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Efficient Estimation of 3D Euclidean Distance Fields
from 2D Range Images

Sarah F. Frisken and Ronald N. Perry
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ABSTRACT
Several existing algorithms for reconstructing 3D models from
range data first approximate the object’s 3D distance field to pro-
vide an implicit representation of the scanned object and then
construct a surface model of the object using this distance field. In
these existing approaches, computing and storing 3D distance
values from range data contribute significantly to the computa-
tional and storage requirements. This paper presents an efficient
method for estimating the 3D Euclidean distance field from 2D
range images that can be used by any of these algorithms. The
proposed method uses Adaptively Sampled Distance Fields to
minimize the number of distance evaluations and significantly
reduce storage requirements of the sampled distance field. The
method is fast because much of the computation required to con-
vert the line-of-sight range distances to Euclidean distances can be
done during a pre-processing step in the 2D coordinate space of
each range image.
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1. INTRODUCTION
There are many approaches for reconstructing 3D models from
range data. Some comprehensive reviews of these approaches can
be found in [Curless 1999, Whitaker 1998, and Edelsbrunner
2002]. Here we focus on methods that first compute an implicit
representation of the surface, usually in the form of a sampled
distance field, and then reconstruct the 3D model as an iso-surface
of the implicit representation. While some of these methods are
designed to be very general, e.g., they can accept range data in the
form of an unorganized cloud of surface points, we focus on range
data that is available in the form of range images, where range
measurements are acquired in a regularly sampled 2D grid. Since
many commercial scanners acquire data in this format, this focus
is not overly limiting and allows us to exploit the available coher-
ency between range values from the same range image.

In this paper, we present an efficient method for computing
3D distance fields from 2D range images. The method approxi-
mates the Euclidean distance from line-of-sight distances of each
range image and then combines distances from one or more scans
to provide a final estimate of the true Euclidean distance. Justifi-
cation for using Euclidean distances is based on reconstruction
accuracy and speed and is presented in Section 3.2. Our method
performs most of the computation in the 2D coordinate space of
each range image during a preprocessing step, resulting in signifi-
cant computational savings. In addition, the method represents the
sampled distance field using octree-based Adaptively Sampled
Distance Fields (ADFs) to minimize the number of distance
evaluations and significantly reduce memory requirements.

2. BACKGROUND
2.1 Distance Fields
An object’s distance field represents, for any point in space, the
distance from that point to the object. The distance can be signed
to distinguish between the inside and outside of an object. The
metric used to measure distance can take many forms, but Euclid-
ean distance is frequently used because of its utility in a number
of applications (e.g., collision detection and surface offsetting).
Distance fields are a specific example of implicit functions, which
have a long history of use and study (e.g., see [Bloomenthal
1997]). Distance fields have been used in CAD/CAM [Ricci 1973,
Rockwood 1989, Breen 1990, Schroeder et al. 1994, Perry and
Frisken 2001], medical imaging and surgical simulation [Blum
1973, Raya and Udupa 1990, Payne and Toga 1990, Jones and
Chen 1995, Szeliski and Lavalle 1996, Frisken-Gibson 1999],
modeling deformation and animating deformable models
[Bloomenthal and Wyville 1990, Bloomenthal and Shoemake
1991, Payne and Toga 1992, Gascuel 1993, Whitaker 1995,
Sethian 1996, Cani-Gascuel 1998, DesBrun and Cani-Gascuel
1998, Breen 1998, Fisher and Lin 2001], scan conversion or ‘vox-
elization’ [Payne and Toga 1992, Jones 1996, Gibson 1998,
Sramek and Kaufman 1999], robotics [e.g., Koditschek 1989], and
have recently been advocated as a surface representation in their
own right [Gibson 1998, Frisken et al. 2000].

Early work represented the distance field implicitly and op-
erations on the distance field were computed from the implicit
representation at query points as needed. More recent work uses
volumetric methods, computing and storing distance values in a
regular 3D grid and reconstructing distance values at non-grid
locations using an interpolation method such as trilinear interpo-
lation. Like all sampled representations, adequate sampling is
required for alias free reconstruction of the sampled distance field,
resulting in large memory requirements and slow processing times
for detailed models. Several approaches have been made to reduce
processing times and/or memory requirements. Recently [Hoff
1999, Hoff 2001] introduced hardware methods for fast computa-
tion of regularly sampled distance fields. Others reduce process-
ing by restricting evaluation of the distance field to a ‘shell’ or
‘narrow band’ around the object surface [Curless 1996, Jones
1996, Desbrun 1998, and Whitaker 1998]. In some cases, accurate
distance values evaluated in the shell are then propagated to vox-
els outside the shell using fast distance transforms [Jones 2001,
Zhao et al. 2001] or fast marching methods from level sets [Kim-
mel and Sethian 1996, Breen et al. 1998, Whitaker 1998, and
Fisher 2001]. [Szeliski and Lavalle 1996, Wheeler 1998, and
Strain 1999] evaluate distance values at cell vertices of a classic
or ‘3-color’ octree (i.e., an octree where all cells containing the
surface are subdivided to the maximum octree level) to reduce the
number of distance evaluations (over regular sampling) and to
provide an estimate of the distance field away from the surface.

2.2 Adaptively Sampled Distance Fields
More recently, it was observed that substantial savings both in
memory requirements and in the number of distance evaluations



required to represent an object could be made by adaptively sam-
pling the object’s distance field according to the local complexity
of the distance field rather than whether or not a surface of the
object was present. [Gibson 1998] noted that the distance field
near planar surfaces can be reconstructed exactly from a small
number of sample points using trilinear interpolation. This obser-
vation led to ADFs [Frisken et al. 2000], which use detail-directed
sampling, i.e., high sampling rates where there are high frequen-
cies in the distance field and low sampling rates where the dis-
tance field varies smoothly. As illustrated in Figure 1, this ap-

proach results in a substantial reduction in the number of distance
evaluations and significantly fewer stored distance values than
would be required by a 3-color quadtree. ADFs are a practical
representation of distance fields that provide high quality surfaces,
efficient processing, and a reasonable memory footprint. [Perry
and Frisken 2001] demonstrates the practical utility of ADFs in a
3D sculpting system that provides real time volume editing and
interactive ray casting on a desktop PC (Pentium IV processor)
for volumetric models that have a resolution equivalent to a
2048x2048x2048 volume.

2.3 Reconstructing 3D Models from Range
Data Using Distance Fields
There are several methods for reconstructing 3D models from
range data that make use of distance fields. Some of these meth-
ods make the general assumption that data is available only as an
unorganized set of surface points. [Hoppe et al. 1992] creates a
regularly sampled signed distance volume by defining local tan-
gential planes from neighborhoods of scanned surface points and
computing signed distances to these planes. Marching Cubes
[Lorensen and Cline 1987] is then used to generate a surface
model from the volume representation. [Edelsbrunner 2002, Bajaj
et al. 1995, and Boissonnat and Cazals 2000] build Voronoi dia-
grams from scanned surface points. They then use the Voronoi
diagram to efficiently evaluate closest distances to the surface and
to define (initial) surface patches for the model. [Carr et al. 2001]
fits a radial basis function to a set of on-surface and off-surface
points derived from scanned surface points. The on-surface points
are assigned a value of 0 while off-surface points constructed
from the on-surface points are assigned a value equal to their
signed distance from the surface. All of these methods are more
general than the approach we discuss here because they can be
applied to a set of unorganized points. However, when range data
is available in the form of range images, these methods could
make use of the efficient evaluation of the distance field that is
described in this paper.

[Curless and Levoy 1996, Hilton et al. 1996, and Wheeler et
al. 1998] present methods that compute a volumetric representa-
tion of the distance field from range surfaces, which are created
by connecting nearest neighbors in the range image with triangu-
lar facets. Triangulation over possible occlusions in the model
surface is avoided by not connecting neighbors with significant
differences in range values. This approach is conservative and
avoids building surfaces over unobserved regions but can lead to
holes in the model that must be addressed separately [Curless and
Levoy 1996]. These three methods all use a weighted averaging
scheme to combine distance values from multiple scans. As in
[Hoppe et al. 1992], these methods use Marching Cubes to gener-
ate a triangle model from the volume representation. [Curless and
Levoy 1996] uses line-of-sight distances and only compute dis-
tances in a limited shell surrounding the surface. The distance
volume is run-length-encoded to reduce storage and processing
times. [Hilton et al. 1996] computes Euclidean distances from
range surfaces in a shell surrounding the surface, and stores the
results in a regularly sampled volume. [Wheeler et al. 1998] also
computes Euclidean distances from range surfaces but limits dis-
tance evaluations to the vertices of a 3-color octree. [Whitaker
1998] computes line-of-sight distances directly from range images
and combines distance values from multiple scans using a win-
dowed, weighted average. He then uses level set methods to re-
duce scanner noise by evolving a surface subject to forces that 1)
attract it to the zero-valued iso-surface of the distance field and 2)
satisfy a shape prior such as surface smoothness. [Zhao et al.
2001] uses a similar method to [Whitaker 1998], but initializes the

Figure 1. A 3-color quadtree of this 2D character requires 20,813 quadtree
cells (top) while a quadtree-based ADF using a bi-quadratic interpolant of
the same accuracy requires only 399 cells (bottom). Both quadtrees have a
maximum level of 9, with resolution equivalent to a 512x512 image of
distance values. 3D octree-based ADFs have similar compression in the
3rd dimension.



distance field used to attract the evolving surface from a set of
unorganized points. Recently [Perry and Frisken 2001] and [Sa-
gawa et al. 2001] describe a method similar to [Wheeler et al.
1998] but use ADFs instead of a 3-color octree to reduce the
number of distance evaluations required. [Perry and Frisken 2001]
uses an error predicate to guide adaptive subdivision of the ADF
while [Sagawa et al. 2001] uses a measure of local surface curva-
ture. Both papers introduce new methods for hole-free triangula-
tion of the (un-restricted) octrees. [Sagawa et al. 2001] remeshes
the octree to form a non-rectilinear grid that is free of T-junctions
and uses an extension of Marching Cubes to generate the triangle
model while [Perry and Frisken 2001] extend a method for trian-
gulating regularly sampled binary data presented in [Gibson
1998].

3. ESTIMATING EUCLIDEAN DISTANCE
FROM 2D RANGE IMAGES
3.1 Projected Distances
2D range images provide a 2D grid of line-of-sight distances from
the scanner to the object. In this paper, we assume that each value
in the range image represents the perpendicular projected distance
from the plane of the scanner to the object. Scanning systems do
not always provide perpendicular projected distances but conver-
sion to this form is often straightforward. As an example, laser
striping systems fan a laser beam into a plane of laser light so that
each range image scan line samples line-of-sight distances along
rays radiating from the point laser source to the object. Given the
geometry of the laser striping system and the angle of each ray to
the laser source, these line-of-sight distances can be converted to
perpendicular distances and mapped back onto the plane of the
scanner. Resampling these mapped projected distances into a
regular grid provides the required perpendicular projected range
image. This conversion can result in some loss of data near oc-
cluded regions but the effect is usually small.

3.2 Why Euclidean Distances?
While some prior work uses line-of-sight distances [e.g., Curless
and Levoy 1996] or projected distances [e.g., Whitaker 1998], we
advocate the use of Euclidean distances because 1) they provide a
more accurate representation of both the direction to the surface
for off-surface points and the surface itself when combining mul-
tiple scans, 2) they permit faster generation of the ADF (and
hence the model), and 3) they provide better compression of the
distance field in the ADF thus enabling the representation of high
resolution models.

The projected distance can vary significantly from the true
Euclidean distance in two ways as illustrated in Figure 2. First,
when the surface is at an angle to the scanning direction, the true
distance value is smaller than the projected distance value. Sec-
ond, the range image does not represent distances to occluded
surfaces and surfaces that are nearly parallel with the scanning

direction. At such surfaces, projected distances in the range image
are discontinuous and result in an interface in the projected dis-
tance field where large positive and large negative distances can
be located in adjacent samples. While the projected distance field
has the same zero-value iso-surface as the Euclidean distance
field, the gradient of the projected distance field differs from the
gradient of the true Euclidean distance field (see Figure 3, left).
This can be problematic for methods that use the distance field
gradient to evolve a surface towards the zero-value iso-surface. In
addition, when multiple range images are combined, projected
distances from different view directions are scaled differently. If
the distances from all scans are linearly averaged, the resultant
zero-valued iso-surface of the combined projected distances still
represents the object surface accurately. However, most methods
use a windowed, weighted, non-linear averaging of distance val-
ues from different scans. This results in artifacts in the surface
where two scans overlap (see Figure 4, left).

In addition to accuracy, there are practical reasons for prefer-
ring the Euclidean distance field when using ADFs. First, if we
are primarily interested in the distance field near the surface, we
can terminate cell subdivision early during ADF generation when
a cell is guaranteed not to contain the surface. With Euclidean
distances, where distance values are proportional to cell size, it is
easy to determine if a cell cannot contain the surface from the
cell’s distance values (e.g., if every cell distance value has the
same sign AND the absolute magnitude of every cell distance
value is greater than one half the cell diagonal, then the cell is

Figure 3. Even for surfaces with relatively low curvature, the direction and
magnitude of the gradient computed using central differences (red arrows)
is significantly different from the true gradient (white arrows) (left). After
correcting the distance field with the gradient magnitude, the computed
gradient better approximates the true gradient of the distance field (right).

Figure 4.  Combining projected distances to a sphere from two scans
(separated by 90 degrees) results in artifacts where the two scans overlap
(left). After correcting the distance field with the gradient magnitude,
these artifacts are significantly reduced (right).
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Figure 2. Projected distances, dp, differ from the true Euclidean distance,
dt, to a surface when the surface is at an angle to the scanning direction
(left) and when there are occluded regions (right) where projected dis-
tances do not measure the distance to the occluded surface. Occluded
regions result in discontinuities in the projected distance field (e.g., the
discontinuity between the measurements dp

- and dp
+).
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Figure 5. The true distance to a planar surface (left) is equal to the
projected distance multiplied by cos(θ), where θ is the angle between the
scanning direction and the surface normal. For a planar surface (right), it
is shown in the text that the magnitude of the gradient of the projected
distance field is equal to 1/cos(θ).
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either interior or exterior). However, projected distances are not
proportional to cell size: they are scaled depending on the angle of
the surface to the scanner’s line-of-sight and are discontinuous
near occluded surfaces. Hence, using projected distances pre-
cludes the use of terminating cell subdivision early and typically
requires more than an order of magnitude more distance evalua-
tions and significant temporary storage during ADF generation. A
second reason for preferring Euclidean distances is that with a
projected distance field, discontinuities near occluded surfaces
force cells near these occluded surfaces to be subdivided to the
highest level of the ADF, resulting in memory requirements
similar to that of a 3-color octree.

3.3 Correcting Projected Distances
As illustrated on the left in Figure 5, for points near a planar sur-
face, the Euclidean distance, dt, is equal to the projected distance,
dp, multiplied by cos(θ) where θ is the angle between the scanning
direction and the surface normal, i.e., dt = dp ∗ cos(θ). Given the
plane on the right in Figure 5, the projected distance, dp, from a
point p = (p.x, p.y, p.z) to the plane along the z direction is

dp = p.z – (– p.x ∗ A/C – p.y ∗ B/C  – D/C).

Differentiating, the gradient of the projected distance field, ∇(dp),
is

∇(dp) =   (A/C, B/C, 1), with magnitude,
 |∇(dp)| =   (A2 + B2 + C2)1/2 / C.

Because the plane’s normal is (A, B, C), cos(θ) is equal to C/(A2

+ B2 + C2)1/2. Hence, |∇(dp)| = 1 / cos(θ) and, for planar surfaces,
dt = dp ∗ cos(θ) =  dp / |∇(dp)|, i.e., we can correct the projected
distance field near relatively planar regions of the surface by di-
viding the projected distance by the magnitude of the local gradi-
ent of the projected distance field. This correction results in a
better approximation of the Euclidean distance near smooth sur-
faces.

Making this correction for a regularly sampled volume is
straightforward (but slow): we sample the projected distance field
for each point in the 3D volume to create a projected distance
volume and then correct the projected distance at each sample
point by dividing by the local gradient magnitude computed us-
ing, for example, central differences. However, for ADFs, com-
puting the local gradient of the projected distance field during
generation is inefficient since it requires evaluating 6 additional
distances per ADF sample point that might not otherwise be re-
quired.

To avoid these unnecessary distance evaluations, we observe
that in the direction perpendicular to the range image, the pro-
jected distance to the object decreases at a constant rate. Hence,

the gradient of the projected distance field is constant along rays
perpendicular to the range image. This means that the gradient of
the 3D projected distance field can be fully represented by a 2D
field in the plane of the range image. Figure 6 provides pseudo-
code for evaluating this 2D field to produce a 2D gradient mag-
nitude correction image. The gradient magnitude correction image
is pre-computed prior to ADF generation at the same resolution as
the range image. During generation, a projected distance value is
derived from the range image and corrected using a value inter-
polated from its corresponding pre-computed gradient magnitude
correction image as described in Section 3.5.

CreateGradientMagnitudeCorrectionImage(rangeImage[NxM])
{

//----Compute the inverse gradient magnitude correction image
float invGradMagCorrection[NxM]
xScale  0.5 * rangeImageWidth
yScale  0.5 * rangeImageHeight
for (pixel = each range image pixel) {

dx  xScale * (rangeImage[x+1] – rangeImage[x-1])
dy  yScale * (rangeImage[y+1] – rangeImage[y-1])
gradMag  sqrt(dx^2 + dy^2 + 1.0)
invGradMagCorrection[pixel]  1 / gradMag

}
}

Figure 6. Pseudocode for the gradient magnitude correction image.

3.4 Correcting Distances Near Cliffs
Range values are discontinuous between pixels in the range image
near occluded surfaces (Figure 2, right) and near surfaces that run
approximately parallel to the scanning direction. Existing ap-
proaches that use range surfaces handle these discontinuities by
not triangulating over these pixels. However, this results in holes
in the range surface and possibly in the resultant 3D model that
must be treated specially by the algorithm or addressed separately.
Here, instead of discarding data near these discontinuities, we
make the assumption that the surface is continuous across a range
image discontinuity, and forms a “cliff” that runs perpendicular to
the range image connecting pixels on each side of the discontinu-
ity. This approach eliminates holes in the reconstructed surface
and provides a reasonable guess at regions of the surface for
which there is no data available. Note that this method does not
necessarily provide accurate distances to occluded surfaces.
Therefore, we assign a low priority to distances computed from
cliffs when combining multiple scans (Section 3.5) so that dis-
tances from range images with better views of an occluded region
are favored over cliff distances.

To correct the distance field near cliffs during ADF genera-
tion, we locate the nearest cliff for each ADF sample point and
choose the smaller of the gradient magnitude corrected distance
and the distance to the cliff. Cliff pixels – pixels that are beside a
discontinuity in the range image – can be detected and marked in
a pre-processing step. However, computing cliff distances may
seem like an ominous task – recall that we propose using cliff
distances to remove discontinuities in the 3D distance field in
order to reduce generation times. Even if we bin cliff pixels in a
spatial hierarchy and use a fast search technique to locate nearest
cliff pixels it is hard to imagine that this approach would provide
much improvement over simply requiring complete 3-color octree
subdivision of the ADF along the cliffs. Fortunately, similar to
gradient magnitude correction, 3D cliff distances can be estimated
from an (annotated) 2D image that can be computed prior to gen-
eration. This annotated 2D image, or “cliffmap”, encodes dis-
tances to the top and bottom of the nearest cliff for each pixel in
the range image as well as the heights of the top and bottom of
that cliff. During generation we interpolate the 2D cliffmap to
estimate cliff distances for each 3D sample point in the ADF. We



use the top and bottom heights of the nearest cliff to determine the
Euclidean distance to the cliff. Figure 7 provides pseudocode for
computing the 2D cliffmap from a range image.

CreateCliffCorrectionImages(rangeImage[NxM])
{

float cliffTopHeight[NxM] // Range value of closest top and
float cliffBotHeight[NxM] // bottom cliff pixels.
float cliffTopDist[NxM]   // Horizontal distance to closest top
float cliffBotDist[NxM]   // and bottom cliff pixels.

//----Compute the cliff images. First detect the top and bottom
//----cliff pixels, set their heights and set their cliff
//----distances to zero.
for (pixel = each range image pixel) {

//----Initialize pixel as a non-cliff pixel

cliffTopDist[pixel], cliffBotDist[pixel]  ∞
//----Check the 8 neighbors of this pixel to see if there is a
//----change in intensity greater than cliffThreshold. If so,
//----this is a cliff pixel.
for (neighbor = each of pixel’s 8 neighbors) {

dif  rangeImage[pixel] – rangeImage[neighbor]
if (dif > cliffThreshold) {

//----This is a top cliff pixel
cliffTopHeight[pixel]  rangeImage[pixel]
cliffTopDist[pixel]  0

} else if (dif < -cliffThreshold) {
//----This is a bottom cliff pixel
cliffBotHeight[pixel]  rangeImage[pixel]
cliffBotDist[pixel]  0

}
}

}

//----Reduce contiguous 1-pixel wide cliffs to a single multi-
//----pixel wide cliff by setting pixels tagged as both top and
//----bottom cliffs to non-cliff pixels
for (pixel = each cliff pixel) {

if (!cliffTopDist[pixel] && !cliffBotDist[pixel]) {

cliffTopDist[pixel], cliffBotDist[pixel]  ∞
}

}

//----Initialize unsigned distances from cliff pixels using a
//----distance transform such as a 3x3 neighborhood Euclidean
//----transform, e.g., apply the following to each pixel in the
//----cliffmap twice, processing first left to right, bottom
//----to top and then right to left, top to bottom.
for (pixel = each cliffmap pixel) {

for (neighbor = each of pixel’s 8 neighbors) {
dist  cliffTopDist[pixel]
nbrDist  cliffTopDist[neighbor] + EuclidDistToNbr
cliffTopDist[pixel]  min(dist, nbrDist)
dist  cliffBotDist[pixel]
nbrDist  cliffBotDist[neighbor] + EuclidDistToNbr
cliffBotDist[pixel]  min(dist, nbrDist)

}
}

//----Assign negative distances to pixels on the outside of
//----cliff pixels by assuming these pixels have heights
//----smaller than cliff pixel heights.
for (pixel = each cliffmap pixel) {

height  rangeImage[pixel]
top  cliffTopHeight[pixel] – 0.1 * cliffThreshold
bot  cliffBotHeight[pixel] + 0.1 * cliffThreshold
if (height < top) cliffTopDist[pixel] *= -1
if (height < bot) cliffBotDist[pixel] *= -1

}

//----Because cliffs do not form closed boundaries, the method
//----above can create discontinuities in the distance field
//----between positive and negative regions. However, these
//----regions are relatively far from the cliffs. Detect and tag
//----these regions so that they are not used when computing
//----cliff distances.
for (pixel = each cliffmap pixel) {

top  cliffTopDist[pixel]
bot  cliffBotDist[pixel]
for (neighbor = each of pixel’s 4 neighbors) {

if (top * cliffTopDist[neighbor] < 0)
cliffTopDist[pixel]  invalidDist

if (bot * cliffBotDist[neighbor] < 0)
cliffBotDist[pixel]  invalidDist

}
}

}

Figure 7. Pseudocode for creating the cliffmaps.

3.5 Estimating the Euclidean Distance
The steps to determine the Euclidean distance at a point, p, for a

single range image are 1) compute the projected distance at p
from the range image, 2) compute the associated gradient magni-
tude from the pre-computed gradient magnitude correction image
and correct the projected distance value, 3) compute the distance
to the nearest cliff using the pre-computed cliffmap, and 4) choose
the smaller of the corrected projected distance and the cliff dis-
tance. Steps 2) – 4) are detailed in the pseudocode of Figure 8.

Distances from multiple scans can be combined in several
ways depending on the method used for reconstructing surfaces.
For example, one could use any of the weighted averaging
schemes proposed by [Curless and Levoy 1996, Hilton et al. 1996,
Wheeler et al. 1998, and Whitaker 1998]. The best combining
method is determined by the noise characteristics of the range
scanner and any further processing applied by the reconstruction
method. For purposes of illustration, we use a simple combining
scheme that chooses the ‘best’ distance value from multiple scans
where ‘best’ means that small distance values are favored over
large distance values, distance values with small gradient magni-
tudes are favored over distance values with large gradient magni-
tudes, and corrected projected distances are favored over cliff
distances. This method was used to reconstruct the model of Fig-
ure 12 (see Section 3.7).

GetCorrectedDist(projDist, p)
{

//----Compute the gradient magnitude corrected distance value
invGradMag  GetInterpolatedValue(invGradMagArray, p)
dist  projDist * invGradMag

//----Interpolate heights and distances to the nearest cliff
//----from the cliffmap
topDist  GetInterpolatedValue(cliffTopDist, p)
botDist  GetInterpolatedValue(cliffBotDist, p)
top  GetInterpolatedValue(cliffTopHeight, p)
bot  GetInterpolatedValue(cliffBotHeight, p)

//----Determine the distance to the nearby cliff and compare it
//----to the gradient magnitude corrected distance. Keep the
//----smaller distance. The distance to the cliff depends on
//----whether the sample point is above the top of the cliff,
//----below the bottom of the cliff, or in-between.
z  p.z
if ((dzToTop = top - z) <= 0) {

//----Point is above the top of the cliff
d  - sqrt(topDist^2 + dzToTop^2)
if (d > dist) dist  d

} else if ((dzToBot = z - bot) <= 0)  {
//----Point is below the bottom of the cliff
d  sqrt(botDist^2 + dzToBot^2)
if (d < dist) dist  d

} else {
//----Point is opposite the face of the cliff (between the top
//----and bottom)
cliffWidth  botDist - topDist
cliffHeight  dzToTop + dzToBot
if ((|topDist| < |dist|) && (|botDist| < |dist|)) {

cliffLength  sqrt(cliffHeight^2 + cliffWidth^2)
d  (topDist * dzToBot + botDist * dzToTop) / cliffLength
if (|d| < |dist|) dist  d

}
}
return(dist)

}

Figure 8. Pseudocode for correcting the projected distance using gradient
magnitude correction and cliff distances.

3.6 Generating the Adaptively Sampled
Distance Field
Given the method for computing Euclidean distances of Section
3.5, we generate an octree-based ADF of the Euclidean distance
field using the tiled generation method described in [Perry and
Frisken, 2001]. Starting from the root cell of the ADF, we recur-
sively subdivide ADF cells using an error-based subdivision
predicate until the field within the cell is well described by the
cell’s 8 distance values. For this application, we use surface-
centric ADFs that limit subdivision to cells bounding the surface



and do not subdivide exterior or interior cells beyond a minimum
level in the ADF hierarchy.

3.7 Results
Figure 9 illustrates the improvements in the distance field after
applying gradient magnitude correction and cliff correction to the
projected distance field. Unlike the projected distance field, the
corrected distance field is smooth and correctly scaled near the
entire surface. This smooth, well-scaled distance field allows us to
terminate cell subdivision early for non-boundary cells; this re-
duces memory requirements during ADF generation and permits
the reconstruction of very high resolution models (e.g., equivalent
to a 2048x2048x2048 volume) on inexpensive desktop machines.

Figures 10-15 show 3D models that were generated using
the proposed method for computing the Euclidean distance field
from range images. Note that all models are rendered with simple
Phong illumination to enable objective evaluation of the geome-
try. The models in Figures 10 and 11 were generated from single
range images acquired using a Cyberware 3030 scanner and
stored in the Cyberware raw Echo data format. Figure 12 shows 3
out of a sequence of 22 range images captured from the z-buffer
while rendering a 3D triangle model and 2 views of the geometry
reconstructed using the method described in Section 3.5. This
figure demonstrates that the iso-surface of the Euclidean distance
field provides good quality reconstruction from multiple range
images given accurate alignment of the scans and noise-free im-
ages. Figures 13-15 show 3D models reconstructed from synthetic

range images to demonstrate that the algorithm produces high
quality reconstruction of smooth surfaces, surfaces with vertical
cliffs, and surfaces with razor-sharp edges.

Table 1 provides timing for generating the ADFs of Figures
13-15. Times were measured on a 1GHz Pentium IV processor
with 1 Gbyte of memory and are reported in seconds. The size
listed is the equivalent volume resolution of the ADF octree. Ta-
ble 2 provides times for generating ADFs of the cow model of
Figure 12 from multiple synthetic range images that were ac-
quired from the z-buffer when rendering the cow triangle model.

Comparing the times of Tables 1 and 2 to those of other
methods is not straightforward since most papers do not separate
out times required for building the distance field from total recon-
struction times. However, [Whitaker 1998] reports times of about
20 minutes for 10 range images for a 140x140x140 resolution
volume using a Sparc 10 workstation. Although these times are
for the full reconstruction, he states that “most of that time was
spent on the initialization and resampling (i.e., building the dis-
tance volume) which requires visiting the entire volume”, and
adds that “larger models than this (i.e., 140x140x140) typically
introduce thrashing and significantly longer computation times”.
[Wheeler et al. 1998], whose method is most similar to ours, re-
ports reconstruction times of 52 minutes for 48 range images us-
ing an SGI Indy 5000. He uses a 3-color octree with a resolution
equivalent to a 128x128x128 volume. [Curless and Levoy 1996]
report hole-free reconstruction times of 197 and 259 minutes for
61 and 71 range images on volumes of size 712x501x322 and
407x957x407 respectively. Their results were obtained on a 250
MHz MIPS R4400 processor. As can be seen from the times re-
ported in Tables 1 and 2, our method compares favorably to the
prior art both with respect to speed and the ability to provide a
higher resolution representation of the distance field.

4. CONCLUSIONS AND FUTURE WORK
We have presented a method for estimating the 3D Euclidean
distance field from 2D range images. The method corrects pro-
jected distances provided by range images using the local gradient
magnitude of the projected distance field and deals with disconti-
nuities in the range image due to occluded surfaces or surfaces
that are nearly parallel to the range image’s line-of-sight. The
resultant Euclidean distance field provides better gradients near
the object surface and fewer artifacts in surfaces reconstructed
from multiple scans than the projected distance field. ADFs are

256x256x256 512x512x512 1024x1024x1024
Figure 13 0.83s 2.9s 9.3s
Figure 14 1.2s 5.5s 8.9s
Figure 15 1.6s 3.6s 11.0s

Table 1. Times to generate an ADF from a single range image for various
maximum ADF resolutions. Times are in seconds and include reading the
1024 x 1024 range image from disk, pre-computing the gradient magni-
tude correction image and the cliffmap, and rendering the ADF.

1 range
image

6 range
images

15 range
images

512x512x512 3.3s 13.8s 38.0s
1024x1024x1024 16.7s 66.2s 180.5s

Table 2. Times to generate an ADF from multiple (noiseless) range
images for two different maximum ADF resolutions. The range images
were acquired from the z-buffer during rendering of the cow model of
Figure 12. Times are in seconds and include pre-computing the gradient
magnitude correction image and the cliffmap and rendering the ADF.

Figure 9. A 3D shape (top), a cross section through its projected distance
field (middle), and its corrected distance field (bottom). The black line
represents the surface cross-section. Note the discontinuities in the pro-
jected distance field where the surface is vertical and the compression of
the distances where the surface is at an angle to the scanning direction
(which is from top to bottom). In contrast, the corrected distance field is
smooth and uniformly dense all along the surface, providing better quality
reconstruction when combining multiple scans and allowing the ADF
generator to terminate cell subdivision early and to reduce cell subdivision
along cliffs.



Figure 13. 3D model reconstructed from a synthetic range image showing
the algorithm’s ability to capture smooth surfaces and razor sharp edges.

Figure 10. 3D model reconstructed from a single Cyberware Echo scan of
oak tree bark.

Figure 11. 3D model reconstructed from a single Cyberware Echo scan of
redwood tree bark.

Figure 12. Some z-buffer images acquired during rendering of a triangle
model of a cow (top) and two views of a model reconstructed from 22 z-
buffer images of the cow model (bottom). Note that the faceting of the
original (low-resolution) triangle model is well preserved.

Figure 14. 3D model reconstructed from a synthetic range image showing
the algorithm’s ability to capture smooth surfaces.

Figure 15. 3D model reconstructed from a synthetic range image showing
the algorithm’s ability to capture vertical cliffs.



used to minimize the number of distance evaluations and to re-
duce storage requirements.

The method is especially fast because much of the computa-
tion can be done in a pre-processing step in the 2D coordinate
space of each range image. Timings and memory requirements are
very favorable: ADFs with an equivalent resolution of
256x256x256 can be reconstructed from a single range image in
about 1 second and higher resolution ADFs (1024x1024x1024)
can be reconstructed in about 10 seconds.

We intend to incorporate probabilistic weighting functions,
such as those discussed in the literature, into our method for com-
bining multiple images to create a system for generating 3D mod-
els from scanned data. The results for the cow model of Figure 12
suggest that such a system would compare very favorably with
existing systems. In addition, by storing a confidence measure
with each distance value in the ADF, this approach can be easily
extended to allow incremental updating with each new scan. We
expect that the ability to provide updates to the reconstructed
geometry within a few seconds of acquisition of a new range im-
age will facilitate on-line determination of the next-best-view.
Finally, the triangulation algorithm of [Perry and Frisken 2001]
can be used to provide real-time level-of-detail triangulation of
the reconstructed models.
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