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Abstract
We consider the use of low-dimensional linear subspace models
to infer one high-dimensional signal from another, for example,
predicting an image sequence from a related image sequence. In
the memoryless case the subspaces are found by rank-constrained
division, and inference is an inexpensive sequence of projections.
In the finite-memory case, the subspaces form a linear dynamical
system that is identified via factorization, and inference is Kalman
filtering. In both cases we give novel closed-form solutions for all
parameters, with optimality properties for truncated subspaces. Our
factorization is related to the subspace methods [8, 1] that revolu-
tionized stochastic system identification methods in the last decade,
but we offer tight finite-data approximations and direct estimates of
the system parameters without explicit computation of the subspace.
Applications are made to view-mapping and controlled synthesis of
video textures. We demonstrate both analytically and empirically
that our factorizations provide more accurate reconstructions of
estimation data and predictions of held-out test-data.

1 Introduction
A common problem in film and video post-production is the
generation of natural-looking texture sequences for texture-mapping
dynamic objects. We consider three scenarios for generating such
textures: 1] High-dimensional input, for example, mapping a scene
with nonrigid motion to another viewpoint (without geometric
information). 2] Low-dimensional input, for example, changing
the texture map of a face as a function of geometry to simulate
BRDF changes that accompany skin deformations. 3] No inputs
at all, for example, synthesizing video of dynamic scenes of
hard-to-model phenomena such as turbulence. We treat these all
as linear signal-mapping problems with gaussian noise, for which
simple probabilistic models are remarkably effective but optimal (or
numerically tractable) parameter estimation is still an open problem.

2 Rank-constrained division
Consider two datasetsYp×n andZq×n that are high-dimensional
with n � min(p, q). For example, each columny ∈ Y andz ∈ Z
could be a vectorized image, withp and q beingO(105+). We
would like to estimate an invertible linear mappingM from one im-
age set to the other, maximizingp(z|y) = N (z|My,MΣyM>)
andp(y|z) = N (y|M−1y,M−1ΣyM−>). Under the assumption

of white gaussian noise inY andZ, finding M becomes a least-
squares problem. Due to the large size of images, the obvious so-
lution z ← My; M = Z/Y is underconstrained and computa-
tionally impractical (O(npq) time,O(pq) space). This motivates a
reduced-rank approach, to suppress measurement noise and improve
numerical conditioning. For example, one might eigen-code the
two datasets and estimate a matrixM that maps between the eigen-
codes. This is suboptimal because eigen-codes optimize within-set
reconstruction, not between-set reconstruction. This has been ap-
proached as a (non-concave) gradient ascent problem [4], but if the
mapping is to be invertible, there is an optimal, closed-form solution
that maximizes thejoint probability of both datasets. This is ac-
complished by eigen-coding[YZ ], then usingQR-decompositions to
extract orthogonal subspaces from the rank-r (truncated) joint eigen-
coding:

[UYUZ
]SV>

SVDr←− [YZ ] (1)

QY RY
QR←− UY (2)

QZRZ
QR←− UZ (3)

F ← RZ/RY (4)

Here theQR-decompositions are motivated by the fact thatUZ , UY

arenot orthogonal. The optimal rank-r approximation toZ/Y is

M = QZFQ>Y = UZU−1
Y = UZSV>VS−1U−1

Y . (5)

Since theSVD in equation1 gives the optimal variance-preserving
rank-r approximation ofY and Z together, and equations2-4
are exact, equation5 is the optimal invertible1 mapping, in
the sense thatM minimizes both ||Z − QZFQ>Y Y||F and
||Y − QY F−1Q>ZZ||F . For asymmetric error, one scalesZ
prior to the SVD and inversely scalesF after. QZ and QY are
orthogonal subspaces ofZ andY, respectively, and upper-triangular
F maps from projections onto one subspace to projections onto
the other. Therefore the actual mapping is computationally inex-
pensive (O(r(p + q + r)) � O(pq)) if one orders operations:
z← QZ(F(Q>Y y)).

Application to view mapping: We recorded a rotating and
clenching hand from an ultrawide-baseline stereo camera, obtaining
two short synchronized sequences of the hand viewed from front

1Strictly speaking,F is merely pseudo-invertible iff rank(UY ) < r
or rank(UZ) < r. We assume rank([YZ ])≥max(rank(Y),rank(Z)) and
min(rank(Y),rank(Z))≥ r. Under such assumptions, it can be shown that
for high dimensional data, the pathological case has vanishing probability.
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Figure 1:Reconstructing the front view of an articulating hand from a side view, using held-out test image-pairs. All images have been
identically contrast-enhanced to highlight the hand. 1ST ROW: Test-set source images, side view. 2ND ROW: Reconstructions made via
least-squares mapping between dual 20-dimensional eigen-codings of the source and target training image sets can be quite blurry.3RD
ROW: Predictions made by a20-dimensional rank-constrained divisionare sharp and virtually indistinguishable from the best possible
reconstruction using using the entire training set (4TH ROW). LAST ROW: Test-set target images.

and side. The goal is to reconstruct one view (the target) from the
other (the source). The sequences were split evenly into train and
test image sets, each containing 200 image-pairs. We compared
a 20-dimensional mapping obtained via rank-constrained division
with 1] a least-squares mapping between 20-dimensional eigen-
codings of the training-set source and target images, and 2] the
best possible reconstruction of each test-set target image as a linear
combination of all the training-set target images (which gives the
lowest reconstruction error one can attain from any linear mapping
derived from the training set). Figure1 shows visual results.
Figure2LEFT makes a numerical comparison of the reconstruction
errors, confirming that the rank-constrained division makes much
more accurate predictions than a mapping between eigen-codes. In
fact its mean-squared error is quite close to the lower bound.

3 Linear Dynamical Systems
When the target system has some memory (internal dynamics) that
must be accounted for in the mapping or prediction, the appropriate
linear model is a time-invariant linear dynamical system (LDS), also
known as a auto-regressive moving average (ARMA ) or a Kalman
filter (KF). An LDS is defined by the difference equations

x(t+ 1) ← Ax(t) + Be(t) + γ(t) (6)

y(t) ← Cx(t) + De(t) + ψ(t) (7)

where the noise variables are normally distributed asγ ∼
N (0,Σγ) andψ ∼ N (0,Σψ). In matrix form:

X = AX + BE + Γ (8)

Y = CX + DE + Ψ (9)

whereX
.
= X(:,1:T−1) = [x(1),x(2), ...,x(T − 1)] and X

.
=

X(:,2:T ) = [x(2),x(3), ...,x(T )]. We will use the under/overline
convention in the paper to denote “before” and “after” data, or equiv-
alently, “past” and “future.” Our goal is to solve for the system ma-
trix A, output matrixC and noise matricesΨ andΓ given a record
of outputsY. It is assumed that the outputs exhibit wide-sense
stationarity. When an input signalE is given, we will also solve
for input matrixB and feed-through matrixD. It is assumed that
rank(E) < T , otherwise there is no need for hidden stateX since
Y could be reconstructed perfectly fromY = DE using equations
1–5 to solve forD. Preferably, rank(E)� T .

There is a large literature of subspace methods forLDS system
identification surveyed recently in [1]; these have recently been
adapted to high-dimensional output-only problems in [6]. Here we
introduce a new but related solution for both inputs and outputs,
advancing replacing the prior art’s weak asymptotic properties to
stronger finite-data guarantees of optimality. An additional appeal
of our approach is that our factorization (equations19-23 below)
has a clear and simple derivation.

Without loss of generality, we assume that the data is translated
to the origin:〈y(t)〉t = 0. We combine equations8 and9 to exploit
the problem’s temporal shift-invariance, obtaining

Y = CAX + CBE + DE (10)

= CAC†(Y −DE) + CBE + DE (11)

where† denotes pseudo-inverse. Rearranging into matrices,[
I −D

] [Y

E

]
=
[
CAC† C(B−AC†D)

] [Y
E

]
. (12)



We decouple the constraints onA,C from those onB,D by pro-
jecting the problem onto the subspace orthogonal to that of the in-

puts. To do so, we QR-decomposeQ
E
R

E

QR←− E
>

into orthogo-

nal Q
E

and upper-triangularR
E

, (similarly QERE
QR←− E>) and

post-multiply both sides of equation12by E⊥
.
= (I−Q

E
Q>

E
)(I−

QEQ>E) to obtain (
YE⊥

)
= CAC†

(
YE⊥

)
(13)

YE⊥ is the component of the output signal that cannot be directly
regressed onto the input signal, and therefore must be explained in
terms of hidden state. By making this our objective function, we are
essentially optimizing the fidelity of the model w.r.t. frame-to-frame
dynamics—the ability of the system to produce realistic output se-
quences withor without inputs. This is good for synthesizing video
textures but not necessarily optimal for process control, where there
is more of an emphasis on modeling the time-delayed response of a
system to inputs.

We will concentrate on the case of high-dimensional data, e.g.,
when the right and left data matrices haved rows andT−1 columns,
with d� T . In such cases one uses a lossless dimensionality reduc-
tion by computing an orthogonal basisLd×T−1 (T − 1 because the
data is zero-mean) and an encodingZ

.
= L>Y. In particular, we

assume thatL are the eigenvectors of the data’s covariance matrix,
and the columns ofZ are the “eigen-codes” of each sample, with
the rows ofZ sorted by decreasing variance.L could be computed
as the left singular vectors of the data, andZ could be computed as
the product of the singular values and the right singular vectors. For
low-dimensional data,L = I andZ = Y.

E⊥ need not be explicitly computed to obtainZE⊥ andZE⊥.
Instead, the projections of equation13 are efficiently calculated in
QR-decomposed form asZE⊥ = (Q[R,M])> from

[
QE Q

E
Q
]RE Ma Mb Md

0 R
E

Mc Me

0 0 R M

 QR←−

E

E
Z

> , (14)

and similarlyZE⊥ = (Q[R,M])>. In the case where r.h.s. equa-
tion 14 has more columns than rows,M andM will be non-empty
matrices containing components ofZE⊥ andZE⊥ that are linearly
dependent on the columns ofR,R 2. This gives a first-order fac-
torization; higher-order solutions are available by putting extra rows

containingE,E,Z etc., into equation14.
We now make a change of variable to work in the eigen-coded

data space, making the constraint equation

{ZE⊥} = C′AC′
†{ZE⊥}, (15)

whereC′
.
= L>C and we brace{ZE⊥} to indicate that we are

only working with the nonredundant columnsQR ⊂ Q[R,M] =

(ZE⊥)>. Equation15 has an obvious solution withA in diagonal

2In the no-inputs case, there are more efficient ways to calculateQ and
Q, including treatingZ as aQR decomposition and down-dating it to remove
the first or last column while preserving row-orthogonality (see [3, §12.5]).

form via the eigen-decomposition:{ZE⊥}/{ZE⊥} = C′AC′
† .

However, the eigen-solution has some undesirable properties: The
estimatedLDS is typically complex-valued and unbalanced in the
sense of Moore [5]: estimated parameters of unbalanced systems
are sensitive to small perturbations in the data. We seek anLDS

that is real-valued, balanced, and has theSVD’ S optimal variance-
preserving property for any truncation of its dimensionality.

We now develop a well-behaved factorization by setting up a
pair of orthogonal Procrustes relating the subspaces of “before” and
“after” observations.

3.1 Factorization
We begin with theQR-decompositionsQR

QR←− {ZE⊥}> and sim-

ilarly QR
QR←− {ZE⊥}> calculated above. Each column ofQ is

a time-series of the normalized amplitude of one of the signal’s or-
thogonal modes of variation. This essentially decomposes the signal
into a set of oscillators whose couplings determine the dynamics of
the signal (see figure3). Our goal is to model these couplings by
finding a system matrixA that relates the pastQ and the futureQ.

The main complication is thatQ andQ are not mutually consistent
models of the past and future because they decompose the signal
with regard to inconsistentR 6= R.

To minimize this inconsistency, letJ be an orthogonal matrix
that minimizes‖J>R− JR‖F (Frobenius norm). Since rota-
tions preserve the Frobenius norm,J2 is the solution to the or-
thogonal Procrustes problemJ = arg minJ ‖J(J>R− JR)‖F =
arg minJ ‖R− J2R‖F , obtainable viaSVD:

UJSJV>J
SVD←− RR> (16)

J ← (UJV>J )1/2
(17)

We useJ to define revisedQR-decompositions,(QJ)(J>R) =
{ZE⊥}>, (QJ>)(JR) = {ZE⊥}>. Define W

.
= (QJ>),

W
.
= (QJ), RJ

.
= (J>R+JR)/2, andMJ

.
= (J>M+JM)/2.

W andW are subspaces of the past and future that aremaximally
consistentin that they give minimum Frobenius-error reconstruc-
tions of the data with regard toRJ. (Perfect consistency is impossi-
ble unless the data spans an integral cycle of a periodic signal.)

To factorA andC we set up an orthogonal Procrustes problem
seeking the rotation that takes the subspace of the past into the sub-
space of the future. This begins with theSVD

USV>
SVDr←− W

>
W−> = (QJ)>(QJ>)−> = J>Q

>
QJ>,

(18)
wherer is the order of the system and the matricesW andW have
been truncated to the firstk columns (corresponding to thek dom-
inant eigenmodes in the original data). This is partly motivated as
noise-suppression, and partly motivated by the fact that the amount
of information inA will be determined by the subspace angle be-
tweenW andW. If they are square, the subspace angle is zero,
meaning that the low-variance components of the signal have ob-
scured the relationship between past and future.

Now we expand theSVD into the desired factorization:



{ZE⊥}/{ZE⊥}= R
>

Q
>

QR−> (19)

= R
>

(JJ>)Q
>

Q(J>J)R−> (20)

= R
>

J(USV>)JR−> (21)

= R
>

J(V
√

S−1
√

SV>)(U
√

S
√

SV>)JR−>(22)

≈ R>J V
√

S−1︸ ︷︷ ︸
C′

√
SV>U

√
S︸ ︷︷ ︸

A

√
SV>R−>J︸ ︷︷ ︸

C′†

(23)

Equation23 becomes an equality asT → ∞ or for finite T if the
past and future subspaces are perfectly consistent in the sense de-
scribed above; otherwise the approximation has minimal Frobenius
error. Similarly, equation22 requiresr = T − 1 for equality, but
preserves maximal variance forr ≤ k.

A has interesting structure:V>U is the solution to the orthogo-
nal Procrustes problem optimally rotatingW intoW, while diag(S)
are the canonical correlations—cosines of the angles between corre-
sponding columns in the past and future subspaces.

The parameterC′ only gives the component of the output that is
orthogonal to the inputs. To compute the full output matrix, we must
recover the (redundant) components ofZ that were discarded in the
original orthogonal projection of equation14:

C = L[RJ, MJ]>VS−1/2. (24)

The input parameters can then be solved from equation11.

3.2 Properties
Although not strictly necessary, the hidden stateX is easy to calcu-
late, and it affords an opportunity to study the factorization (equa-
tion 23):

X
.
= C′

†{ZE⊥} =
√

SV>JQ> (25)

=
√

SV>(VS−1U>)(J>Q
>

QJ>)JQ> (26)

=
√

S−1U>J>Q
>

QQ> (27)

=
√

S−1U>W
>

QQ> (28)

X
.
= C′

†{ZE⊥} =
√

SV>J>Q
>

(29)

=
√

SV>(VS−1U>)(J>Q
>

QJ>)J>Q
>
(30)

=
√

S−1U>J>Q
>

QJ>J>Q
>

(31)

=
√

S−1U>W
>

WW
>

(32)

Since we have two overlapping estimates of the stateX, we setX =[
X(:,1:t), X(:,t:T )

]
for any1 ≤ t ≤ T . In what follows it is con-

venient to sett = T . In the limit of infinite data,X andX become
perfectly consistent (limT→∞ ‖X(:,2:T ) −X(:,1:T−1)‖F = 0). In
practice we found that the subspace angle between the two estimates
is vanishingly small, due largely toJ.

Using above the expressions forX, we find the factorization has
the following properties: The scatters of the past and future state

estimates,XX> = XX
>

= S, are diagonal and equal, indicating
that the estimatedLDS is balancedin the sense of [5] and therefore

insensitive to small data perturbations3. The system residual (before
considering inputs),

G
.
= X−AX =

√
SV>J>(Q

>−Q
>

QQ>) = X(I−QQ>),
(33)

is the component of the future that is orthogonal to the past.
For high-dimensional data, equation33 shows that for any
dimensionality-reduction of the system by truncating columns ofQ,
the error associated with system matrixA is the projection of the
state onto the subspace of the discarded columns. Since the retained
columns are almost exactly the dominant eigenvectors of the origi-
nal data (with equality att� d), the optimal truncation property of
the originalSVD carries through to our parameter estimates.

The (eigen-coded) output residual (before considering inputs),

{ZE⊥}−C′X = (JR−RJ)>Q> = (JR−J>R)>Q>/2, (34)

is essentially the residual (if any) afterR is rotated intoR.
Substituting the system matrixA and output matrixC′ into equa-

tions8–9 gives the output residual (before considering inputs)

H
.
= (Y −CX) (35)

= (Y − L[RJ, MJ]>[W>
(:,1:t),W

>
(:,t:T )]), 1≤ t≤T, (36)

where we useY instead ofZ to recover information that was lost
in the projection to the subspace orthogonal to inputsE. One may
use the system residualG and the output residualH to estimate the
input and feed-through matrices

B = (X−AX)E† = GE† (37)

D = (Y −CX)E† = HE†. (38)

The residuals (after considering inputs) are

Γ = X−AX−BE=(X−AX)(I−E†E)=G(I−QEQ>E), (39)

Ψ = Y−CX−DE=H(I−E†E). (40)

which confirms that the noise is orthogonal to the inputs. Fur-
thermore, the state noise is the component of the future that is
orthogonal to both the past and the inputs. Finally, the noise covari-
ances areΣγ = cov(Γ) = ΓΓ>/T, Σψ = cov(Ψ) = ΨΨ>/T .

3.3 Relation to subspace methods
Although our factorization is wholly novel, our approach shares two
core tactics of subspace approaches: Comparison of past and future
subspaces, and use of orthogonal projections to separate state from
inputs. In most other regards our approach is distinct and produces
different numerical results.

This is largely due to theJ-step: In the limit of infinite samples
of finite-dimensional data, the residual

lim
T/d→∞

‖R−R‖ = 0 (41)

and thereforelimT/d→∞ J = I. A wide variety of subspace system
identification methods catalogued in [9] also depend on orthogonal

3Strictly speaking, the system is only approximately balanced for finite
T , becauseXX> ≈ XX> has (very small) nonzero off-diagonal elements.
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Figure 2:LEFT: Reconstruction error of a test target sequence from
a test source sequence using 1) a least-squares mapping between
eigen-codings of source and target images; 2) a rank-constrained di-
vision; and 3) anLDS estimated from a target image sequence and
a very low-dimensional eigen-coding of the source sequence. The
training (estimation) and test sequences are disjoint. The lower edge
of the graph is the lower bound on how well test images can be re-
constructed from linear combinations of training set images. RIGHT:
Predicting the output of a glass oven from a history of its inputs.

representations of the past and future, but they make the assumption
that equation41 forms a reasonable approximation for finite-data, at
least whent � d. This approximation can be quite good for long
runs of low-dimensional data, but it can also be quite poor when
data is limited, especially in our applications, wheret � d. In our
factorization, the matrixJ recovers information that overlooked by
subspace methods.

Because previous subspace methods have not reconciledR and
R, they typically yield two equally valid estimates forC that differ
by an affine transform ofR − R. Choosing either one results in a
reconstruction residual and a bias inA. Plugging the inequality

‖RJ − JR‖F ≤ ‖J>R− JR‖F ≤ ‖R−R‖F (42)

into equation34 shows that our method will yield smaller state-
to-frame (output) residuals‖{ZE⊥} − C′X‖F than previous
subspace methods. It is not necessarily the case that the state-to-
state residual (equation33) is also reduced: By usingJ to rotateR
and R into alignment,X becomes a more faithful representation
of the variations in the data, increasing the amount of variance
that A must “explain.” However, the inequality in equation42
can be used to show that our method has lower frame-to-frame
residuals‖{ZE⊥} − CAC′

†{ZE⊥}‖F (from equation23) and
previous-state-to-frame residuals‖{ZE⊥} − CAX‖F , which are
the important residuals to minimize for filtering and prediction
applications.

4 Applications
Controlled image synthesis: We revisited the problem of view-
mapping the hand, this time using an input/outputLDS. Using
the same test/train split as above, we estimated a 10-dimensional
LDS, taking the training target sequence as outputsY and a 10-
dimensional eigen-coding of the training source sequence as inputs

E. The eigen-coded inputs do not contain enough information for a
quality regression, so theLDS must propagate state through time to
make up for the missing information. We ran the estimatedLDS with
the test source sequence as input, and found that its outputs recon-
struct the test target sequence even better than the 20-dimensional
rank-constrained division. See figure2LEFT. This shows that the
“learned” model of the hand’s dynamics is successfully providing
the information not in the inputs.

Industrial process prediction: To demonstrate the accuracy of
our factorization in a lower-dimensional setting, we obtained some
datasets used as benchmarks in the system identification community.
The graph below shows prediction error for measurements taken
from an analog industrial process (a glass oven). The input/output
datasets, train/test splits, model orders, and error measure were taken
from Overschee & deMoor [9], and models were estimated using
our factorization and O&dM’s “industrial-strength”subid imple-
mentation. The goal is to predict the next output given a history of
inputs. Figure2RIGHT shows that our factorization enjoys a clear
advantage. Similar results were obtained from all datasets. It is not
clear that this translates into improvements in processcontrol, but
the next section shows that it certainly does translate into improve-
ments in processsimulation.

Temporal texture synthesis: An LDS is a remarkably good
model for image sequences in which intensity variations are due to
local changes in the BRDF and/or small motions. This covers many
natural phenomena including turbulently flowing water, rain, smoke,
fire, wind-swayed vegetation. These are scenes for which motion-
based video encoders such as MPEG typically offer little or no com-
pression. The physics of these scenes—coupled harmonic oscilla-
tors that are lightly forced (typically by air currents) and friction-
damped—is very well matched to theLDS model (e.g., see figure3).
Due to this goodness of fit, anLDS will offer good synthesis of novel
sequences. One of the first demonstrations of the applicability of
an LDS to temporal texture synthesis was given by Szummer [7].
The idea of whole-frame temporal texture synthesis was recently ex-
ploited to good effect by Soatto et al [6], who introduced a no-inputs
first-order approximation to the Overschee method in [2].

We obtained Szummer’s test sequences and took several new se-
quences of flowing rivers, swaying trees, steaming coffee, etc., with
a hand-held camcorder. A 250-frame sequence of 320x240 images
can be analyzed in roughly 40 seconds on a vintage 1998 Alpha
CPU. We estimated an optimal dimensionalityk for each sequence’s
eigen-coding from a lower bound on the mutual information between
past and future (a paper on this is in preparation, however the results
below do not depend on any value ofk). The dimensionalityr of
the correspondingLDS was set to capture 95% of the mutual infor-
mation. EachLDS was estimated using our factorization, a com-
mercially available state-of-the-art implementation of the asymptot-
ically optimal Overschee & de Moor (O&dM) subspace method [9],
and the Doretto & Soatto (DS) factorization [2] using code available
at their website. For each sequence, we found that all three meth-
ods yield different parameter estimates, with substantial differences
in A, C, and the state covarianceΓ, reflecting different inferences



Figure 3: The coding of a river image sequence shows how it is
decomposed into coupled oscillations of the basis images. Each im-
age row depicts a column inQ. Time flows to the right; the low-
frequency rows at top explain most of the variance in the sequence.
Although each basis has a resonant frequency, the phase is affected
by couplings between modes, visible as 2D textures. This partic-
ular sequence is clearly not wide-sense stationary—the deepening
ripples on the right-hand side show how a gust of wind shifts the
distribution of energy into the higher frequencies—yet the estimated
LDS generates synthetic river sequences with high fidelity.

Table 1: RMS frame-to-frame errors for 3LDS factorizations.
sequence O&dM [9] DS[2] here

blown trees fails 140.164 93.140
blown trees, truncated 83.193 72.512 71.366

river fails 118.877 54.118
river, truncated 127.823 25.219 24.228

fire fails 403.757 188.552
fire, truncated 468.330 175.702 170.446

hand fails 162.384 15.408
hand, truncated 22.235 13.864 12.163

about the hidden stateX. As predicted by equation42, our fac-
torization consistently yielded the smallest residuals. The table be-
low compares the frame-to-frame residuals (vis-a-vis equation13)
for some sequences randomly taken from our collection. All algo-
rithms were given the same data and settings fork andr. (In order
to provide conditions under which the O&dM method would work,
we also ran “truncated” trials with halved values ofk (and thusr),
essentially removing high-frequency components of the data.)

For all sequences and all choices ofr andk, our factorization
yields the lowest error. A paired F-test analysis of variance indi-
cates that these claims are statistically significant atp < 10−4 levels
(probability of error) for the “truncated” trials andp < 10−6 lev-
els for the fully automatic trials. Note that all algorithms do well
modeling the low-frequency components of the temporal texture; our
method does substantially better when high-frequency components
must be modeled as well. In summary our methods reliably pro-
duce more accurate data reconstructions per model parameter. Mea-

surements of reconstruction error on held-out subsequences show a
similar advantage at thep < 0.08 level.

Following the example of [6], a random walk in ourLDS state
spaces yields high-quality synthetic videos, producing sequences of
several times the length of the original video with high realism but
containing none of the original frames4.

5 Summary
We have considered here the problem of predicting an image from a
previous or a related image using linear subspaces. We gave novel
factorizations for a static mapping, which is a rank-constrained
matrix division, and for a mapping in which the system has hidden
state, which is system identification of anLDS, a.k.a. Kalman
filter. All results are closed-form and inherit theSVD’s optimal
reconstruction properties when the matrices used to effect the
mapping have reduced dimension. To demonstrate the applicability
of these solutions to video synthesis, we explored the use of
rank-constrained division to do view-mappings and the use of an
LDS to synthesize realistic temporal video texture in response to
low-dimensional control signals or via random walks. As predicted
analytically and confirmed numerically, the novel factorization
exhibits more accurate reconstructions of estimation data and
predictions of held-out test-data.
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