexactly equalto the true mamginal probabilities,
althoughthe conditionthateachvariablenodeis countedonce

makesit a quite “reasonable’approximationjn the sensehat
if the probability distribution p(x) wasflat, this entropy would
atleastcountthe numberof degreesof freedomcorrectly The
region-basecantropy will alsobeexactin certaincaseghatwe
describdater

How doesone selecta valid setof regionsR andcounting
numberseg for a givenfactorgraph?Therearein factaninfi-
nite numberof waysto do that. In the next sectionwe will de-
scribeavery straightforvardapproactwhich we call the Bethe
methodwhich is guaranteedb returnvalid setsof regionsand
countingnumbers.We then prove that the fixed points of the
standardBP algorithm correspondo stationarypoints of the
Betheapproximatiorto thefreeenenpy.

In thefollowing section,we will introducethe region graph
method which is a very generalapproachto finding valid ap-
proximations,basedon constructinga region graph  Region
graphsplay a centralrole in the descriptionboth of the re-
giongraphfreeenepy, andin theconstructiorof corresponding
GBP algorithms,andprovide the clearway of visualizingand
understandingregion-base@pproximation.

The Bethemethodis a specialcaseof the muchmoregen-
eralregion graphmethod. In appendice#\ andB, we discuss
two otherimportantmethodsthat arealsospecialcaseof the
region graphmethod:the junctiongraph methodandthe clus-
ter variation method In appendixC, we discussin detailthe
relationshipbetweenrnthedifferentmethods.

Fig.3. A factorgraphwhichwe useto illustrateavariety of region-basedree
enegy approximations.

V. THE BETHE METHOD

The origins of the Bethe method date back to 1935,
and Bethes famousapproximationmethodfor magnetq15].
Kikuchi, in his 1951 paperthat pioneeredhe clustervariation
method[16], recognizedthat Bethes approximationwas the
simplestexampleof anapproximatiorthat could be generated
usingthat method. Of course from the modernpoint of view,
theseearly papersfocusedon very specialgraphicalmodels,
andwe warnthe reademwho wantsto readthe original papers
thatour descriptionof Bethes andKikuchi's methodswill bear
little resemblancéo their expositions.

In theBethemethodwe take the setof regionsincludedin R
to beof two types.First,we have asetof largeregionsR 1, such
thatthe M regionsin R eachcontainexactly onefactornode



andall thevariablenodeseighboringhatfactornode.Second,
we have a setof smallregionsR g, suchthatthe N regionsin
‘R s eachcontainasinglevariablenode.

We take as an examplethe factorgraphshown in figure 3,
which hassix factor nodeswhich we label A, B,C, D, E, F
and nine variable nodes which we label 1,2,...,9. For
this example, we would have the following large regions
in Rr: {4,1,2,4,5}, {B,2,3,5,6}, {C,4,5}, {D,5,6},
{E,4,5,7,8}, and{F, 5,6, 8,9}, andthe following smallre-
gionsin Rg: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, and{9}.
The completesetof regionsRgetne iNCludedin the Betheap-
proximationis Rpethe = Rz URs.

If R, andR, aretwo regions,we saythat R; is a sub-egion
or R, andR; is asuperregion of R; if the setof variableand
factornodesin R; areasubsebdf thosein R.

In the Bethemethod,the countingnumberscg, for eachre-
gion R € R aregivenby

(1)

whereS(R) is thesetof regionsthataresuperregionsof R.

Using this definition we seethatfor everyregion R € Ry,
cg = 1, whilefor everyregionR € Rg, cg = 1 —d;, whered;
is the degree(numberof neighboringfactornodes)of the vari-
ablenode:. It is easyto confirmthatthe Betheapproximation
will alwaysbe a valid approximationaseachfactorandvari-
ablenodewill clearly be countedonceasrequiredin equation
(26).

We canuseour expressiongor cg in equation(28) to obtain
the Betheapproximationto the Gibbs free enegy Fgethe =

UBethe - HBethea Where
M
UBethe = — Z Z ba(x4) In fo(x4) (32)
a=1 Xq
and
M
Hpethe = Z Z ba(%X4) Inby(x4)
a=1 xq4

N
Y =) Y bl i) (33)

NotethattheBetheentropy will beexactif thefactorgraphhas
no cycles,becausén thatcasewe have the exactformula[13]

[122, pa(xa)
Y, (i)™~

which we cansubstitutanto the formulafor thevariationalen-
tropy to recover Hpethe-

We shallnow shav thatminimizingthe Betheapproximation
tothefreeenegy will alwaysgive resultsthatareequivalentto
the standardBP algorithm, so the exactnessf the Betheap-
proximationfor factorgraphswith no cyclesis no surprise.

p(x) =

(34)

A. Equivalenceof the BetheAppmoximationand Standad BP

We now shaw thatthe standardBP algorithmis equivalentto
the Betheapproximationandexploresomeof theimplications
of thatequivalence In particular we show thatthe “messages”
sentin BP areexponentiatedcombinationf Lagrangemulti-
pliers.

Theoem: Let {mq—;(x;), nime(xi)} be asetof BP mes-
sagesandlet {b,(x,),b;(z;)} be the beliefs calculatedfrom
thosemessagesThenthe beliefsarefixed pointsof the BP al-
gorithmif andonly if they arezerogradientpointsof the Bethe
freeenegy Fgetne, SUbjectto the constrainthatall the beliefs
arenormalizedandconsistent.

Proof: We wantto minimizethe Bethefreeenegy, while in-
sistingthatall the beliefsb;(x;) andb,(x,) areconsistent.To
thisend,we addLagrangemuItipIiers/\a(x,-) whichenforcethe
constrainthat}_, .\, ba(xa) = bi(;) for every factornode
a andall its ne|ghbor|ngvar|ablenodesi. We alsoneedto add
Lagrangemultipliers to normalizethe beliefs, but we do not
clutter our equationswith them, astheir effects are automati-
cally takeninto accountif we simply normalizeour beliefs.

Settingthederivative of theresultingLagrangianLpe¢ne With
respecto thebeliefsb;(z;) andb,(x,) equalto zerogives:

ba(Xq) X fo(Xa) H ehai(®) (35)
€N (a)
and
x H ehai (@) . (36)
a€N(i)
If we make theidentification
Aei(i) =Innie(z;) =1n H Mgy (T;) (37)

beN (i)#a

thenwe find that we recover the standardBP belief equations
(6) and (7), which meansthat the standardBP fixed points

correspondo stationarypoints of the constrainedBethefree

enegy.e

The factthat Lgegne is boundedbelow implies thatthe BP
equationsalwayspossess fixed point (obtainedat the global
minimum of Lpetne). TO our knowledge,this is thefirst proof
of the existenceof BP fixed pointsfor a generalgraphwith ar
bitrary potentials.Of coursetheexistenceof afixedpointdoes
notimply thatthe BP algorithmwill corvergestartingfrom ar-
bitrary initial conditions.

Theconditionsfor theuniquenessf BP fixedpointsarealso
clarified by the equivalencewith the Betheapproximation.in
graphswith no morethana singlecycle, it wasknown that if
all factorsarestrictly positve (f,(x,) > 0 for all a andx,),
thentherewasauniqueBP fixedpoint.[33] For generalgraphs,
we canusetheequialencesstablishedbove to answera ques-
tion abouttheuniquenessf stationarypointsfor the Bethefree
enegy. Theissueof the numberof stationarypoints of ap-
proximatefree enegiesis well studiedin physics.To be more
precisewe canimaginedefininga sequencef probabilitydis-
tributionswheresomeor all of our original functionsare all
raisedby a power: f,(x.;T) = fo(x)"/T. Thisis equiva-
lent to changingthe temperaturen a physicalsystem,where



T is the temperature.Many systems for examplelsing fer-
romagnetswill have differentnumbersof solutionsabove or
belown a critical tempeature T, within the Betheapproxima-
tion [34]. Above T, the constrainedree enegy is corvex and
hasa uniquestationarypoint, while belowv T, thereare multi-
ple stationarypoints. Usingthis equivalencet is easyto define
smallfactorgraphsthatshowv a similar behaior. Althoughthe
topologydoesnot changeandthe factorsare always positve,
aswe smoothlychangehefactorswe go from aregimewith a
uniquefixedpointto onewith multiple fixed points.

While we have shavn that standardBP canonly corverge
to stationarypoints of the constrainedBethe free eneny, it
is importantto realizethat BP doesnot perform constrained
minimization of the Bethe free enepgy; i.e. it doesnot de-
creaseFpetne at every iteration. Indeed,the marginalization
constraintsaretypically not satisfiedat intermediatdterations
of BP: it is only at a fixed point that the beliefsarein a fea-
sible set. Basedon the equivalence first notedin our earlier
work [17], othershave recentlydevisedalgorithmsthatdirectly
minimize the free enegy on the feasibleset[35], [36], [37].
Suchfree enegy minimizationsare somavhatslowver thanthe
BP algorithm,but they areguaranteedb corverge.

VI. THE REGION GRAPH METHOD

We now introduceregion graphs which are centralto the
region graphmethodfor generatingvalid free enegy approxi-
mations,andalsowill provide a graphicalframevork for GBP
algorithms.

Let I bethe setof indicesfor the factorandvariablenodes
in a factorgraph. A region graphis alabeled,directedgraph
G = (V,E, L) in which eachvertex v € V (correspondingo
aregion) is labeledwith a subsetof I. We denotethe label of
vertex v by L(v). A directededge(or arc) may exist pointing
from vertex v, to vertex v, if L(v.) isasubsedf L(v,). If such
anarcexists,we saythatv, is achild of v, thatv, is aparentof
v¢, andthatthey belongto differentgenemtions. If thereexists
adirectedpathfrom vertex v, to vertex vy, we saythatwv, is an
ancestornof vg, andvy is adescendandf v,. Notethatbecause
of thetransitvity of thesubsetelationshiparegiongraphmust
beadirectedagyclic graph,in the sensahatthe arrons cannot
loop around.

A region graphis closelyrelatedto the Hassediagramfor a
partially ordered set or poset[38], if we considerour regions
to be organizednto a poset,with the orderingrelationshipbe-
tweenthe regionsto be given by the ancestoidescendantela-
tionship[28], [29]. Thereare, however, somedifferencese-
tweenregion graphsand Hassediagrams.First, region graphs
are labeledgraphs,andwe will insist on some“region graph
conditions; describedelaw, thatthe labelsmustsatisfy Sec-
ond,regiongraphscanincludeanarcbetweertwo regionsthat
arealsoconnectedy a pathof lengthtwo or greateywhich is
forbiddenfor Hassediagrams.

We definea countingnumbere, for everyvertexin theregion

graph,by
cy=1- Z Cu,
u€A(u)

(38)

whereA(u) is the setof verticesthatareancestor®f u. Thus,
the countingnumbersfor the regionsof a region graphcorre-
spondto the Mobiusfunctionof the correspondingpartially or-
deredset[38].

For agraphg to qualify asaregion graph,we furtherinsist
on the region graph condition which requiresthat for every
i € I, thesubgraptg (i) = (V (i), E(i), L(3)) formedby just
thoseverticeswhoselabelsinclude: is a connectedyraphthat
satisfieghe condition

Z cy = 1.

veEV (i)

(39)

Having definedregion graphs,it is almosttrivial to define
a correspondingnethodfor generatingralid region-basedree
enegy approximationsWe simply createa region graphsuch
thatthe verticescorrespondo regions,with labelscorrespond-
ing to the factor and variablenodesin a region, and we re-
quire that every factor and variable node be containedin at
leastoneregion. We associatehe countingnumberscg for
regions directly with the countingnumberse, for the region
graph,andtheregion graphfree enegy Frg will be givenby
Frag = > pcrFr, WwhereFy is the free enegy of the region
R.
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Fig.4. Anexampleof aregion graph.We have listedthecountingnumbercg
next to eachregion.

In figure4, we give anexampleof aregiongraphfor thefac-
tor graphthat we alreadyintroducedin figure 3. This region
graphwas constructedo demonstratevhatis andis not per
mitted in a legal region graph, ratherthan what would likely
give goodresults.Notethataregion graphneednotobey some
propertiesthat one might considerimportant(including some
which are enforcedin the junction graph method described
in appendixA and the clustervariation methoddescribedn
appendixB). For examplethereneednot be ary clear delin-
eationof “generations”(region {8} is a child of both regions
{C,E,4,5,7,8} andregions {F,5,6,8,9}, while region {5}
is a grand-childof region {C, E, 4, 5,7,8} anda child of re-
gion{F,5,6,8,9}.) Notealsothatregionsmay have counting
numberequalto zero(e.qg.region {5, 6}), andthatthefactthat
aregionis a sub-sebf anotheregion neednotimply thatit is
alsoa descendantf thatregion (e.g.regions{F, 5, 6,8,9} and

5,6}).
{ Wf}1atis essentials thattheregion graph conditionsthatwe
describedabove are obeyed. We insist on theseconditionsfor



thefollowing reasonskFirst, to reiteratehe commentsve made
aboutvalid region-basedree enegy approximationsthe con-
dition thateveryfactornodein thefactorgraphis countedonce
whenwe do theweightedsumover all regionsensureghatthe
regiongraphaveragesneny is exactif theregionbeliefsareex-

act; andthe conditionthat every variablenodeis countedonce
ensureghatthe region graphentropy is a reasonabl@pproxi-
mation. The conditionthat the regions containinga particular
variablenodeform a connectedub-graphwill ensurethatthe
mauginal probability at any nodeis consistentirrespectve of
whichregion’s beliefsoneusesto computeit. Empirically, we
have foundin limited experimentsthatif one attemptsto run
a GBP algorithm (as describedbelon) on graphsthat do not
satisfyall theregion graphconditions theresultswill bepoor.
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Fig.5. An exampleof agraphof regionsthatis notaregion graphbecaus¢he
sumof the countingnumberf regionscontainingvariablenode5 is notone.

An exampleof a“f alseregiongraph”or graphof regionsthat
doesnotsatisfytheregiongraphconditionss shovnin figure5.
Theproblemwith this plausible-lookingconstructions thatthe
sumof the countingnumberf theregionscontainingvariable
node5 is zero, ratherthan one. We could modify this false
region graphin avariety of waysto obtainarealregion graph.
For example,we could simply remove node5 from the region
{2,5}. Theresultingregion graphwould be an exampleof a
junctiongraph; seeappendixA. Alternatively, we couldadda
region {5} which just containedvariablenode5, and connect
the regions {2, 5}, {C, 4,5}, {D, 5,6}, and {5,8} to it (the
resultof usingtheclustervariationmethod;seeappendixB).

Justasthe Betheapproximatiorwill be exactwhenthefac-
tor graphis atree,aregiongraphapproximatiorwill alwaysbe
exactwhenthe correspondingegion graphis a tree. This can
bedemonstratetly recursvely applyingthefollowing junction
graphformulafor the probability distribution of a factorgraph
dividedinto largeregionsR r,, andsmallregionsR s whichsep-
aratethelargeregions(seeAppendixA for moredetails):

_ [lgrer, PR(XR)
Px) = [rer, PR(XR) "

We illustrate the ideawith an example,that hasthe factor
graphgivenin figure 6, andthe region graphgivenin figure
7. We will recursvely breakdown the full joint probability
distribution andshaw thatit is equalto a productof maginal
probabilitydistributionsoverregionsthathaspreciselytheform
necessargothattheregion graphfreeenegy is exact.

(40)

Fig.6. A factorgraphthathasatreeregiongraphshovn in figure?7.

A1,34 C,3,4.6 B,2.4,5 D.4.5.7
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Fig. 7. A region graphwith no cyclesthathasa correspondingegion graph
freeenegy approximationwhichis exact.

Notethatfor this region graph,theregion {4} separatethe
left part of the tree andthe right part of the tree. That means
thatwe have

p($1,$3, Ty, $6)p($2a Z4,Ts5, 337)
p(z4)

The maminal probability distributions p(z1, z3,z4,%6) and
p(wa, x4, 5, 27) CaNin turn be written in termsof mamginal
probabilitiesof smallerregions. For example,we seethatthe
region{3,4} separatetheregions{ 4,1, 3,4} and{C, 3,4, 6},
sothat

p(x1, ...y 7)) = (41)

p(.Z'l,.’Eg, -73'4)]7(1'3, T4, 1"6)
p($37$4)

p(z1, 23,74, 26) = (42)
Expandingeverythingout, we obtainthatthe joint probability
distribution p(x1, ..., x7) equals

p(mla z3, $4)p($3, Ty, SUG)p(iUz, Ty, 375)[)(3}4, Ts5, .'13'7)

p(x3,24)p(x4, 25)p(24) (43)

Substitutingthis resultinto the formula for the exact entroyy,
we recover the region graphentropy. Sincethe region graph



averageenengy is alwaysexactwhentheregion beliefsare,this
demonstratethatthe approximatioris exactin this case.

We note that eachterm in the numeratorof the expression
(43) hasa power of 1, andeachtermin the denominatohas
a power of —1, correspondingexactly to the countingnumber
of the correspondingegion. In the generalcaseof a region
graphwith no cycles,the recursve applicationof the junction
treeseparatoformula(40) will alwayssimilarly reproducehe
countingnumbergyivenby theregion graphprescriptiorequa-
tion (38).

We have alreadyseenthatthe stationarypointsof the Bethe
approximationto the free enegy are equialentto the fixed
pointsof the standardBP algorithm,which operate®n afactor
graph.In thefollowing sectionswe shallintroducegenealized
belief propagationalgorithmswhich operateon region graphs,
and demonstratehat their fixed points correspondo the sta-
tionarypointsof theregiongraphfreeeneny.

In appendices\, B, we discusgwo othermethodgthejunc-
tion graph methodandthe clustervariation method thatgen-
eratevalid free enegy approximationsBoth of thesemethods
canbe consideredpecialcaseof theregion graphmethod.In
appendixC, we describeherelationshipbetweerall thediffer-
entmethodgdescribedn this paperin moredetail.

VIl. GENERALIZED BELIEF PROPAGATION ALGORITHMS

Justasthe standardBP algorithm correspondso the Bethe
approximation,one can constructgeneralizedelief propaga-
tion (GBP) algorithmscorrespondindo ary region graphfree
enegy approximationln fact,therearemary waysto construct
message-passiragorithmswhosefixed pointsare equivalent
tothestationarypointsof aregiongraphfreeenenpy. In all these
algorithmsmessagesf somesortaresentbetweerregionson
aregiongraph.

Oneshouldfirst notethatonecanobtaindifferentGBPalgo-
rithmscorrespondingo thesamereeenegy by usingdifferent
region graphghathave the samefreeenepy. For example,one
could modify a region graphby connectinga grandparente-
giondirectly to a grandchildregion. The GBP algorithmsthat
we describébelon would bemodified,but theapproximatdree
enegy would notbechangedMaking sucha modificationwill
alterthedynamicsof a GBP algorithm,but notits fixed points.

Evenif onefixesonesattentionona particularregiongraph,
thereare still a variety of different GBP algorithmsthat one
cancreate.ln the maintext of this paperwe will describeone
possibleapproachwhichwe call theparent-to-dild algorithm
In appendice® andE, we describawo otherapproachegthe
child-to-parent algorithm and the two-way algorithm) which
give algorithmswith equivalentfixed points, and which have
their own advantages.An importantadwantageof the parent-
to-child algorithmis thatthe message-passirdgorithmmalkes
noreferenceo region countingnumbersjustasin the standard
BP algorithm.

The standardBP algorithmis a specialcaseof all threeal-
gorithmswhen the region graphis obtainedusing the Bethe
method.
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A. TheParent-to-ChildAlgorithm

As we saw, the standardBP message-passirggjuationsan
bederivedusingthefactthatthebeliefatasinglevariablenode
is justtheproductof all the messagebearinginformationfrom
neighboringfactornodeswhile the belief atthe region of vari-
ablenodesadjoininga singlefactornodeis the productof their
internalfactorsmultiplied by all the messagesominginto the
groupof nodesfrom factornodesoutsidetheregion.

The parent-to-childalgorithm generalizeghis idea. In this
algorithm(whichin previousexpositionswe calledthe“canon-
ical” GBPalgorithm[17]) thebeliefatary region R will bethe
productof the local factorsin thatregion, multiplied by all the
messagesominginto region R from outsideregions. Thereis
onecomplication,however: to make the algorithmequialent
to minimizing theregion graphfree enegy, we needto include
additionalmessageto regionswhich are descendantef R
from otherparentregionsthat are not themselesdescendants
of region R.

To bemorespecific,in theparent-to-childalgorithm,weonly
have onekind of messagenpr_, gr(xr) from aparentregionto
achild region. Eachregion R hasabeliefbgr(xr) givenby

PcP(R)

II fa(xa) ( )
11

a€AR
mp:%D(xD) (44)
DeD(R) P'eP(D)\E(R)

H mP—)R(xR)

bR(XR) X

(I

Here P(R) is the setof regionsthat are parentsto region R,
D(R) is thesetof all regionsthataredescendantsf region R,
E£(R) = RUD(R) isthesetof all regionsthataredescendants
of R andalsoregion R itself, andP(D)\&(R) is the setof all
regionsthatare parentsof region D exceptthosethatarealso
descendantsf region R or region R.

Fig. 8. A region graphusedto illustratethe parent-to-childGBP algorithm.
Notethatwe do notexplicitly give thevariableandfactornodelabelsfor each
region, asfor our purposeswe areonly interestedn thetopologyof theregion
graph.

An examplemayhelpmale thebeliefequatiorclearer Con-
siderthe exampleshavn in figure 8. The beliefbr(xg) atre-
gion R is the productof its local factors[ [, , . fa(xa), the
messagefrom its parentsm 4, g(xg) andmp_,gr(xg), and
the messagemto descendantBom otherparentsvho arenot
descendantsnc_, g (xg), mo—u(Xu), andmpg_, g (XH).



Oneobtainsself-consistentquationgor themessageby re-
quiring consisteng betweerthe beliefsbetweenevery pair of
parentandchild regions. Thusin figure 8, we might focuson
theregion R andits child E. Thebeliefatregion R is givenby

br XMALRMBSRMOEMOsEMESH || fa(Xa)
aCAR
(45)
(wherewe have lightenedthe notationby removing the obvi-
ousfunctionaldependenciesf the messagesindthe belief at
region E is givenby

bE X MR—EMCOsEMDG MO ME~H || fa(Xa)

a€AE
(46)
Using the mamginalization constraint, bgr(xg) =
Y xa\xp 0a(x4) we obtain a relation between messages

thatwe caninterpretasthemessagepdaterule

mr—e(Xg)mMp_a(Xag) ==
Z maAr(XrR)mB_R(XR) H fa(xa)- (47)
xr\XE a€AR\Agp

Of course,similar messageipdateruleswould be obtained
for all the pairsof parentandchildrenregions. Therewill be
enoughconditionsto determinesvery message.

In generalthe parent-to-childnessage-updatealeswill be

mpR(ZR) =
Z“’\R HGEFP\R fa(@a) H(I,J)eN(P,R) mr—(Ts)
H(I,J)GD(P,R) mrg(xs)

wherethe setsN (P, R) and D (P, R) canbe calculatedn ad-
vance.Recallthatf(R) = RUD(R). ThenN (P, R) istheset
of all connectegairsof regions(Z, J) suchthat.J is in £(P)
but not£(R) while I is notin E(P). D(P, R) is the setof alll
connectedairsof regions(I, J) suchthatJ is in £(R), while
Tisin E(P), butnot&(R).

We now prove a centraltheoremaboutthe parent-to-child
GBP algorithm,which is definedby the messageipdaterules
(48) combinedwith thebeliefequationg44).

Theoem: A setof messageandbeliefsdefinea fixed point
of the parent-to-childGBP algorithmif andonly if the beliefs
areastationarnypointof theregion graphfreeenepy, wherethe
region graphfree enegy is constrainedo have beliefsthatare
consistenandnormalized.

Proof: To simplify the proof, we will assumehatno region
R in theregiongraphhascountingnumbercg = 0. In appendix
F, we discussthis technicallyusefulassumptiorin detail. In
particular we shawv thatit is easyto removeary cg = 0 regions
to getan equivalentregion graph;andalsothatevenif we do
permitthem,the parent-to-childGBP algorithmwill still work
properly althoughthefollowing proof no longerholds.

Recallthattheregion graphfreeenegy is simply

Fr({br}) = Y crFr(br).

ReR

To derive the stationarityconditions we needto createa La-
grangianL for the free enegy which enforcesconsisteng be-
tweenthe beliefsin every pair of connectedegions. To that

(48)

(49)

end,we addLagrangemultipliers A\ p¢ (x¢) which enforcethat

bo(xc) = Z bp(xp)

xp\xc

(50)

for every pair of parentandchild regionsP andC.

Of coursewe alsoneedto includeLagrangemultipliersyg
whichenforcethenormalizatiorof thebeliefs:3 " br(xr) =
1. Setting the derivatives of L with respectto the beliefs
br(xr) equalto zerogivesus the following stationaritycon-
ditions:

crlnbr(xr) =Yr +cr Z In fo(x4)-..

a€AR
— Y Aer(xr)+ Y. Aro(xc), (51)
PcP(R) CeC(R)

whereP(R) is the setof regionsthatare parentsof region R,
andC(R) is thesetof regionsthatarechildrenof region R. In
thisexpressionx, andx¢ areentirelydeterminedy thevalue
OfXR.

Our proof will now work backwardsfrom the belief equa-
tionsthatwe wantto derive. We wantto show thatthereexists
a “rotation” from our Lagrangemultipliers A to anothersetof
Lagrangamultipliersy suchthatthe stationarypointconditions
canbere-writtenas

crlnbr(xr) = YR +cr Z In fo(x4)-.. (52)
a€AR
+ Z ppr(XR) + Z Z pp p(XD)-

PEP(R) DED(R) P'€P(D)\E(R)

Clearly, if we canshaw this, thenby identifying the message
mp_r(xr) = exp(upr(xgr)), we will recover our desired
beliefequations.

So what do the Lagrangemultipliers upg(xg) constrain?
Theanswelis thatthey imposethe constraint

ca Y ba(xa)=0. (53)

XA\XR

crbr(xR) +
A€ A(R)\(PUA(P))

In words,the Lagrangemultiplier upr constraingheweighted
beliefin region R plusthesumof theweightedbeliefsin all the
ancestorregions of region R, exceptfor regions P andall its
ancestorsto be equalto zero. If we make a Lagrangiarusing
thesd_agrangemultipliers, it is straightforwardto work outthat
its stationarypointsaregivenby equation(52).

Now we needto shav thatthe new setof y Lagrangemulti-
pliersandtheir associate@onstraintare equivalentto the old
setof A Lagrangemultipliersandtheir constraintsWefirst note
thatbecauser+3_ 4cu(r) €4 = 1,andcp+ - ¢ 4(p) Ca =
1, we cansubtracthesetwo equationsandobtain

>

Ac A(R)\(PUA(P))

CcRr + ca=0 (54)

If we start with the Apc(x¢) constraintsthat bo(x¢) =
EXP\XC bp(xp) for every pair of parentandchild regions,we
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canuseequation(54) asa basisfor derving the constraintsas-
sociatedvith the u Lagrangemultipliers. It is alsoalwayspos-
sibleto goin the otherdirection: The i, constraintawill belin-
earlyindependentsothatif we begin with them,we canderive
the X constraintg28]. (This is wherethe proof breaksdown
if thereareregionswith countingnumbercg = 0; the . con-
straintsmaybelinearly dependenin thatcase.)e

Note that we have not given a generalformularelating the
new p Lagrangemultipliersto the A Lagrangemultipliers, as
we only needto shaw the existenceof a rotationto a new set
of Lagrangemultipliers, without constructingt explicitly. It is
difficult to derive ageneraformularelatingthe two setsof La-
grangamultipliers,butfor regiongraphswith only two “genera-
tions” of regionslik ethoseconstructedisingthejunctiongraph
method(seeappendixA), we canin factgive the relationship
explicitly:

>

P'cP(R)\P

Apr(XR) = wpr(XR)- (55)

VIIlI. DETAILED EXAMPLE OF A GBP ALGORITHM

Fig. 9. A factorgraphthatwe will usefor our detailedexampleof how to
constructa GBPalgorithm.

We will now give a detailedexample of how to construct
a GBP algorithm. Considerthe factorgraphdrawn in figure
9, which hasseven variablenodesand ten factor nodes. For
this factorgraph,it is corvenientto slightly alter our labeling
conventionssothatsomeof thefactornodes(the onesattached
to asinglevariablenode)arelabeledwith anumberatherthan
aletter This factorgraphcorrespondso the joint probability
distribution

A
p(z1,Z2, ..., T7) = = (H f,(w,))

fA($1;$2;$3;$5)fB($1;$2;$4,$6)f0($1;$3;$4;377)

(56)

We will work out a GBP algorithmmakingno assumptions

areeven, and0 otherwise)thenthis factorgraphcorresponds
to the linear block (7,4,3) Hammingcodewith parity check
matrix

01 00O
1 010 (57)

1 0 01

For the decodingproblem, the functions f;(z;) representhe
likelihoodsof the possiblestatesof thebits, in light of the re-
ceivedblock from thechannebndtheassumeadhanneimodel.

Tushis o 15 s Jos s Fos oo 1o Jashis fas Jas 12
12,35 12,46 1,3,4,7
fiofa A hals

L2

T

Fig. 10. A region graphobtainedfor the factor graphof figure 9 usingthe
clustervariationmethod.

To obtaina GBP algorithm,we first needto createa region
graph.We usetheclustervariationmethod with largestregions
{an f17f27 f37 f57 17 27375}' {fB7 f17f27 f47f67 1727476} and
{fo, 1, f3, f1, f7,1,3,4,7}. Following the clustervariation
methodprescriptionfor finding intersectiorregionsdetailedin
appendixB, we obtaintheregion graphshavn in figure 10.

Now thatwe have a region graph,we needto choosewhat
kind of GBP algorithmwe want to useand thenwrite down
the belief and messagequationgor the GBP algorithm. We
chooseao usethe parent-to-childalgorithm.

Notethatalthoughthe region graphfree enegy is usefulfor
theoreticallyjustifyingaGBPalgorithm,it will notbenecessary
for constructingthe algorithm. Instead,we canwork directly
with thebeliefequations.

Recallthatin theparent-to-childalgorithm,we only have one
kind of messagenp_,r(xg) from a parentregion to a child
region. Eachregion R hasa beliefbr(xg) givenby equation
(44)whichwe re-write here:

H fa(Xa)

a€ARr PeP(R)

1l

DeD(R) P'€P(D)\E(R)

X

H mp—r(XR)

br(XR)

mp:_,D(xD) (58)

In words, this equationsaysthatthe belief at eachregioniis a

aboutthe actualforms of the functions, but we notethatthis productof the local factorsin thatregion, the messagefrom
particularfactorgraphcanbe usedto representhe probability parentsandthe messagesito descendantegionsfrom other
distributionthatoccurswhendecodingablock errorcorrecting  parentavho arenotalsodescendants.

code[20]. In particular if eachof thevariablenodess binary, In our region graph, we have seven regions that can be
with possiblestate®) or 1, andthefunctionsf, fg,andfc are groupedinto threetypesof regions: the threeregions exem-
parity-checkunctions(equalto 1 if thesumof theiraguments plified by { fa, f1, f2, f3, f5, 1,2, 3,5} that containfive factor
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nodesand four variable nodes;the threeregions exemplified
by { f1, f2, 1, 2} thatcontaintwo factornodesandtwo variable
nodes;and the single region { f;,1} that containsone factor
nodeandonevariablenode.

We will usean abbreviated notation,droppingexplicit xg
dependencdor beliefsandmessageandfactorfunctions.The
notationis bestexplainedwith someexamples:we write by 235,
b2 and b; for the beliefs at the regions listed in the previ-
ousparagraphe write mgs_,12 for the messagdrom region
{an fla f23 f3a f57 ]-5 27 35 5} to rq}ion {fh f?; ]-7 2}’ m2—1 for
themessag&omregion{ fi, f2, 1,2} toregion{ f1, 1}, andwe
abbreviate f4(z1, z2,23,75) aSfa.

In this abbreviated notation, the belief equationsfor the

largestregionswill be
b1235 X fAf1f2f3f5m46—>12m47—>13m4—>1; (59)
b1246 X folf2f4f6m35—>12m47—>14m3—>17 (60)

and
bizar X fo fifsfafrmas—13mag—s14mai. (61)

Note that sincetheseregionsdo not have parentsall therele-
vant messagesare into descendantegionsfrom otherparents
who arenotdescendants.

The belief equationdor the intermediate-sizedegionswill
be
(62)

(63)

bia o fi famss19Mmas—12M3—1Ma—s1,
bi3 o f1 famos_13Mar—13Ma1M4ay1

and
(64)

Finally, the beliefequatiorfor theregion { f1, 1} will be

bia < fi famag_s14m3r14Mas1M31.
by o f1m2—>1m3—>1m4—>1- (65)

The message-updatalesare obtainedby combiningthese
belief equationswith the marginalizationconditionsbetween
parentandchild regions:

be(xc) = Z bp(xp).

xp\x¢

(66)

For example,requiring consisteng betweenthe beliefs at the
region{ f1,1} andtheregion{ fi, f2, 1,2} tellsusthat

b1 (.’171) = Z b12 (.’171, 11,'2) (67)

from which we obtain

ma—1 = Z f2m35%12m46%12- (68)

The other message-updateiles, obtainedin the sameway
(or equivalentlyby usingequation(48), will be

ms—1 = z f3m25%13m47%137 (69)

z3

my—1 = Z f4m26—>14m37—>l4; (70)

T4

13

M3 1Mas a1z = Y fafsfsmarois, (72)
Z3,T5

M21M25513 1= Z fafafsmas—ie, (72)
ZT2,T5

My 1Mag—12 1= Z fBfafemar_ia, (73)
T4,T6

Mas1Mag1a i= Y, fofafemss iz, (74)
T2,T6

m4—1Ma7513 = Z fcf4f7m26—>14, (75)
T4,T7

and
M3 s1maroia = Y fofsfrmasos. (76)

Z3,Z7

In practice,it oftenhelpsconvergenceto only stepthe mes-
sagespart-way to their newly computedvalues. This simple
heuristiccaneliminate“overshooting”problems.

We notehereonepotentialpracticalpitfall to avoid whenus-
ing inertia. Let us supposehatwe have a setof old messages
{m°4}, whichwe usein the updateequationgo calculatea set
of message$mUPdate} andthatwe wantto setour new mes-
sagedo behalf-way betweertheold messageandtheupdated
messagesfm™®"} = ${m°d}+ Z{mupdate} Werecommend
whenusinganupdateequationwith morethanonemessagen
the left handside, that all thosemessagesre m"P42te equa-
tions. Mixing in m™*™ or m°'Y messagesn the left handside
empirically often resultsin poor corvergenceproperties. For
example,the updateequation(71) given aborve shouldexplic-
itly be

update

update
m3_ 1

35—12 (77)

1d
= ) fafafsmils

Z3,T5

Fortunatelyit is alwayspossibleo scheduléghemessagep-
datessothatonecomputesheupdatednessagesto thesmall-
estregionsfirst (e.g. messagebke mgiffte), sothatthey are
availablewhenneededo computethe updatedmessagemto
largerregions.

Therearemary otherdetailsthatcanbe handledn different
waysin iteratingthe messageipdateequations.For example,
themessagesanbeinitialized in any way onelik es;two pop-
ular choicesarerandomor uniform messagesThe algorithm
typically terminatesafter a fixed numberof iterations,or after
somecorvergencecriterion is satisfied,but othertermination
conditionsare possible. In a decodingapplication,one typi-
cally checksat eachiteration whetherthe thresholdedeliefs
correspondo a code-word, andterminateshe decodingalgo-
rithm if they do, stoppingotherwisewhensomefixed number
of iterationshaspassed.

IX. DISCUSSION

In this paper we have presented generaltheory basedon
region graphs,for constructinggeneralizeelief propagation
(GBP) algorithms. Region graphspermit easyvisualizationof
the structureof GBP algorithms—messagese alwayssentbe-
tweenthe neighboringregionson the graph. For region graphs



that have no cycles, the GBP algorithmsare exact. We have
alsoseerthatthefixedpointsof the GBPalgorithmalwayscor-
respondo thestationarypointsof anapproximateegion-based
freeenepgy, sothatevenwhentheregiongraphhascycles,GBP
algorithmsseemto be do somethingreasonableThe standard
BP algorithmturnedoutto beaspeciakaseof aGBPalgorithm
obtainedwhentheregion graphis constructedisingthe Bethe
method.

Given a factor graphand limited computationakesources,
akey remainingproblemis how to choosean“optimal” region
graph—i.eonethatgivesthemostaccurateesultswith theleast
computationaéffort. Welimit ourselheshereto suggestingwo
sensibleheuristics.First, it is wiseto try to collectthe shortest
cyclesin afactorgraphinto regions,sothatthey arehandledas
accuratelyaspossible. Second,n orderthatthe region graph
free enegy be asaccurateaspossible oneshouldtry to make
theregion graphresemble tree—thats, oneshouldavoid short
cyclesin theregiongraph.

We have previouslyreportedpromisingnumericaresultsob-
tainedusing GBP algorithmsfor inferenceon randomMarkov
RandomFields[17] and for decodingerrorcorrectingcodes
[39].
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APPENDIX A: THE JUNCTION GRAPH METHOD

A naturalideato generalizeéhe BetheMethodis to keepthe
notionthat R shouldbethe unionof a setof largeregionsR
anda setof smallregionsR g, but to let theregionsin R, or
Rs containmore nodes. The junction graph method thatwe
describehere,exploits this idea,andis basedon a generaliza-
tion of the “junction graphs”that wereintroducedby Aji and
McEliece[27].

We definea junction graph to be a labeledbipartite graph
G = (V1,Vs, E, L) in which thereare large vertices(corre-
spondingio largeregions)v; € V;,, smallvertices(correspond-
ing to small regions)vs € Vg, and directededges(or arcs)
e € E connectindargeverticesto smallvertices.Thevertices
in the junction grapharelabeled,andthe label of vertex v; is
denotedL(v;). Thelabelswill be subset®f a setof indices’
representindactoror variablenodesof afactorgraph.

For thegraphg to be considered junctiongraph,we insist
upontwo conditions.First, if v is a smallvertex neighboring
thek largeverticesyy, , v, .., vy, , thenwerequirethat L(v;) is
a subsewf eachof L(v, ), L(vi,), ...., L(vy, ), or equivalently,
that

L(vs) C L(w,) N L(vy) N .. N Lv,). (A1)

Secondlywe requirethatfor ary index i € I, the subgraptof
G consistingonly of the verticeswhich containi in theirlabels,
is aconnectedree.

The“junction graphs”introducedby Aji andMcEliece[27]
are a specialcaseof thosedescribedhere. In their junction
graphs,small verticeswere restrictedto have preciselytwo

neighboringarge vertices sothatthe smallverticescanbein-
terpretedaslabeled“edges”’betweerthe large vertices. They
furtherrequiredthatsmallregionlabelsnotincludeary indices
representingactornodes.

Givenasetof regionsR ;¢ = R U Rg thatareorganized
into ajunctiongraph we canalwaysobtainavalid region-based
approximatiorby defininga setof countingnumbers:g asfol-
lows. For all regionsR € R, weletcg = 1, while for all
region R € Rg, welet cg 1 — dr wheredg is the de-
gree(numberingof neighboringarge regions)of region R. It
is throughthis prescriptiornthatthe arcsthe junctiongraphbe-
comerelevant—asmall region’s contritution to the free enegy
is subtracteabut from thatof a largeregion only if thetwo re-
gionsareconnectedy anarc. It is straightforvardto confirm
thatthis prescriptionfor the countingnumbersgivesusa valid
region-basedree enegy approximationasthe junctiongraph
conditionthat the sub-graphfor eachvariableor factor node
is a treeguaranteeghat eachvariableandfactornodewill be
countedonceasrequiredin equation(26).

Aji andMcEliece proved a theoremthat tells us that given
anysetof largeregionsR 1, thatcontainall the factorandvari-
ablenodesin afactorgraph,we canfind acorrespondingetof
smallregionsR ¢ andorganizetheregionsin Ry = R URs
into a junction graph. Their theoremgeneralizesvithout diffi-
culty to our versionof junctiongraphs.

As an example, considerthe factor graphwhich we intro-
ducedin the maintext andre-draw in figure 11. We couldtake
asoursetof largeregionsR , thefourregions{4,C, 1,2, 4,5},
{B,D,2,3,5,6}, {C,E,4,5,7,8}, and {F,5,6,8,9}. An
acceptableset of correspondingsmall regions Rs would be
{2,5}, {C,4,5}, {5,6}, and {8}, with a junction graphas
shawn in figure 11. Becausen this caseeachof the smallre-
gionsis connectedo two large regions,they would eachhave
ancountingnumberof —1.

AC, B.D.2,
245 |71 %5 " 356
{ !
C45 5.6
o I
578 8 8,9

Fig. 11. A junctiongraph(ontheright) for thefactorgraphontheleft.

Thesetof regionsgivenby theBethemethodcanalsoalways
be organizednto ajunction graph(thoughnot necessarilthe
restrictedAji-McEliece versionof a junction graph);usingas
anexamplethe samefactorgraph,theresultingjunctiongraph
is shavnin figure12. It is obviousfrom this examplethatthere

14



/

NN
SN N
[~ [ -

NN

/!
/ N .
[o]

Fig. 12. A junction graphfor the factorgraphshawn in figure 3 generated
usingthe Bethemethod. Note the isomorphismbetweenthis junction graph
andtheoriginalfactorgraph.

will always be a one-to-oneisomorphismbetweenthe origi-
nalfactorgraphandthe correspondingunctiongraphobtained
from the Bethemethod.
Thejunctiongraphapproximatiorfor the Gibbsfree enegy
is
Fya({br}) =
where

Usa({br}) — Hia({br}), (A-2)

Usc({br}) =

> Un(br)+

ReRL

> (1-dr)Ur(br), (A-3)

ReRs

and

H;c({br}) =

> Hg(br) +

RERL

+ Y (1—dr)Hg(br)-

RERs
(A-4)

Junctiongraphsare a specialcaseof region graphs,where
thereare only two “generations”of regions. It follows that
minimizingthejunctiongraphfreeenegy F; will onceagain
give beliefs{br} thatare equivalentto thoseobtainedfrom a
message-passirgP algorithm. That algorithmis sometimes
known asthegenerlizeddistributivelaw [24]. Againit follows
asacorrollaryof ourmoregeneraresultsfor regiongraphghat
thejunctiongraphapproximatiorto the Gibbsfree enegy will
beexact,andthegeneralizedistributive law will give exactre-
sults,whenthejunctiongraphis atree.In thatcasewe cancall
thejunctiongraphajunctiontreg andthe generalizedlistribu-
tive law reducego thefamougunctiontreealgorithm

Ourjunctiontreesareactuallyaslightgeneralizatiorof what
is normallycalleda“junction tree’ in thatwe allow sepaators
(i.e., the small regions) to neighbormore thanjust two large
regions. We cangeneralizehe well-known result[13] for the
joint probabilityfunctionin junctiontreesto ourcaseandobtain

HRGRL Pr(XR)
[lrers Pr(XR)T

p(x) = (A-5)

To obtainthis result, we notethat while we have described
region graphsandjunctiongraphsasdirectedgraphsfrom the

pointof view of statisticalgrphicalmodels they areequialent
to undirectedgraphs. In particular one can re-write the full
joint probabiIitydistributionp(x) for afactorgraphin theform

H Urs(Xr,Xs H‘I’R XR)

(RS)

(A-6)

where(RS) denotegairsof connectedegionsin a givenre-

gion graphfor that factor graph. Specifically when we set
p(xr) = ([Taca, fo(*¥a))™ and¥gs(xg,xs) equalto 1

if xg is consistentvith xg andequalto O otherwise thisform

of thejoint probabilitydistributionwill beequivalentto theone
in the original factorgraphform. Sincethe formula (A-5) is

truefor pairwiseMarkov RandomFieldswhenthe setof nodes
in R areseparatedy the setof nodesin Rg, andwe have
shavn how to corvert a region graphinto an equivalentpair-

wise Markov RandomField, we have justified using formula
(A-5) for region graphsaswell.

APPENDIX B: THE CLUSTER VARIATION METHOD

Another methodfor selectinga valid setof regions’R and
countingnumbers:y, is theclustervariationmethodntroduced
by Kikuchi in 1951 and further developedin the physicslit-
eraturesincethen[19]. The main featuredistinguishingthis
methodfrom the junction graphmethodis that R may be the
unionof morethanjusttwo generationsf regions.

In the clustervariationmethod,we begin with a setof dis-
tinct largeregionsRy suchthatevery factornodea andevery
variablenodes in our factorgraphis includedin at leastone
region R € Ry. We alsorequirethatno region R € Ry be
a subregyion of ary otherregionin Ry. We thenconstructthe
setof regionsR; by formingall possibleintersectionbetween
regionsin RRo, but discardingrom R, ary intersectiorregions
that are sub-rgionsof otherintersectiorregions. If possible,
we thenconstructin the sameway the setof regionsR, from
theintersectionbetweerregionsin R;. As long astherecon-
tinue to be intersectionregions, we constructsetsof regions
Rs3,Ra4,---Ri inthesameway. Finally, thesetof regionsused
in theclustervariationmethodwill beR = RgUR, U...URK.

We define the counting numbersin the cluster variation

methodto be
crR=1- )Y cs (B-1)
SeS(R)
whereS(R) is the setof all regionswhich aresuperregionsof
region R.

Returningto our examplefactorgraphdrawn in figure 3, we
can choosethe baseset of regions Ry to consistof the four
regions{4,C,1,2,4,5}, {B,D,2,3,5,6}, {C,E,4,5,7,8},
and{D, F\ 5,6, 8,9}. Oncethe setof baseregionsR, is cho-
sen,thereis no further choicein the clustervariationmethod.
In our case,the set of intersectionregions R, would be the
regions{2,5} {C, 4,5}, {D, 5,6}, {5,8}, andthesetof inter
sectionregionsR, would be {5}.

Eachof theregionsR € R, would have ancountingnumber
cr = 1. Becauseachof theregionsR € R; is the subregjion
of two regionsin Ry, they eachhave an countingnumberof
cg =1 -2 = —1. Finally sinceeveryregionin Ry andR is
asupetregionof {5}, its countingnumberis1 — 4 + 4 = 1.
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We canrepresenthis setof regionsand countingnumbers
with theregiongraphshownn in figure 13.

AC 1,245 BD2356 CEA4578 D.F,5,6.8,9
25 C,4,5 D,5,6 58

Fig. 13. A regiongraphgeneratedisingtheclustervariationmethod.

Note thatthe Betheapproximatiorwill be a specialcaseof
theclustervariationmethodif andonly if nofactornodeshares
morethanonevariablenodewith anotheifactornode(or equiv-
alently thereareno cyclesof lengthfour in the factorgraph.)
The factorgraphshawn in figure 13 is thereforeone example
of afactorgraphfor which the Betheapproximatiorcannot be
generatedby theclustervariationmethod.

We remarkthatin the physicsliterature the clustervariation
methodhasnormally beenappliedto a restrictedclassof fac-
tor graphsthat are particularlyrelevantasmodelsof magnetic
materials.In particular the factorgraphnormally represents
translationallyinvariantcrystallattice, andthefactornodesor-
mally have degreetwo, correspondingp two-bodyinteractions.
Translationakymmetryin the factorgraphoften dramatically
simplifiesthe problemof minimizing the Kikuchi free eneny,
andwhenthefactornodeshave degreetwo, the Bethemethod
will alwaysbe a specialcaseof theclustervariationmethod.

APPENDIX C: RELATIONSHIPS BETWEEN DIFFERENT
METHODS

In this appendix,we summarizethe relationshipsbetween
the differentmethodsfor generatingralid setsof regionsfor a
region-basedree enegy approximationFirst of all, asis clear
from its definition, a junction graphwill always be a region
graph(thoughthecorverseis nottrue). The setsof regionsand
countingnumbergyeneratethy theclustervariationmethodcan
alsoalwaysberepresentethy a region graph. We alreadysav
oneexamplein figure 13.

We emphasizéhat one canconstructregion graphapproxi-
mationsthatcannotbe generatedavith eitherthejunctiongraph
or clustervariationmethods We alreadysav suchanexample
whenwe introducedregion graphsin the maintext in section
VI. Constructionghataremoregenerathanthoseconstructed
usingtheclustervariationmethodor thejunctiongraphmethod
may be usefulfor a variety of reasonsincluding reducingthe
computationatompleity of a GBP algorithm.
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Fig.14. Forthisfactorgraph thechoiceof regions{ 4,1, 2,4}, {B, 1, 3,5},
{C,2,3,6}, and{1, 2,3}, with correspondingountingnumbersf 1,1,1,and
—1, will give avalid region-basedpproximatiorthatcannotberepresentetly
aregiongraph.

Note, however, thatalthoughthe region graphmethodis the
mostgeneralmethodwe have introduced theredo exist valid
region-basedree enegy approximationshatdo nothave are-
gion graphrepresentationWe demonstrat@an examplein fig-
urelq.

Valid Region-based Approximations
Region Graphs

Junction graphs

Cluster
Variational
Method

Fig.15. A Venndiagramillustratingtherelationshipdetweerdifferentmeth-
odsof generatingvalid region-basedree enegy approximations.The Bethe
methodis alwaysanexemplarof thejunctiongraphmethod but is only a spe-
cial caseof the clustervariationmethodif thefactorgraphhasno pair of factor
nodeghatsharemorethanonevariablenode,andis only a specialcaseof Aji

andMcElieces junction graphmethodif therelevantfactorgraphis a Forney

“normal” graph(no variablenodeis connectedo morethantwo factornodes).

In summary we have the following relationshipsasillus-
tratedin the Venn diagramof figure 15. For a given factor
graph,the clustervariation methodand the generalizedunc-
tion graphmethodeachgeneratevalid region-basedree en-
ergy approximationshataresubclassesf all the possiblevalid
approximations.Neitherthe clustervariation methodnor the
generalizedunction graph methodis more generalthan the
other andbotharesubsumedby the moregeneraregion graph
method. The setof regionsgeneratedy the Bethemethodis
always an examplarof thosegeneratedy the junction graph
method andwill beanexamplarof thosegeneratetby theclus-
tervariationmethodf andonly if thefactorgraphhasnocycles
of lengthfour. In generalthe Bethemethodwill notbe a spe-



cial caseof the Aji-McEliece junctiongraphmethod thoughit
will befor factorgraphssuchthateachvariablenodeis adjacent
to no morethantwo factornodes(Forney’s so-called'normal”
factorgraphg21]).

In additionto beinga more generalmethodthanthe clus-
tervariationmethodor thejunctiongraphmethodwe feel that
theregion graphmethodis easierto understanan anintuitive
level. We simply selecta set of regions and countingnum-
berssuchthateveryvariableandfactornodegetscountedonce,
and suchthat we can enforceconsisteng for the belief over
ary variablenode,no matterwhich region we choose.Rggion
graphsalso have the importantadvantageof being a natural
graphicalstructurefor describinggeneralizedelief propaga-
tion algorithms.

PakzadandAnantharanhave suggestedtrengtheninghere-
giongraphrequirementslescribedn sectionVI sothatfor ev-
ery sub-sebf variablenodesin thefactorgraph,the sub-graph
of regionscontainingthat sub-seimustbe connectecandmust
have a sum of countingnumbersequalto one [29]. Sucha
strengtheningvould ensurethat the beliefs computedfor ary
sub-sebf nodeswould be consistentno matterwhich regions
wereusedto computdt. Theclustervariationmethodproduces
region graphsthat satisfythesestrongerequirementsbut we
chosenot to insist on thesestrongerrequirementsn general,
becauseegion graphscreatedusingthe BetheMethodwill not
necessarilgatisfythem.

APPENDIX D: THE CHILD-TO-PARENT ALGORITHM

The obsenation underlyingthe “child-to-parentalgorithm”
is that when we minimize the Bethe free enepgy, the La-
grangemultipliers enforcing the maiginalization constraints
corresponaxactly (afterexponentiationjo then;_, , (z;) mes-
sagedrom variablenodesto factornodesin the BP algorithm.
Consideringhesemessageasmessageffom child regionsto
parentregionsin aregion graph,we cantry to generalizehe
approacho arbitraryregion graphs.Thus,we constructa GBP
algorithmby simply minimizingaregiongraphfreeenegy and
identifying Lagrangemultipliers that enforceconsisteng be-
tweenbeliefs with messagefrom child regionsto parentre-
gions. Suchan approachwas consideredn detail by Kappen
andWiegerinckfor region graphsconstructedisingthe cluster
variationmethod[37].

We begin with the stationarypoint equationsbtainedfrom
differentiatinga LagrangianL that represents region graph
free enegy Fr ({br}) with beliefs {bg} thatare constrained
to be consistentwith their neighborson the region graph. We
obtainedthis equationpreviously (seeequation(51)), andre-
write it here:

crInbr(xr) = vr +cr Z In fo(xg)-.-

a€Agr
— > Apr(xr)+ Y Arc(xc), (D-1)
PcP(R) C€eC(R)

whereP(R) is the setof regionsthatare parentsof region R,
andC(R) is thesetof regionsthatarechildrenof region R, and
Apr(xg) aretheLagrangemultipliersthatenforceconsisteng
betweerthe beliefsin region P andthosein region R.
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[cee(r no—r(x0)
[Ipep(ry nr—-r(XR)

br(xr) < [] fa(xa)

a€EAR

For cr # 0, we canre-writethis equationas
l/CR
) ,

(D-2)

wherenc_,p(xc) = exp(Apc(x¢)) is a “message’from a

child region C to a parentregion P, in analogywith the mes-

sagesi;—,.(z;) in standardBP If cg = 0, wedonotgetacon-

ditiononbr(xr) (br(xg) canstill bedeterminedrom beliefs

in superregionsvia themaminalizationconditions);jnsteadve

obtainthefollowing conditionon the messageto andout of
HCGC(R) no—r(xco)

region R:
=1.
(HPeP(R) ”R—>P(XR)>

The messagaipdaterules are then obtainedby applying the
marginalizationconditionsb¢ (x¢) = EXP\XC bp(xp).

A small example might help clarify the meaningof these
equationdor thereader Considetthe probability distribution

(D-3)

p(T1,29,73) = %fA($1;$2)fB(-'L'2,$3)- (D-4)
We usethe Betheapproximationwhich shouldbe exactin this
casebecausdhe factorgraphis a tree. Thus,we obtainlarge
regions{A4, 1,2} and{B, 2, 3}, with countingnumbersl, and
smallregions{1}, {2}, and{3}, with countingnumbers), 1,
and0 respectiely. We obtainthefollowing beliefequationgor
theregionswith cg # O:

ba(z1,22) o fa(z1,22)n154(z1)n2554(22),  (D-5)
bp(w2,x3) x fp(®2, x3)n2—B(22)n38(23), (D-6)
ba(z2) x no_ya(z2)na—sB(z2), (D-7)

andthe following conditionson messagefor the regionswith
cr=0:

ni—a(z1) =1, (D-8)

and
N3 B (£U3) =1. (D-g)

Using theseconditionsandthe marginalizationconditions,we
find that

naA(x2) = ZfB(ZUz,JCs), (D-10)

x3

and

na—B(T2) = ZfA(ml,a:z). (D-11)
We cannow easily checkthat in this example,the computed
beliefsgive backthe desiredmarginal probabilitiesexactly.

The child-to-parentalgorithm, by its construction,clearly
givesageneralizedP algorithmwhosefixedpointscorrespond
to the stationarypointsof theregion graphfreeenegy. Onthe
otherhand,it mightbe considerednelegantbothbecausé fo-
cuseonly onthemessageom child regionsto parentregions
and becausahe messagaipdateequationswill inevitably be
complicatedandinvolve the countingnumberscg. The two-
wayalgorithmdescribedn AppendixE andtheparent-to-dild
describedn the maintext in sectionVII-A aredifferentGBP
algorithmsthatattemptto ameliorateheseflaws.



APPENDIX E: THE TWO-WAY ALGORITHM

To motivatethetwo-way algorithm,we returnto thestandard
BP algorithm,wherewe recallthatthe belief equationsanbe
writtenin theform

H Ma—i(T;) (E-1)
a€N(i)
and
ba(xa) :fa(xa) H ni—)a(mz’) (E-2)
i€EN(a)
where
nisa(@i) =[] mesilzi). (E-3)
bEN(i)\a

Giventheseequationsit is naturalto aimfor ageneralization
wherethebeliefequationswill have theform

br(xr) = fr(xr) [[ ne-r(xc) [] mpor(xp).
CEC(R) PcP(R)
(E-4)

In otherwords,we aim to write the belief equationsso that
the belief in a region is a productof local factorsand mes-
sagesrriving from all the connectedegions,whetherthey are
parentsor children. It will turn out that we cando this, but
in orderthat the GBP algorithm be correspondo the region
graphfree enepgy, we will needto usemodifiedfactorsanda
rathercomplicatedrelationbetweenthe no_, p(xc) messages
andmp_,c(xp) messagegeneralizingthe relationfor stan-
dardBP givenin equation(E-3).

It will be corvenientto denotethe numberof parentsof re-
gion R by pg, anddefinethe numbersyg = (1 — ¢,)/p, and
Br = 1/(2 — ¢-). Whenaregionhasno parentsothatpg = 0
andcg = 1, wetake qg = Br = 1. Notethatwithin the Bethe
approximationgg = Br = 1 for all regions. We will assume
thatqr # 2 sothatgg is well-defined(normally, if onehasa
regiongraphwith aregionsuchthatqg = 2, oneshouldbeable
to changethe connecwity of R to avoid this problem).

We first definethe setof pseudo-messagésr all regionsR
andtheir parentsP andchildrenC"

g p(XR) = (E-5)
fr(xR) H mp:R(XR) H ncr(xco)
P'€P(R)\P CEC(R)
and
m?%—)O(XC) = (E-6)
Z fr(xR) H mp_Rr(XR) H nc s r(Xcr),
xr\xc PcP(R) C’eC(R)\C
wherefr(xg) = (I1,ca, fa(%a)) ™.

Aside from the fact that we raisedthe productof the local
factorsto a power of cg, thesepseudo-messagesewhatone
would naively expectthe messageipdatego look like. To ob-
tain the true messageipdateshowever, oneneedgo combine
the pseudo-messageming in the two directionsof a link as
follows:

R 0 Br—1

(mP—>R(XR)) (E'7)

nr—p(XR) = (”(1)2—>P(XR))B
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and

mp_r(XR) = ("(}zap(xR))ﬂR_l (m%ﬁR(XR))ﬂR (E-8)

Notethatwhengg = 1, themessagearepreciselythesameas
thepseudo-messages.

Thetwo-way algorithmis completeddy the beliefequations,
which have the form alreadygivenin equation(E-4). We now
claim that the above setsof messagesnd beliefs are fixed
pointsof two-way GBPif andonly if they arestationarypoints
of theregiongraphfreeeneny.

Proof: We form a Lagrangianfrom the region graphen-
ergy asalreadyindicatedin the previous sectionon the child-
to-parentalgorithm. If we exponentiateequation(51) derived

there,we obtaintheequation
-1
H e PR(xR) .
PcP(R)

(E-9)
Supposé¢hatwe aregivenasetof A andbg thatsatisfythese
stationaryconditionsof the Lagrangian Now we define

H e ro(xc)

CEC(R)

br(xr)°® o fr(xR)

nr—p(xg) = e*PROR) (E-10)

and

mp_,R(XR) = bR(XR)qRe_)‘PR(xR) (E-ll)

Of course,we have one m messagend onen messagdor
every Lagrangemultiplier A, so for thesedefinitionsto hold,
we also needto have constraintsrelating the m’s and n’s.
The constraintswill be givenby the definitionsof the pseudo-
messagesand the relations betweenthe messagesand the
pseudo-messagétatwe definedabove. We wantto shav that
theserelations,as well asthe two-way GBP belief equations
previously defined musthold.

First,we show thatthe belief equationgE-4) hold. We have

e re(xc) H
PEP(R)
11

(f Rr(XR)
PeP(R)

e*APR(xR)

br(xr)™ o fr(xr) ][

CEC(R)
H nC’—»R XC

CEC(R)

o (br(xg)) "*® fr(

o fR XR ) mP—)R(XR)

br(XR)

H nC%R XC

CEC(R)

Il ro-r(xe)

CEC(R)

H mp—r(XR)

PcP(R)

I mrorxr)

PEP(R)

o (br(xg))* " fr(xgr)

sothatindeedbr(x ) is productof local potentialsandincom-
ing messages.

Turning to the constraintswe have from the definition of
n(l)iaP(XR)' that

n%_,p(Xr) mp_sr(Xr) = br(XR) (E-12)
Z bP(Xp) (E-13)

xp\Xr
= ng-p(XR)Mp_, g (XR)- (E-14)



EquationgE-10)and(E-11)imply that

(E-15)
(E-16)

nr—p(Xr)Mp-r(XR) = br(xRg)™"
= (n%aP(XR)mP—)R(XR))qR .

Togethertheseequationgive us two equationdor the two
unknovnsmp_,g(xg) andng_, p(xg):

mp_r(XR)
nr—pP(XR)

— Mpoen(X5) fr(xg)™"

W, p(xn) (E47)

and

nrop(XR)mpor(XR)' TR = (n%,p(xr))™  (E-18)

Theuniquesolutionof theseequationss givenby equations
(E-7)and(E-8). Thus,we have shavn thatthemessaggassing
algorithmpreviouslydefinedhasfixedpointsthatareequialent
to thestationarypointsof theregion graphfree enegy.

The two-way algorithm will be particularly elegant when
fR(xR) = fr(xg) andwhenggr = 1 for all regions. In that
case,eachregion will sendmessage$o all adjacentregions,
andthe messageipdateruleswill bethenaturalgeneralization
of the ordinaryBP ruleswritten with two kindsof messagedt
is interestingto notethatthe conditionthat fz (xz) = fr(xr)
canbe ensuredby requiringthat only regionswith no parents
containfactornodes,while the conditionthat 8 = 1 for all
regionscanbeensuredy requiringthatthesub-graplobtained
by takingary regionandall of its ancestoregionsmustalways
form atree.

Whenggr = 1 for all regions,the two-way GBP algorithm
is equivalentto Pearls methodof clustering[9]: we form new
nodedrom clustersof variablesn theoriginal graph(theseare
the regions) and run an ordinary BP algorithm on the result-
ing graph. It is importantto bearin mind thatthis equivalence
only holdsfor a subsetof possibleregion graphs:if oneuses
this methodon a setof regionsthatdoesnot satisfythe region
graphconditions,or on a region graphfor which g, # 1 for
someregions,theresultingbeliefswill generallybe a poorap-
proximation.

APPENDIX F: REGION GRAPHS WITH ¢cg = 0 REGIONS

In our proof thatthe fixed pointsof the parent-to-childGBP
algorithmare equivalentto the stationarypoints of the region
graphfree enepgy (givenin sectionVII-A), we assumedhat
no region hascountingnumbercg = 0. Thatis never diffi-
cult to arrange:if one hasa region graphwith regionswhose
countingnumberequalszero,onecanremove them,andthen
connectdirectly ary regionsthatwere previously ancestor®r
descendantsf eachother, but areno longerafter the removal
of thecr = 0 regions. Theremainingregionswill have iden-
tical countingnumbersby constructionandsincethe regions
with cg = 0 did not contributeto theregion graphfree enegy
in ary case,it will be unchanged.In figure 16, we illustrate
the “surgery” that needsto be performedon a region graphto
remove regionswith countingnumberzero.

In fact, however, the parent-to-childalgorithm is well-
definedevenwhensomeof the regionshave countingnumbers

Fig. 16. Anillustrationof how onecantake aregion graphwith someregions
thathave countingnumberzero,andobtainanothemregion graphwith no such
regions but with an identical free enegy. One first removes regions with a
countingnumberof zero,andthendirectly connectsary ancestodescendant
pairsthat have becomedisconnected.In this example,we form new direct
connectiondetweerregions R and H andbetweerregions B andH .

equalto zero,andwhenoneimplementsit, onefinds thatthe
resultsat its fixed pointsareidenticalto thoseobtainedwhen
onesumically removesthe cg = 0 regions. The reasonthat
the algorithmstill givesproperresults,eventhoughthe above
proof breaksdown, is thatthe A constraintghatcannotbe de-
rivedfrom the i constraintareactuallynot necessary—tlyeall
involvecr = 0 regionsthatdo notcontrituteto thefreeenegy
in ary case.

1 [
\/

D

\
.

e
\/
/

Fig.17. A smallillustrative region graph(seetext). Notethatregion F' has
countingnumbercg = 0.

A small example may malke this point more comprehensi-
ble. Considetthe smallregion graphshavn in figure (17). The
countingnumbersof the regionsarecy = ¢cg = ¢¢ = 1,
¢p = cg = —1, andcp = 0, sothatregion F' couldclearlybe
removedto obtainan equivalentregion graph. For the purpose
of illustration, we leave it in. We have six A constraintsgach
of which is very straightforvard. For example,the constraint

associatedvith Aap(xp) is bp(xp) = EXA\XD ba(xa),
while the constraintassociatedvith A\pr(xr) is bp(xr) =
ZxD\xF bp (XD‘

Thesix p constraint@resomavhatlessstraightforvard. Go-
ing backto the prescriptiongivenin equation(53), we seefor
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examplethatthe constraintassociatesvith uap(xp) is

cpbp(xp) + cB Z be(xp) =0 (F-1)
x5 \xp
or equivalently,
bp(xp) = Z bp(xB) (F-2)

XB\XD

while the constraintassociatewvith upr (xr) is

crbr(xp)+cE Z be(xg)+cc Z bc(xc) =0 (F-3)

xe\xF xc\xr

or equivalently

(F-4)

Z bc(Xc)= Z bE(XE)

xc\xr xg\XF

Because:r = 0, therewill notbeary p constraintdirectly
involving br(xr), SO we cannotderive someof the A con-
straints.Onthe otherhand,theseconstraintsarenot necessary
becausé¢heregiongraphfreeenegy itself alsodoesnotdepend
directlyonbr(xr). We alsoseethatthe . constraintsarestill
sufficientto ensurethatall the beliefsareconsistentvhenthey
aremaiminalizeddown to region F'. Finally, if we do suigery
on this region graphandremove region F', we cantheneasily
verify thatthe A constraintarethenentirely equivalentto the
L constraints.
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