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Abstract

We consider the use of low-dimensional linear subspace models to infer one high-dimensional
signal from another, for example, predicting an image sequence from a related image sequence.
In the memoryless case the subspaces are found by rank-constrained division, and inference is
an inexpensive sequence of projections. In the finite-memory case, the subspaces form a lin-
ear dynamical system that is identified via factorization, and inference is Kalman filtering. In
both cases we give novel closed-form solutions for all parameters, with optimality properties
for truncated subspaces. Our factorization is related to the subspace methods that revolution-
ized stochastic system identification methods in the last decade, but we offer tight finite-data
approximations and direct estimates of the system parameters without explicit computation of
the subspace. Applications are made to view-mapping and synthesis of video textures.
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Subspace mappings for image sequences

Matthew Brand
Mitsubishi Electric Research Labs, Cambridge, MA 02139 USA

Abstract of white gaussian noise iy and Z, finding M becomes a least-
squares problem. Due to the large size of images, the obvious so-

We consider the use of low-dimensional linear subspace modglfon z — My; M = Z/Y is underconstrained and computa-

to infer one high-dimensional signal from another, for examplggnally impractical O(npq) time, O(pq) space). This motivates a

predicting an image sequence from a related image sequencerelfuced-rank approach, to suppress measurement noise and improve

the memoryless case the subspaces are found by rank-constraig@gerical conditioning. For example, one might eigen-code the

division, and inference is an inexpensive sequence of projectiofifo datasets and estimate a mafkikthat maps between the eigen-

In the finite-memory case, the subspaces form a linear dynamig@dles. This is suboptimal because eigen-codes optimize within-set

system that is identified via factorization, and inference is Kalma&construction, not between-set reconstruction. This has been ap-

filtering. In both cases we give novel closed-form solutions for gloached as a (non-concave) gradient ascent probfgrdt if the

parameters, with optimality properties for truncated subspaces. @i#pping is to be invertible, there is an optimal, closed-form solution

factorization is related to the subspace meth@]d] that revolu- that maximizes thgoint probability of both datasets. This is ac-

tionized stochastic system identification methods in the last decagigmplished by eigen-coding |, then usingor-decompositions to

but we offer tight finite-data approximations and direct estimatesgftract orthogonal subspaces from the rar{ikcuncated) joint eigen-

the system parameters without explicit computation of the subspagsiing:

Applications are made to view-mapping and controlled synthesis of [Uy]SVT SVD; [Y] )
video textures. We demonstrate both analytically and empirically Uz z
that our factorizations provide more accurate reconstructions of QvRy R Uy o)
estimation data and predictions of held-out test-data. OR

QzRz «— Uz 3)
1 Introduction F — Rz/Ry @

A common problem in film and video post-production is thgjere thegr-decompositions are motivated by the fact thiat, Uy

generation of natural-looking texture sequences for texture'mappgﬂgnot Orthogonall The Opt|ma| ran»k.approximation th/Y is
dynamic objects. We consider three scenarios for generating such

textures: 1] High-dimensional input, for example, mapping a scene M = QzFQy =U,U,' =USV'VS'U,L. ¢

W'th noprlgld motion t(,) ano.ther \(lewpomt (without geomet,“%ince thesvD in equationl gives the optimal variance-preserving
information). 2] Low-dimensional input, for example, changln%nk‘r approximation ofY and Z together, and equation4

the texture map of a face as a fun_ction of gegmetry to Si"_‘“'%‘iee exact, equatiorb is the optimal invertible mapping, in
BRDF changes that accompany skin deformations. 3] No INPWS, sense that minimizes both IZ — Q-FQLY|r and

at all, for example, synthesizing video of dynamic scenes — QyF 'QLZ||r. For asymmetric error, one scal

hard-to-model phenomena such as turbulence. We treat thes '%Ir to the svp and inversely scale¥ after. Q and Qy are

a_sllnear S|gna_l-_m_app|ng problems with gaussian noise, fo_r whi thogonal subspaces AfandY, respectively, and upper-triangular
simple probabilistic models are remarkably effective but optimal (gr maps from projections onto one subspace to projections onto

numerically tractable) parameter estimation is still an open prOblelWe other. Therefore the actual mapping is computationally inex-

. .. i + 0] if d ti :
2 Rank-constrained division Eefgi(%({ép;;)f 1)) < Olpa)) ifone orders operations

Consider two datasef¥,x» andZ,xn that are high-dimensional  application to view mapping: We recorded a rotating and

with n < min(p, ¢). For example, each columne Y andz € Z  clenching hand from an ultrawide-baseline stereo camera, obtaining
could be a vectorized image, with and g being O(10°*). We w0 short synchronized sequences of the hand viewed from front
would like to estimate an invertible linear mappiMj from one im-
age set to the other, maximizingz|y) = N (z|My, MZyMT) Istrictly speaking,F is merely pseudo-invertible iff rafkJy) < r

n _ M~ v. M-S M~T). Under th motion ©" ranKUz) < r. We assume rang])zmax(rank(Y),rank(Z)) and
andp(y|z) /\/(y\ Y y )- Under the assumptio min(rank(Y),rank())> r. Under such assumptions, it can be shown that

for high dimensional data, the pathological case has vanishing probability.
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Figure 1:Reconstructing the front view of an articulating hand from a side view, using held-out test image-pairs. All images have been
identically contrast-enhanced to highlight the handT Row. Test-set source images, side viewwI2ROwW: Reconstructions made via
least-squares mapping between dual 20-dimensional eigen-codings of the source and target training image sets can be @rte blurry.
rRow: Predictions made by 20-dimensional rank-constrained divisionare sharp and virtually indistinguishable from the best possible
reconstruction using using the entire training set{4&ow). LAST ROW. Test-set target images.

and side. The goal is to reconstruct one view (the target) from BereX = X 1.r—1) = [x(1),x(2),...x(T — 1)] andX =
other (the source). The sequences were split evenly into train ahd2:r) = [%(2),%x(3),...,x(T)]. We will use the under/overline
test image sets, each containing 200 image-pairs. We compdi@gvention in the paper to denote “before” and “after” data, or equiv-
a 20-dimensional mapping obtained via rank-constrained divisiigntly, “past” and “future.” Our goal is to solve for the system ma-
with 1] a least-squares mapping between 20-dimensional eigfic A, output matrixC and noise matrice& andI" given a record
codings of the training-set source and target images, and 2] @he@UtputsY. It is assumed that the outputs exhibit wide-sense
best possible reconstruction of each test-set target image as a lifijonarity. When an input signal is given, we will also solve
combination of all the training-set target images (which gives th input matrixB and feed-through matriP. It is assumed that
lowest reconstruction error one can attain from any linear mapp#@KE) < 7', otherwise there is no need for hidden stitesince
derived from the training set). Figuré shows visual results. Y could be reconstructed perfectly froih = DE using equations
Figure 2LEFT makes a numerical comparison of the reconstructidr to solve forD. Preferably, rankl) < 7.

errors, confirming that the rank-constrained division makes muchThere is a large literature of subspace methods fxs system
more accurate predictions than a mapping between eigen-codedd@ptification surveyed recently irl]; these have recently been

fact its mean-squared error is quite close to the lower bound. ~ @dapted to high-dimensional output-only problemsah Here we
introduce a new but related solution for both inputs and outputs,

3 Linear Dynamical Systems advancmg r'eplacmg the prior art's wgak .asymptotlclpropertles to
) . stronger finite-data guarantees of optimality. An additional appeal

When the target system has some memory (internal dynamics) Eﬁatr)ur approach is that our factorization (equatidr$s23 below)

must be accounted for in the mapping or prediction, the appropriﬁ(tj% a clear and simple derivation

linear model is a time-invariant linear dynamical systems), also \yjithout loss of generality, we assume that the data is translated

known as a auto-regressive moving averageMa) or a Kalman e origin: (y(¢)), = 0. We combine equatiorand9 to exploit

filter (kF). An LDs is defined by the difference equations the problem’s temporal shift-invariance, obtaining

t+1 Ax(t Be(t t 6 — _
" +(t; - cxét; : Deit; ilﬁ% o Y = CAXT CBR+ DB a0
y — OCx e 7 . P B —
where the noise variables are normally distributed ~as ~ = CAC'(Y - DE) + CBE + DE )
N(0,%,) andyp ~ N(0,3). In matrix form: wheret denotes pseudo-inverse. Rearranging into matrices,
X =AX+BE+T ®) Y Y
I -D||%|=[cAac’ ¢cB-ACD)]||=]|.
Y = CX +DE + ¥ © [ ][E} [ ( )][E} 2



We decouple the constraints @k, C from those onB, D by pro- form via the eigen-decompositiofZE*}/{ZE*} = C'AC'" .
jecting the problem onto the subspace orthogonal to that of the liowever, the eigen-solution has some undesirable properties: The
puts. To do so, we QR-decompo&e:R QR £ into orthogo- estimatedLDS is typical_ly complex-valued and unbalanced in the
] o QR T sense of Moorej]: estimated parameters of unbalanced systems
nal Qg and upper-triangulaR;, (similarly QeRe < E ) and e sensitive to small perturbations in the data. We seekpan
post-multiply both sides of equatid®by E* = (I-QgQg)(I— that is real-valued, balanced, and has #ve's optimal variance-
QEQE) to obtain preserving property for any truncation of its dimensionality.
—— n We now develop a well-behaved factorization by setting up a
(YE ) = CAC' (XE ) (13 pair of orthogonal Procrustes relating the subspaces of “before” and
YE* is the component of the output signal that cannot be directfter” observations.
regressed onto the input signal, and therefore must be explained in . )
terms of hidden state. By making this our objective function, we ael ~ Factorization
essentially optimizing the fidelity of the model w.r.t. frame-to-fram#/e begin with thegr-decompositionQR. R {ZE*}" and sim-
dynamics—the ability of the system to produce realistic output %%frly QR KSR {ZE*}7 calculated above. Each column € is
quences wittor withoutinputs. This is good for synthesizing videq, ime_series of the normalized amplitude of one of the signal's or-
textures but not necessarily optimal for process control, where thg{gyonal modes of variation. This essentially decomposes the signal
is more of an emphasis on modeling the time-delayed response pfg 5 set of oscillators whose couplings determine the dynamics of
system 10 Inputs. o _ the signal (see figur8). Our goal is to model these couplings by
We will concentrate on the case of high-dimensional data, ef«i)nding a system matri that relates the pa€) and the futureQ.

when the right and left data matrices ha@ws andr’ —1 columns, The main complication is tha® andQ are not mutually consistent
with d > T'. In such cases one uses a lossless dimensionality reduc- P y

tion by computing an orthogonal badis 1 (T — 1 because the models of the past and future because they decompose the signal

data is zero-mean) and an encodlig= LY. In particular, we with reg_ar_d t_o |ncqns_|sterg_;£ R. .
assume thakL are the eigenvectors of the data’s covariance matri To minimize thls_lnconS|stency, lal be an orthogonal matrix
Eﬁ’at minimizes||J 'R — JR||» (Frobenius norm). Since rota-

and the columns oF are the “eigen-codes” of each sample, wit . ; ;
g P lons preserve the Frobenius nord? is the solution to the or-

the rows on sorted by decreasing varianckg.could be computed thogonal Procrustes probledi— arg miny [|J(JTR — JR)||r =
as the left singular vectors of the data, adould be computed as R P ) . '
A5 ming IR — J°R||r, obtainable visvD:

the product of the singular values and the right singular vectors.
low-dimensional datd, =TI andZ =Y. T SVD

D
E' need not be explicitly computed to obtd&E"- andZE™. UsSsVy == RR . (16
Instead, the projections of equatidB are efficiently calculated in J — (UsVy) n
1 T — —
Qr-decomposed form &8E~ = (Q[R, M]) * from We useJ to define revisedyr-decompositions(QJ)(J'R) =
T {ZE'}T, (QIT)JR) = {ZE"}T. DefneW = (QJ7),

Re M., M;, M,

Qe Qg Q] | 0 Ry M. M. orR W = (QJ),R; = (JTR+JR)/2,andMy = (JTM+JIM)/2.

0 0 R M W andW are subspaces of the past and future thanzagimally
= = consistentin that they give minimum Frobenius-error reconstruc-
and similarlyZE" = (Q[R, M]) ". In the case where r.h.s. equations of the data with regard B.;. (Perfect consistency is impossi-
tion 14 has more columns than rows] and M will be non-empty ble unless the data spans an integral cycle of a periodic signal.)
matrices containing Componentiz'EL andZE™ that are linearly  To factor A and C we set up an orthogonal Procrustes problem
dependent on the columns B, R 2. This gives a first-order fac- seeking the rotation that takes the subspace of the past into the sub-
torization; higher-order solutions are available by putting extra roggace of the future. This begins with thep
containingE, E, Z etc., into equatioi4. T _ B —T
We now make a change of variable to work in the eigen-code&JSVT W W= (QJ)T(QJT) T=3'Q QJTv

, o (14)

IN = =

; ; ; _ (18)
data space, making the constraint equation wherer is the order of the system and the matrid®sandW have
{ZEL} = C’AC/T{ZEL}, @s) been truncated to the firgtcolumns (corresponding to thedom-

H P N L h inant eigenmodes in the original data). This is partly motivated as
whereC’ = L C and we bracZE"} to indicate that we are ;5o g nnression, and partly motivated by the fact that the amount
onlyl/voTrklng with the nonredundant colum@R C QIR, M] = information in A will be determined by the subspace angle be-
(ZE™) ' . Equationl5 has an obvious solution witA in diagonal tweenW and W. If they are square, the subspace angle is zero,
2 the no-inputs case, there are more efficient ways to calc@lasmd M€@NING that the low-variance components of the signal have ob-

Q, including treatingZ as aQr decomposition and down-dating it to removescured the relationship between past and future.
the first or last column while preserving row-orthogonality (s&e8[12.5]). Now we expand thevD into the desired factorization:




(ZEY}/{ZE} =R Q' QR (19) insensitive to small data perturbatidnhe system residual (before

_ ET(JJT)GTQ(JTJ)E_T 20) considering inputs), ] ]
- X _ _ T3T/~ e ™ _ ~ _ T
—R'JUSVHIR T oy G-X-AX=VSVIIT@Q -Q QQ")=X(1-QQ")

(33)
— ﬁTJ(V\/F\/gVT)(U\/g\/gVT)JE—(EZ) is the_com_ponent of the future th{;\t is orthogonal to the past.
For high-dimensional data, equatiod3 shows that for any

~RjVVSTVSVIUVSVSV'R; ' (9 dimensionality-reduction of the system by truncating column@ pf
c A ot the error associated with system matAxis the projection of the
Equation23 becomes an equality & — oo or for finite T" if the state onto the subspace of the discarded columns. Since the retained
past and future subspaces are perfectly consistent in the senseaeamns are almost exactly the dominant eigenvectors of the origi-
scribed above; otherwise the approximation has minimal Frobennas data (with equality at > d), the optimal truncation property of
error. Similarly, equatior22 requiresr = T — 1 for equality, but the originalsvD carries through to our parameter estimates.
preserves maximal variance for< k. The (eigen-coded) output residual (before considering inputs),
A has interesting structurd/ " U is the solution to the orthogo- 1 I TAT _ TH\T AT
nal Procrustes problem optimally rotatiR§ into W, while diag'S) {ZE"}-CX =(JR-Rs) Q =(JR-J R) Q /2, 39
are the canonical correlations—cosines of the angles between cagessentially the residual (if any) aftRr is rotated intdR..
sponding columns in the past and future subspaces. Substituting the system matrik and output matrixC’ into equa-
The paramete€’ only gives the component of the output that iions8-9 gives the output residual (before considering inputs)
orthogonal to the inputs. To compute the full output matrix, we must

recover the (redundant) component<othat were discarded in the H = (Y - CX) - (35)
original orthogonal projection of equatidm = (Y — L[Ry, MJ}T[EI’lthW(:,t:T)]L 1<t<T, (36)
C =L[Ry, MJ}TVS‘I/Q. (24) where we uséY instead ofZ to recover information that was lost

in the projection to the subspace orthogonal to inflitOne may
use the system residu@! and the output residul to estimate the
input and feed-through matrices

The input parameters can then be solved from equdtion

3.2 Properties

Although not strictly necessary, the hidden st&tés easy to calcu- B=(X- AK)ET = GE' (37)
Itgte,zegld it affords an opportunity to study the factorization (equa- D= (Y- CX)ET —HE' 38)
ion 23):
; o The residuals (after considering inputs) are
X =C'"{ZE'} = VSV'IQ 25) _ _ -
JEVT VST TG 0dTI0T I'=X-AX-BE=(X-AX)(I-E'E)=G(I-QeQg), (9
=VSV (VS 'U )J J )J 26
( N 77Q QI )IQ @ ¥ =Y-CX-DE=H(I-E'E). (40)
_JJe=1iriTTToy T
=VSTU 1 Q QQ @) which confirms that the noise is orthogonal to the inputs. Fur-
= \/s—lUTWTQQT (28) thermore, the state noise is the component of the future that is
S —T orthogonal to both the past and the inputs. Finally, the noise covari-
X=C'{ZE"} =VsV'I'Q 29 ances ar&, = cov(I') =TT /T, £, = cov(¥) = WU ' /T.

T 11TV 1T o1 T\17T0O -
= VSVI(VSTU)('Q QI )T Qo) 3.3 Relation to subspace methods
= \/FUTJTGTQJTJTGT (31)  Although our factorization is wholly novel, our approach shares two
T T g s T core tactics of subspace approaches: Comparison of past and future
=VSTU W WwW (32) subspaces, and use of orthogonal projections to separate state from
Since we have two overlapping estimates of the Satee sefX =  inputs. In most other regards our approach is distinct and produces
[X(.1.4y» X(.po] foranyl < ¢ < T. In what follows it is con-  different numerical results. S
venient to set = 7. In the limit of infinite dataX andX become "rh.ls |sllargely due to thd-step:. In the limit of infinite samples
perfectly consistentinr—co [ X, 5.7y — X 1wyl = 0). In of finite-dimensional data, the residual
practice we found that the subspace angle between the two estimates lim |R—R||=0 (41)
is vanishingly small, due largely tb. T/d—oo
Using above the expressions f&r, we find the factorization hasand thereforéimyz, .. J = I. A wide variety of subspace system
the following properties: The scatters of the past and future stigentification methods catalogued i8] falso depend on orthogonal

. =T . S
estimatesXX' = XX =S, are diagonal and equal, indicating Sstrictly speaking, the system is only approximately balanced for finite
that the estimatedps is balancedin the sense ofd] and therefore T, becaus& X T ~ XX T has (very small) nonzero off-diagonal elements.




E. The eigen-coded inputs do not contain enough information for a
quality regression, so thebs must propagate state through time to

g N make up for the missing information. We ran the estimateslwith

g # the test source sequence as input, and found that its outputs recon-
< struct the test target sequence even better than the 20-dimensional
rank-constrained division. See figuPeerT. This shows that the

Predicting hand images from a side view L0S preciction ero (gass over)

. “learned” model of the hand’s dynamics is successfully providing
g ) the information not in the inputs.
° T T — Industrial process prediction: To demonstrate the accuracy of
oo bowom edge e chepmssog 0 Pduas 0 our factorization in a lower-dimensional setting, we obtained some

datasets used as benchmarks in the system identification community.

Figure 2:L EFT: Reconstruction error of a test target sequence frofe graph below shows prediction error for measurements taken
a test source sequence using 1) a least-squares mapping bet

eigen-codings of source and target images; 2) a rank-constraineé@?{]an ana!og |ndust_r|al process (a glass oven). The input/output
vision; and 3) arLps estimated from a target image sequence aH& asets, train/test splits, model orders, and error megsure werg taken
a very low-dimensional eigen-coding of the source sequence. Tign Overschee & deMoord], and models were estimated using
training (estimation) and test sequences are disjoint. The lower e@lge factorization and O&dM’s “industrial-strengtisubid imple-

of the graph is the lower bound on how well test images can be neentation. The goal is to predict the next output given a history of
constructed from linear combinations of training setimagesHR:  inputs. Figure2rIGHT shows that our factorization enjoys a clear
Predicting the output of a glass oven from a history of its inputs. agyantage. Similar results were obtained from all datasets. It is not
clear that this translates into improvements in proaesgrol, but

representations of the past and future, but they make the assumgtiemext section shows that it certainly does translate into improve-
that equatiort1 forms a reasonable approximation for finite-data, &€nts in processimulation
least whent >> d. This approximation can be quite good for long Temporal texture synthesis An LDS is a remarkably good
runs of low-dimensional data, but it can also be quite poor wherpdel for image sequences in which intensity variations are due to
data is limited, especially in our applications, where d. In our local changes in the BRDF and/or small motions. This covers many
factorization, the matrid¥ recovers information that overlooked bynatural phenomena including turbulently flowing water, rain, smoke,
subspace methods. fire, wind-swayed vegetation. These are scenes for which motion-
Because previous subspace methods have not recomRilead based video encoders such as MPEG typically offer little or no com-
R, they typically yield two equally valid estimates f6r that differ pression. The physics of these scenes—coupled harmonic oscilla-
by an affine transform cR — R. Choosing either one results in dors that are lightly forced (typically by air currents) and friction-

reconstruction residual and a biasAn Plugging the inequality =~ damped—is very well matched to thes model (e.g., see figui®.
Due to this goodness of fit, ams will offer good synthesis of novel

e _
[Rs —JR[[r <[J R—-JR|r <|R-R|r 42) sequences. One of the first demonstrations of the applicability of

into equation34 shows that our method will yield smaller state@n LDS t0 temporal texture synthesis was given by Szummgr [
to-frame (output) residual§{ZE*} — C'X|[r than previous The idea of whole-frame temporal texture synthesis was recently ex-

subspace methods. It is not necessarily the case that the _statB_lth-ed to good effect by Soatto et &]{who introduced a no-inputs
state residual (equatic88) is also reduced: By usind to rotateR [rst-Order approximation t,o the Overschee methodn [
andR into alignment,X becomes a more faithful representation e obtained Szummer's test sequences and took several new se-

of the variations in the data, increasing the amount of variarfdéences of flowing rivers, swaying trees, steaming coffee, etc., with
that A must “explain.” However, the inequality in equatiete @ hand-held camcorder. A 250-frame sequence of 320x240 images

can be used to show that our method has lower frame-to-fraf@ Pe analyzed in roughly 40 seconds on a vintage 1998 Alpha
residuals|{ZE*} — CAC''{ZE*}||r (from equation23) and CPU. We estimated an optimal dimensionalitfor each sequence’s
previous-state-to-frame residudl§ZE*} — CAX||r, which are €igen-coding fromalower bound on the mutual information between
the important residuals to minimize for filtering and predictioRast and future (a paper on this is in preparation, however the results
applications. below do not depend on any value k. The dimensionality- of
the correspondingbs was set to capture 95% of the mutual infor-

. . mation. EachLDs was estimated using our factorization, a com-
4 AppllC&tIOﬂS mercially available state-of-the-art implementation of the asymptot-
Controlled image synthesis We revisited the problem of view- ically optimal Overschee & de Moor (O&dM) subspace metheid [
mapping the hand, this time using an input/outpots. Using and the Doretto & Soatto (DS) factorizatia®] Lising code available
the same test/train split as above, we estimated a 10-dimensiendheir website. For each sequence, we found that all three meth-
LDsS, taking the training target sequence as outpvit@nd a 10- ods yield different parameter estimates, with substantial differences
dimensional eigen-coding of the training source sequence as inpuitd, C, and the state covariandg reflecting different inferences




surements of reconstruction error on held-out subsequences show a
similar advantage at the < 0.08 level.

Following the example off], a random walk in ourLDs state
spaces yields high-quality synthetic videos, producing sequences of
several times the length of the original video with high realism but
containing none of the original franfes

5 Summary

We have considered here the problem of predicting an image from a
previous or a related image using linear subspaces. We gave novel
factorizations for a static mapping, which is a rank-constrained
matrix division, and for a mapping in which the system has hidden

Figure 3: The coding of a river image sequence shows how it _ate, which is system identification Of_ am)s a.k.a'. Ka_lman

decomposed into coupled oscillations of the basis images. Each'itfr- All results are closed-form and inherit tr#/D's optimal

age row depicts a column i@. Time flows to the right; the low- reconstruction properties when the matrices used to effect the
frequency rows at top explain most of the variance in the sequerid@pping have reduced dimension. To demonstrate the applicability
Although each basis has a resonant frequency, the phase is affectetthese solutions to video synthesis, we explored the use of
by couplings between modes, visible as 2D textures. This parfignk-constrained division to do view-mappings and the use of an
ular sequence is clearly not wide-sense stationary—the deepenipg to synthesize realistic temporal video texture in response to

ripples on the right-hand side show how a gust of wind shifts g, imensional control signals or via random walks. As predicted
distribution of energy into the higher frequencies—yet the estimate ) ) - o
LDS generates synthetic river sequences with high fidelity analytically and confirmed numerically, the novel factorization

exhibits more accurate reconstructions of estimation data and
predictions of held-out test-data.

Table 1: RMS frame-to-frame errors fo.8s factorizations. References

sequence 0&dM[9] | DS[2] | here |
blown trees fails 140.164| 93.140 | [1] B. de Moor, P. van Overschee, and W. Favoreshplied and
blown trees, truncated 83.193 72512 | 71.366 Computational Control, Signals and Circuitshapter Numeri-
river fails 118.877| 54.118 cal algorithms for subspace state space system identification —
river, truncated 127.823 | 25219 | 24.228 An Overview’, pages 247-311. Birkhaus_er Books, 1999_. _
- - [2] S. Doretto and S. Soatto. Dynamic data factorization.
_ fire fails | 403.757| 188.552 Technical Report TR2001-0001, UCLA Computer Science,
fire, truncated 468.330 | 175.702| 170.446 http://www.vision.cs.ucla.edu/papers/TR2000-0001.pdf, 2001.
hand fails 162.384| 15.408 | [3] G. Golub and A. van LoanMatrix Computations Johns Hop-
hand, truncated 22.235 13.864 | 12.163 kins U. Press, 1996.
[4] F. D. la Torres and M. Black. Dynamic coupled component
about the hidden statX. As predicted by equatiod?2, our fac- analysis. InProc., Computer Vision and Pattern Recognition

torization consistently yielded the smallest residuals. The table be- Volume Il, pages 643-649, 2001.

low compares the frame-to-frame residuals (vis-a-vis equatB)n [5] B. Moore. Principal component analysis in_Iinear systems: Con-
for some sequences randomly taken from our collection. All algo- trollability, observability, and model reductionEEE Transac-
rithms were given the same data and settingsfandr. (In order tions on Automatic Contro6(1):17-32, 1981.
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essentially removing high-frequency components of the data.) [7] M. Szummer and R. W. Picard. Temporal texture modeling. In

. L IEEE International Conference on Image Processih@g6.
_For all sequences and all choicesrond k, our factorization é8] P. van Overschee and B. de Moor. Subspace algorithms for the
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stochastic identification problemAutomatica 29(3):649-660,
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