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Abstract where the domain experts provide no information about the
completeness of the model, the techniques can select plans
that are more likely to succeed than if the incompleteness of
the model is ignored.

This paper extend&arland & Lesh(2002 by generaliz-
ing the techniques to support interleaved planning and exe-
cution based on (simplified models of) sensors and observed
external events. The extensions are equally useful for con-
tinuous planning sessions that involve solving a long series
of goals. The techniques we present reason efficiently over
arbitrarily long execution histories by integrating the antici-
pated effects of past actions together with past sensor read-
ings to form a model of the current state of the world.

In complex environments, a planning system may be faced
with incomplete information about both the planning opera-
tors and the state of the world. Previous research has inves-
tigated policies for selecting the best plan to execute, given
incomplete operator descriptions. This paper extends that
work to support interleaved planning and execution by tak-
ing into account past and current sensor readings.

1 Introduction

In complex environments, a planning system may be faced
with incomplete information about both the planning opera-
tors and the state of the world. While there has been substan-
tial research effort devoted to planning in the face of incom-
plete state information (e.d,evesque1996 Golden 1998 2 Background
Babaian & Schmolze000, there has been little researchon  This section describes the framework and representations
how to plan with incomplete planning operators, i.e., oper- developed byGarland & Lesh(2002; our extensions are
ators that may be missing preconditions and effects. Most described in Sectio8.
past work in this area has produced machine learning tech- We assume a traditional planning representation. We also
nigues for improving operator descriptions for future plan- assume that for any planning domain, there exists a set of
ning episodes (e.gGil, 1994 Wang 1995 Oates & Cohen complete and correct action descriptions, which we will
1996. Garland & Lesh(2002 reported on an initial explo- refer to asD;,,.. The set of action descriptiond8 avail-
ration into a complementary approach that focuses on select- able to a planner (or plan evaluator) will be a subset of the
ing the best plan to execute for the current goal. This paper information inD;,.,..
extends that work to address issues pertinent to continuous Each action description consists of a specification of its
planning and re-planning. preconditions and effects as sets of fluent literals. Thus,
Our work is partly motivated by the premise that complete each action description in D may include only a subset
action descriptions are sometimes impossible, and always of a’s preconditions and effects ;.. In future work,
difficult and time-consuming, to construct. For example, we will look to extend the representations and techniques in
action descriptions cannot be guaranteed to be complete this work to accommodate action descriptions that include
for domains that human experts cannot directly experience, conditional effects.
such as navigating on the surface of another planet. In A planis a sequence of actions that is intended to achieve
our approach, the domain experts who generate the action a goal when executed in an initial state. Executing an action
descriptions can provide additional information about the in a state in which all of its preconditions are true will pro-
completeness of the model, similar to statements used to duce a new state in which all of its effects are true and all
reason about incomplete states. For example, the expertsother fluents remain unchanged. Executing an action with
can indicate which actions have been completely described, any false preconditions has no anticipated effect on the state.
or that executing an action will not change the truth value of We defineachieves(D,S,g,p) as returning true iff the goal

a domain literal.

The advantage of the approach propose@Garland &
Lesh(2002 is to more often execute plans that achieve their
goals. For example, the techniques will sometimes prefer a
plan because of certain orderings of actions, or the substitu-
tion of an action by one with similar effects. Even in the case

g is true in the state that results from simulating the execu-
tion of planp from stateS assuming tha is correct and
complete.

D may be supplemented with statements about the com-
pleteness of action descriptions. Our approach follows the
use of locally closed-world (LCW) statements that are used
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Figure 1:Action order. These two plans differ only in the order of the actions, but they have different numbers of risks.

to overcome incomplete state information. In that setting, e PRECFALSE(«a;, ) :: a; has a preconditiom in D which

an LCW statement expresses limited knowledge of the state,

will be false when executed i, .., a,,, according taD.

such as that all the files that exist in a particular directory UNLISTEDEFFECT(a;,z) = the correctness of the plan
,T)

are known by a software agerGglden 1998 Babaian &

Schmolze2000. In our work, an LCW statement expresses

limited completeness of action descriptions.

LCW statements about actions i are defined
in terms of three predicates: DoesNotRelyOn,
DoesNotMakeTrue, and DoesNotMakeFalser The
statementDoesN ot M akeTrue(a,x) asserts that does

not have effect in D;,..., wherex is a literal. The statement
DoesNotMakeFalse(a,z) asserts that does not have

effect—z in Dyyye. The statemenbDoesNot RelyOn(a, x)
asserts that actiom does not have preconditianor —z in
Dyyye. We defineComplete Preconditions(a) as:

Vz.x ¢ preconditions(a) D DoesNotRelyOn(a, x)

2.1 Plan selection based on risk assessment

The aim of this work is to allow a planning system to make
better-informed decisions when deciding what plan to exe-

cute. More precisely, plan selection problens a 5-tuple

(9,C,S,D, L), whereg is a goal,C is a set of candidate

plans,S describes the current staf,is a potentially incom-

plete action model, and is a set of locally closed world
statements. The ideal solution to this problem is to find the
plan that will achieve its goal given the actual action descrip-

tions, i.e. to finde; € C so thatachieves(Dyyye, S, g, ¢;).

The quality of a plan selection algorithm can be measured
by how frequently it chooses a plan that actually achigves

when executed in the current state.

The next section presents a tractable algorithm for identi-
fying therisks of a plan, each of which represents a poten-
tial source of execution failure due to incompleteness of the

action modelGarland & Lesh(2002 defined the following
four types of risk for a plan composed of actians..., a,,.

e POSLCLOB(a4, x) i actiona; might have the effectz,

and there exists actiafy, for ¢ < j that has precondition

z in D and no action betweer anda; has effect: in D.

e PRECOPEN(q;) :: actiona; might have an unlisted pre-

condition that will not be true when,; is executed in
ag, .-y Ap,-

1The truth value of these predicates is directly specified by the

user; no inference is performed.

relies on an effect of a; thatis not listed inD, but might
be part ofD;,.... This means that is consistent with the
description ofu; in D, but there is no evidence to support
the hypothesis that is part of the description od; in
Dt’rue-

The first two types of risks correspond to identifying when
the plan relies on the fact thal is a good approximation to
Dye. In contrast, the latter two risks rely on the incom-
pleteness of the model in order to justify selecting plans that
would fail if D = Dy,... (Itis worth considering plans with
such risks in the case when none of the plans that achieve
is justified by the action descriptions in.)

Garland & Lesh(2002 presented a variety gflan selec-
tion policies Each policy takes two candidate plansand
c9, a@s input and returns true ¢ is preferred tac, based
on their risk sets. One such policy that will be used in the
examples of this paper is:

e RP,(c1,c2) = weighted(c;) < weighted(cz) where
weighted(c) returns a real number by adding together the
number of each type of risk multiplied by a pre-defined
weight for that risk type.

Risk assessment can be incorporated with other meth-
ods for preferring plans. For example, most planners have
an implicit preference for selecting the shortest plan that
achieves the goal. Se&érland & Lesh 2002 for a dis-
cussion of how to integrate risk assessment with other plan-
preference metrics.

Figure 1 shows a simple example designed to illustrate
how our risk analysis can prefer one ordering of plan actions
over another. In this figure, actions are surrounded by brack-
ets, with the action’s preconditions on the lower left, and the
action’s effects on the upper right.

Figurel shows a goal that can be achieved by executing
two actions,a; andas, in either order. If the action model
is complete then both plans will achieve their goal. Either
plan can fail, however, if the model is incomplete. Candi-
date planC; = [aj,as] could fail if a; has an effect-r
which clobbersa,’s effect. Similarly, planCs = [as, a1]
could fail if a; clobbersay’s effect. However(; could also
fail if a5 has effect-p which would clobber;’s known pre-
condition. Thus(Cs has more BsSCLOB risks thanC; and
RP,, would preferC to Cs.
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Figure 2:Operator choice. Cs is preferred becausé, has more possible clobberings.

Risks percentile Avg # Dev. Min# | Max# | Number

Run [20) t20 tso | tioo | Ofrisks | ofrisks | of risks | of risks | of plans
Action ordering | 87.6 | 86.2 | 83.1| 76.7 49.4 4.3 42.0 74.0 | 195,254
Operator choicel 85.4 | 83.0 | 79.8 | 74.7 72.0 7.8 55.0 115.0 | 341,469

Table 1: Impact of risk assessment on likelihood of successfully executing plans.

The preference fo€'; over C, is justified by imagining cessfully executing a plan drawn at random from different
what we could add t@ in order to create ®;,.,.. in which subsets of the set of generated plans. For the column labelled
the plans would fail. For any combination of additional con- ¢, the subset contains all plans whose number of risks are
ditions and effects that would cauék to fail, there is a cor- in the lowestkth percentile of distribution (e.gt5o includes
responding modification that would cauSe to fail. How- all plans with fewer risks than the median number of risks).
ever, in order to “match” the risk introduced by addingas The final five columns show general statistics about the dis-
an effect ofC,, we have to add both a precondition and an tribution of risks in the set of generated plans.
effect toC. Thus, in the absence of any LCW information, The results show what a significant impact risk assess-

C; seems the safer choice. On the other hand, if the given ment can have. For both runs, generating two plans and pre-

LCW eliminates the risks of plaf,, then it becomes the  ferring the one with fewer risks will, on average, increase

better plan to execute. the chance of success from roughly 75% to 80%. Generating
There is another class of problems that shows the bene- more candidates continues to provide benefits, as selecting a

fit of reasoning about the completeness of action descrip- plan fromt, increase the likelihood of success to over 85%.

tions. In these problems, the plans being compared contain

alternative actions with similar effects. The most obvious 3 Interleaved planning and execution

role of our techniques would be to prefer to use operators The above techniques are designed to choose from a set
that are completely modeled over ones that are not. In gen- of plans to execute fully, given a complete model of the
eral, though, the issues that arise in the choice of actions to jpitial state. We now describe how to extend these tech-
achieve the same goal (or subgoal) of a plan are the same asniques to make them suitable for continuous planning, i.e.,
those in choosing actions orderings. Fig@rshows two 3 planner that interleaves planning and execution and solves
plans that look equally correct if the prospect of missing more than one goal during its “life time”. Of course there
effects and preconditions is ignored, but one plan has more gre many extremely challenging problems involved in cre-
risks than the other and would be preferredité,,. ating a robust, continuous planning and execution system:
Table 1 reprints empirical results that measure how use- here we focus exclusively on how a continuous planner can
ful risk assessment can be for plan selection. For these take advantage of the kind of risk-analysis we have outlined
experiments, we implemented a modified version of the Fast above.
Forward planning systenHpffmann & Nebe] 200]) that As an illustrative example, suppose that a planning system
exploits augmented domain descriptions to find the risks in had complete information about the state of the world at time
each generated plan. Then we generated large sets of can+, but has since executed 1,000 acti@is..., a1oo iN Ser-
didate plans using), measured their risks, and determined vice of various goals. While it is the only actor in the world,
if they would succeed when executed using.,.. (seeGar- it lacks a complete model of its actions. It now has a new
land & Lesh(2002 for details). The first run measured the goal G. For simplicity, assume that there are two actions
impact of risk assessment on action ordering decisions; the andg which achieve. Each has one precondition, namely
second run measured the impact on operator choice deci- p, andp;.
sions. No LCW statements were addedxdor these exper- The execution historyay, ....,a1000 can influence the
iments. choice of whethety or 3 is more likely to achievé&r. Sup-
Tablel gives statistics showing how risks and success per- pose that the most recently executed action with effect
centages are related for the two experiments. Within each andpg was, respectivelypgg7 andagge. It might seem that
row, there are four columns that show the likelihood of suc- « is a wiser choice since fewer executed actions could have



clobbered,, thanpz. However, there are many other factors
to consider. The agent may know, for example, that actions
ages, ..., a1000 dO Not effectpg. Alternatively, supposeggs

has no preconditions but tha§y;'s precondition was estab-

FINDACTRISKS (a;,S, L) =
forall literalsz in PRECONDITIONSa;)
if UNKNOWNINSTATE(z, S)
R — RU { PRECUNKNOWN(a;, z) }

lished by actionugge, and so if actiongggs...ages Clobbered else

that precondition, theagy; may have not executed properly. R «— R U RISKSINSTATE(z, S)
(And, of coursegaggy’s preconditions may, in turn, also be if CompletePreconditions(a;) ¢ L
suspect.) R+ R U { PRECOPEN(a;) }

Additionally, sensor information should play a role in plan return R
selection. For example, ifgg7's preconditions were sensed
to be true at time 995, then the planner only needs to con- UPDATESTATE (a;, S, L) =
sider possible clobberings fromg; andaggg. S «COPYSTATE(S)

We now present techniques that perform the kind of rea- 12 <~FINDACTRISKS(a;, S, L)
soning needed to make such decisions. While the formu-  forall literalszin
lation in Garland & Lesh(2002 relied upon being given a if igTETF;UESLS(SC%)TE SR
complete model of the initial state, our current techniques else ifDoesNotMalg:ﬁa}se)(a- 2) ¢ L
assume initial state information is derived from sensor read- ADDRISKTOSTATE (z, S,POSZ;_CLOB(ai, )
ings. Another key aspect of our approach is that the entire  etyrn S
execution history does not need to be stored; all of the rele-

vant information is encoded in a compact representation.
P P FINDPLANRISKS (<a1,...,an>,9,S,L) =

In our formulation, sensing actions are not explicitly mod- fori=1ton
eled or planned for. Each atomin the state is associated S «—UPDATESTATE (ai, S, L)
with a virtual sensor(x) (there may not be a 1-1 map of RiskSet « ()
virtual to physical sensors — a single physical sensor may forall literalsz in g
detect multiple atoms or input from multiple physical sen- RiskSet — RiskSet U RISKSINSTATE(z, S)
sors may be “fused” to detect a single atorm)«) returns return RiskSet
either true, false, or unknown. An unknown value indi-
cates that no information abouts currently available. The Figure 3: Finding risks.
sensed state of the world at any time is simpl(y), for all
atomsz.

o . ] statementd..? For each actiom; in the plan,FINDPLAN -
The SyStem receives information from its sensors after the RISKS Computes the set of riskB associated with execut-
execution of an action, and after the occurrence of an exter- ing 4, usingFINDACTRISKS. The truth value of each pre-

nal event. An external eventcan be modeled like an action  conditionz of a; is checked and if it is unknown, then a

and is detected by an associated virtual seggey. Thus, PRECUNKNOWN(a;, ) is added toR; if z is true, then all
an external event in the execution history can be processed of the risks associated with in the current mental statg
exactly like an attempted action. An external event can have are added to. Also, PRECOPEN(a;) is added toR if a;'s
modeled efl‘_ects (e.g., rain makes a robot’s_gripper wet), can preconditions are not completely modelediin
have associated LCW knowledge (e.g., rain does not make ' The system’s initial mental model is simply the sensed
the robot’s internal circuits wet), and can have unmodeled state, with an empty risk set for each atom. Moving forward
effects. in time, the system updates the current mental m&dster
The agent maintains a mental state of the wafldhat attempting an action; using the procedurePDATESTATE.
differs from the sensed state of the world because of antic- Basically, each effect af; becomes associated with risk set
ipated, but not observed, changes to the state of the world. FINDACTRISKS(a;, S, L). In addition, if there are literals
For example, the mental state includes the effects of actions z that might be clobbered hy; then a RsSCLOB(a;, x) is
that the agent has executefl.also differs from the sensed  added to the risk set associated witim S. In addition to the
state of the world sincé keeps track of the risks associated changes to the risk sets madeURDATESTATE, the risk set
with each literalr that is true (this point is explained more  of any literalz is cleared whenever its corresponding sensor

fully below). returns true or false.
In order to generalize our techniques, we identify a new  FINDPLANRISKS is an improved version of the algorithm
type of risk: presented inGarland & Lesh 2002, which is inadequate

. for continuous plan selection. Since it makes one forward

e PRECUNKNOWN(a;,z) i a; has a precondition whose  pass over the acts in the plan, and computes the union of

value has never been sensed and is not an effect of the risk sets for the preconditions of each act, this algorithm
any observed external event, executed action, or planned requiresO(nmsS) time, wheren is the length of the planp

actiona; for j <. is the number of atoms i, ands is the size of the mental
The functionFINDPLAN RISKS, shown in Figure3, pro- 2The pseudo-code has been stream-lined for pedagogical pur-
duces the set of risks of a plan= a4, ...,a,, a goalg, poses; in general, it is necessary to check for hypothesized effects,

the current mental statg, and a set of locally closed world  false preconditions, and that the plan achieyésD is complete.
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Figure 4:Additional steps. The extra step il’s (andC'3) re-establisheg, but introduces other risks.

state at timet. S is bounded by the number of different  putationally demanding, a reasonable heuristic would be to
actions (including external events) that have occurred since re-plan whenever an observation differs from the expected
the world was last sensed completely. In the worst case, value.

S is bounded by the minimum of the number of possible

instantiated actions at 4 Example

This framework can account for the passage of time in a
limited manner (there has been no need to implement this
yet). This can be done by having a virtual senstr;) that
registers an “observed” external evepteveryt time units.

e; has no modeled effects, so our algorithm will identify dif-
ferent risk sets depending on exactly what LCW statements
are given fore;. One can use this mechanism to introduce a

Imagine that it is imperative to execute actiosoon, but an
equally important consideration is thatmust be success-
fully executed. The decision facing the system is whether or
not to attempt. immediately, or to first execute a subplan
designed to ensure that preconditions are true.

Figure4 shows a specific example of this general situation
. : . . in which the choice of which action to execute next depends
Essofnléaslégl\(’vﬁxgmtt}gﬂ% l;rg:lss;car each literal that may on the past Qxecution history and sensor readings. In this

' example, actioru has two preconditionp ands. Sensor

An area for future work is to reconcile the mental model readings taken three time units ago, i.e., at time, indi-
of the state with the current observed state. This is a difficult cated thatp was true. Since then, actions s, a_», and
inference problem, even in the absence of risk assessment.; , have been executed, which are known to estaklish
For example, imagine if an aathad an anticipated effect other preconditions, and are not known to clobbet Fig-
that was sensed to be false immediately before attempting yre 4 contains three plang<{, C», andCs) for executing
and true immediately after. Itis tempting to conclude that ,_|f risk analysis were ignored, plaf;, would be preferred
all of a’s known preconditions must have been true immedi- because’s preconditions are believed to be true. The prob-
ately before executing, but this is only valid if one assumes  |em with ¢, however, is that._3, a_», or a_; might have
thatae has no effects when any precondition is false. When clobbereda’s preconditionp. P|ansc2 and CB seek to re-

the system does have enough knowledge to inferdtisatc- establishp by alternative subplans, each of which is com-
cessfully executed, then each riskdis risk set is known posed of a single actiort’;, relies on actior to re-establish
to be spurious (i.e., it is not a possible source of execution j, while C5 uses actior.. The advantage of usingis that
failure), and can be safely removed from the risk sealbf jt has no known preconditions, whitehas preconditiony
literals. that was established at, and may have been clobbered by

Our goal is to produce a system which considers all of a_2 or a_;. The disadvantage of usingis that it might
these issues when choosing which action to execute. Ideally, have an unmodeled effect that clobbeis other precondi-
as will be shown by the example in the next section, plan tion, s, while actionc’s effects are completely known (this
selection should be repeated afégry observation since the s indicated by the box aroung and thus could not clobber
risk sets will change. This does not necessitate re-planning, s.
since some of the plans in the previous set of candidates will  Figure4 lists the risks associated with the three plans that
still be viable alternatives. If re-planning is not too com- would have been identified at tinies, before executing any



of the actions. The risks associated with the plans in the  Our techniques are complementary since our methods are

current state of the world (i.e., after executing,) depend designed to improve planning when there are incomplete
upon what has been observed sincg. action descriptions. However, a plan selection policy must
Each of the three candidate plans can appear to be the bestaddress the classic exploration / exploitation tradeoff for a
plan to execute depending on the sensed values &mdq. learning system that seeks to perform at the highest possible
If pis sensed to be true in the current state, cle@ilghould level over both the short run and the long run. One possi-
be preferred. In the absence of any sensor feedback afterble synergy between these two lines of research would be to
time¢_s, Cy will be preferred byRP,, if POSSCLOB risks develop techniques for automatically learning LCW or help-
are weighted more than half oRRCOPENrisks. Finally, if ing to elicit it from the domain experts.
p has not been sensed sinceg andg is sensed to be true Essentially, this work revisits the infamoframe problem

in the current state}’s appears to be the most likely planto  (McCarthy & Hayes1969, which motivated the traditional
succeed because its precondition is known to be true and it completeness assumptioriejter, 1991). Without the com-

cannot clobbes. pleteness assumptions, it is necessary for the effects of an
_ ) action description to include all facts whose truth value does
5 Discussion and related research not change as a result of executing it. The conceptual shift

This work describes one component of a complete system We make is to a willingness to execute plans with risk of fail-
for integrated planning and execution. Obviously, the sys- ure if the action model is incomplete. Our methods simply
tem will need to be equipped with a planner that can reason Prefer to execute plans with fewer risks.

efficiently in the face of incomplete state information. Also,

the system should improve the action descriptions when pos- 6 Conclusion

sible. : .
. This paper presented extensions3arland & Lesh(2002)

Much previous work has addressed the problem of ;g nnort continuous plan evaluation. The primary contri-
planning with incomplete state information and non- p, tion of this work is an improved algorithm that handles
deterministic or conditional effects (e.gKushmerick, handles sensor feedback and external events and identifies
Hanks, & Weld(1995; Smith & Weld (1998). This is 55 aqditional type of risk. As a result, the entire execution
similar to the problem of planning with incomplete action = pigiqry does not need to be stored: all of the relevant infor-
models_in the sense that both proplems are c_oncerned With mation is encoded in the system’s r,nental state of the world.
uncertainty about the effects of actions. One important dif- Thus, these techniques form a time- and space- efficient plan

Eerenced however, is thf\thn:{dete;_rnmlgnc pl_ar:_nmg fﬁ/ste[ns selection component in a complete system for integrated
emand even more elaborate action descriptions than tra- J - vine'an d execution,

ditional planners. For example, the action descriptions are
required to describe all the different possible sets of effects
that an action might have. In contrast, our techniques can References
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