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Abstract

We introduce an incremental singular value decomposition (SVD) of incomplete data. TheSVD

is developed as data arrives, and can handle arbitrary missing/untrusted values, correlated un-
certainty across rows or columns of the measurement matrix, and user priors. Since incomplete
data does not uniquely specify anSVD, the procedure selects one having minimal rank. For
a densep × q matrix of low rankr, the incremental method has time complexityO(pqr) and
space complexityO((p + q)r)—better than highly optimized batch algorithms such asMAT-
LAB ’s svd (). In cases of missing data, it produces factorings of lower rank and residual than
batchSVD algorithms applied to standard missing-data imputations. We show applications in
computer vision and audio feature extraction. In computer vision, we use the incrementalSVD to
develop an efficient and unusually robust subspace-estimating flow-based tracker, and to handle
occlusions/missing points in structure-from-motion factorizations.
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Abstract. We introduce an incremental singular value decomposition (SVD) of incomplete data. The
SVD is developed as data arrives, and can handle arbitrary missing/untrusted values, correlated uncer-
tainty across rows or columns of the measurement matrix, and user priors. Since incomplete data does not
uniquely specify anSVD, the procedure selects one having minimal rank. For a densep×q matrix of low
rank r, the incremental method has time complexityO(pqr) and space complexityO((p+ q)r)—better
than highly optimized batch algorithms such asMATLAB ’s svd(). In cases of missing data, it produces
factorings of lower rank and residual than batchSVD algorithms applied to standard missing-data imputa-
tions. We show applications in computer vision and audio feature extraction. In computer vision, we use
the incrementalSVD to develop an efficient and unusually robust subspace-estimating flow-based tracker,
and to handle occlusions/missing points in structure-from-motion factorizations.

1 Introduction

Many natural phenomena can be faithfully modeled with multilinear functions, or closely approximated as
such. Examples include the combination of lighting and pose [20] and shape and motion [12,3] in image
formation, mixing of sources in acoustic recordings [6], and word associations in collections of documents
[1,23]. Multilinearity means that a matrix of such a phenomenon’s measured effects can be factored into
low-rank matrices of (presumed) causes. The celebrated singular value decomposition (SVD) [8] provides a
bilinear factoring of a data matrixM ,

Up×r diag(sr×1)V>r×q
SVDr←−M p×q, r ≤min(p,q) (1)

whereU andV are unitary orthogonal matrices whose columns give a linear basis forM ’s columns and rows,
respectively. For low-rank phenomena,rtrue� min(p,q), implying a parsimonious explanation of the data.
Sincertrue is often unknown, it is common to wastefully compute a largerapprox� rtrueSVD and estimate an
appropriate smaller valuerempirical from the distribution of singular values ins. All but rempiricalof the smallest
singular values ins are then zeroed to give a “thin” truncatedSVD that closely approximates the data. This
forms the basis of a broad range of algorithms for data analysis, dimensionality reduction, compression,
noise-suppression, and extrapolation.

TheSVD is usually computed by a batchO(pq2 + p2q+q3) time algorithm [8], meaning that all the data
must be processed at once, andSVDs of very large datasets are essentially unfeasible. Lanczos methods yield
thin SVDs inO(pqr2) time [8], but rtrue should be known in advance since Lanczos methods are known to be
inaccurate for the smaller singular values [1]. A more pressing problem is that theSVD requirescompletedata,
whereas in many experimental settings some parts of the measurement matrix may be missing, contaminated,
or otherwise untrusted. Consequently, a single missing value forces the modeler to discard an entire row or
column of the data matrix prior to theSVD. The missing value may be imputed from neighboring values, but
such imputations typically mislead theSVD away from the most parsimonious (low-rank) decompositions.
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We consider how anSVD may be updated by adding rows and/or columns of data, which may be missing
values and/or contaminated with correlated (colored) noise. The size of the data matrix need not be known:
The SVD is developed as the data comes in and handles missing values in a manner that minimizes rank.
The resulting algorithms have better time and space complexity than full-data batchSVD methods and can
produce more informative results (more parsimonious factorings of incomplete data). In the case of dense
low-rank matrices, the time complexity is linear in the size and the rank of the data—O(pqr)—while the
space complexity is sublinear—O((p+q)r).

2 Related work

SVD updating has a literature spread over three decades [5,4,1,10,7,23] and is generally based on Lanczos
methods, symmetric eigenvalue perturbations, or identities similar to equation2 below. Zha and Simon [23]
use such an identity but their update is approximate and requires a denseSVD. Chandrasekaran et alia [7]
begin similarly but their update is limited to single vectors and is vulnerable to loss of orthogonality. Levy
and Lindenman [14] exploit the relationship between theQR-decomposition and theSVD to incrementally
compute the left singular vectors inO(pqr2) time; if p,q, andr are known in advance andp� q� r, then
the expected complexity falls toO(pqr). However, this is also vulnerable to loss of orthogonality and results
have only been reported for matrices having a few hundred columns.

None of this literature contemplates missing or uncertain values, except insofar as they can be treated
as zeros (e.g., [1]), which is arguably incorrect. In batch-SVD contexts, missing values are usually handled
via subspace imputation, using an expectation-maximization-like procedure: Perform anSVD of all complete
columns, regress incomplete columns against theSVD to estimate missing values, then re-factor and re-impute
the completed data until a fixpoint is reached (e.g., [21]). This is extremely slow (quartic time) and only works
if very few values are missing. It has the further demerit that the imputation does not minimize effective rank.
Other heuristics simply fill missing values with row- or column-means [19].

In the special case where a matrixM is nearly dense, its normalized scatter matrixΣm,n
.= 〈M i,mM i,n〉i

may be fully dense due to fill-in. In that caseΣ’s eigenvectors areM ’s right singular vectors [13]. However,
this method does not lead to the left singular vectors, and it often doesn’t work at all becauseΣ is frequently
incomplete as well, with undefined eigenvectors.

3 Updating an SVD

We begin with an existing rank-r SVD as in equation1. We have a matrixCp×c whose columns contain
additional multivariate measurements. LetL .= U\C = U>C be the projection ofC onto the orthogonal basis
U, also known as its “eigen-coding.” LetH .= (I −UU>)C = C−UL to be the component ofC orthogonal
to the subspace spanned byU. (I is the identity matrix.) Finally, letJ be an orthogonal basis ofH and let

K .= J\H = J>H be the projection ofC onto the subspace orthogonal toU. For example,JK
QR←−H could be

a QR-decomposition ofH. Consider the following identity:[
U J

][diag(s) L
0 K

][
V 0
0 I

]>
=
[

U (I −UU>)C/K
][diag(s) U>C

0 K

][
V 0
0 I

]>
=
[

Udiag(s)V> C
]

=
[

M C
]

(2)

Like anSVD, the left and right matrices in the product are unitary and orthogonal. The middle matrix, which
we denoteQ, is diagonal with ac-column border. To update theSVD we must diagonalizeQ. Let

U′diag(s′)V′> SVD←−Q (3)
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Fig. 1. A vector is decomposed into components within and orthogonal to anSVD-derived subspace. The
parallel component causes the singular vectors to be rotated (see figure2), while the orthogonal component
increases the rank of theSVD.

U′′←
[

U J
]
U′; s′′← s′; V′′←

[
V 0
0 I

]
V′ (4)

Then the updatedSVD is

U′′diag(s′′)V′′> =
[

Udiag(s)V> C
]

=
[

M C
]
. (5)

The whole update procedure takesO((p+ q)r2 + pc2) time1, spent mostly in the subspace rotations of
equation4. To add rows one simply swapsU for V andU′′ for V′′ .

In practice, some care must be taken to counter numerical error that may makeJ andU not quite orthog-
onal. We found that applying modified Gram-Schmidt orthogonalization toU when the inner product of its
first and last columns is more than some smallε away from zero makes the algorithm numerically robust. A
much more efficient scheme will be developed below.

Fig. 2.Visualization of theSVD update in equation2. The quasi-diagonalQ matrix at left is diagonalized and
the subspaces are counter-rotated to preserve equality.

3.1 Automatic truncation

Definev
.=
√

det(K>K), which is the volume ofC that is orthogonal toU. If v< ε for some smallε near
the limits of machine precision, thenJ must have zero norm, since there is no orthogonal component (elseJ

1 An SVD of an r × r matrix would ordinarily takeO(r3) time but sinceQ is a c-bordered diagonal matrix, it can be
rotated into bidiagonal form inO(cr2) time [22], and thence diagonalized in anO(r2) time bidiagonalSVD [9]. If
c = 1, the eigenvaluess′2 and eigenvectorsU′ of arrowhead matrixQ>Q can be computed inO(r2) time [17]; the
remaining singular vectors can also be recovered inO(r2).
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is contaminated by numerical or measurement noise). In this case the noise should be suppressed by setting
K ← 0 prior to theSVD in equation3. Since the resultingSVD will have r rather thanr + 1 singular values,
equation4 can be replaced with the truncated forms

U′′← UU′1:r,1:r ; s′′← s′1:r ; V′′← V′:,1:r . (6)

This automatically sizes theSVD is to the effective rank of the data matrix.
To explicitly suppress measurement noise, one truncates the completed update to suppress singular values

below a noise threshold, derived from the user’s knowledge of noise levels in the measurements.
The update procedure enables onlineSVDs andSVDs of datasets whose size defeats non-incrementalSVD

algorithms. The update can be used to add individual vectors, batches of vectors, or to mergeSVDs from
partitions of the data. We will now concentrate on the vector update and leverage it into linear-time and
missing-valueSVD algorithms.

4 Fast incremental SVD of low-rank matrices

A useful special case is whenc = C is a single column vector, for which scalark = K = ‖c−UU>c‖ and
vectorj = J = (c−UU>c)/k can be computed very quickly2. To compute a fullSVD by adding rows and/or
columns, we take the first measurementm ∈M and sets← ‖m‖, U←m/‖m‖, V← 1. Then we iterate the
update procedure above with truncation. The total procedure takesO(pqr2) time, which is essentially linear
in the number of elements inM . This can be substantially faster than theO(pq2) time of a batchSVD when
the rankr � q. The advantage over the Lanczos methods is that we now have an online algorithm whose
in-memory storage requirements are reduced fromO(pq)—the size of the data—toO(r(p+q+ r))—the size
of the results.

4.1 Preserving orthogonality and reducing complexity

BecauseU andV are tall thin matrices, repeatedly rotating their column spaces makes loss of orthogonality
through numerical error an issue. Instead of updating large matrices, we may keepU,V,U′,V′ separate and
only update the small matricesU′,V′, with U andV growing strictly by appends.

In this fastest incarnation ofSVD updating, we build an extendedSVD,

Up×rU′r×r diag(sr×1)V′>r×rV
>
q×r

SVDr←−M , (7)

with orthogonalU, U′, UU′ andVV ′. The large outer matrices are built by appending columns toU and rows
to V, while rotations of the subspace are handled by transforms of the much smallerU′,V′ matrices. This
makes the update much faster and more robust to numerical error: LetQ and j be defined as above, and let
A, B diagonalizeQ asA diag(s)B> SVD←− Q. The left-hand side is updatedU′← U′A when the rank does not
increase, otherwiseU′ ← [U

′
0

0
1]A andU← [U, j ]. Due to its small size,U′ loses orthogonality very slowly.

Numerical error can be contained by occasionally re-orthogonalizingU′ via modified Gram-Schmidt when
the inner product of its oldest (first) column with its newest (last) column is more than some smallε away
from zero.

2 In practice, some care should be taken to order operations in computingk to get the most accurate result from floating
point machines. We usek← c>c−2L>L +(UL)>(UL).
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The right side is somewhat more complicated because we are adding rows toV but must guarantee that
VV ′ is orthogonal. To do so, we will also have to calculate and update the pseudo-inverseV′+. Let r be the
rank of theSVD prior to the update. When the rank increases, the right-hand side update is simply

V← [V0
0
1], thenV′← [V

′
0

0
1]B, thenV′+← B>[V

′+

0
0
1]. (8)

When the rank does not increase, we splitB→ [Ww ] where matrixW .= B(1:r,1:r) is a linear transform that will
be applied toV′, and row-vectorw .= B(r+1,1:r) is the eigen-space encoding of the new data vector. The update
is

V′ =← V′W, thenV′+←W+V′+, thenV← [VV′+w]. (9)

It can be verified algebraically thatVnewV′new is identical to the firstr columns of[VoldV′old
0

0
1]B.

Remarkably,W+ can be computed inO(r2) time using the identityW+ = (I + w>w/(1−ww>))W>

(when[Ww ]>[Ww ] = I ; see appendix1 for the proof) . This can be restructured to eliminate theO(r3) matrix-
matrix product in favor of anO(r2) vector-vector outer product:

W+ = W>+(w>/(1−ww>)))(wW>). (10)

This eliminates the costliest steps of the update—rotation and re-orthogonalization ofU,V—and requires
that we only keepU′ orthogonal. The time complexity falls toO(pr2) for the r rank-increasing updates and
O(pr + r3) for theq− r non rank-increasing updates, with an overall complexity ofO(pqr+qr3) = O(pqr),
assuming that the rank is small relative to the dimensionality of the samples, specificallyr = O(

√
p). For a

high-dimensional low-rank matrices, we effectively have alinear-timeSVD algorithm.

4.2 Subspace tracking

For nonstationary data streams, the best we can do is track an evolving subspaceU. In the incrementalSVD,
this is neatly and inexpensively accomplished between updates by decaying the singular valuess← γs; 0<
γ< 1. All updates ofV are simply dropped.

5 Missing data

Consider adding a vectorc with missing values. In our implementation, these are indicated by setting entries
in c to theIEEE754 floating point valueNaN (not-a-number). Partitionc into c• andc◦, vectors of the known
and unknown values inc, respectively, and letU•,U◦ be the corresponding rows ofU. Imputation of the
missing values via the normal equation

ĉ◦← U◦diag(s)(diag(s)U>• U•diag(s))+(diag(s)U>• c•) = U◦diag(s)(U•diag(s))+c•, (11)

yields the completed vector̂c that lies the fewest standard deviations from the origin, with respect to the
density of data seen thus far (X+ denotes pseudo-inverse). Substituting equation11 into theQ matrix yields

Q =
[

diag(s) U>ĉ
0 k

]
=
[

diag(s) diag(s)(U•diag(s))+c•
0 ‖c•−U•diag(s)(U•diag(s))+c•)‖

]
, (12)

whereU>ĉ is the projection of the vector onto the left singular vectors andk is the distance of the vector
to that subspace. As one might expect, with missing data it is rare thatk> 0. In the worst case, imputation
raises the per-update complexity toO(pr3), but we find in practice that the per-update run time stays closer
to O(pr2), because with missing data the pseudo-inverse problem tends to be small and thus dominated by
the problem of rediagonalizingQ .
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5.1 Minimizing rank growth

The importance of the imputation in equation11is that it minimizesk. We show here that this in turn controls
the effective rank of the updatedSVD:

Theorem 1. Minimizing k maximizes concentration of variance in the top singular values.

Proof. Denoting the pre-update singular values assi ∈ s, elements of theQ matrix asQi, j ∈ Q, and the
post-update singular values ofQ asσi , we compute the determinant of the new singular value matrix:

k∏r
i s2

i = ∏r+1
i Q2

i,i = det(Q>Q) = ∏r+1
i σ2

i = exp2∑r+1
i logσi . (13)

The second equality follows from the special sparsity structure ofQ. This shows that minimizingk is equiv-
alent to minimizing the log-volume (∑i logσi) of the post-update singular value matrix, which is half the
log-volume of the completed data’s scatter matrix. Since the amount of total variance in the singular value
matrix is lower-bounded by the variance in the known data values, by the log-sum inequality, the only way
to minimize the log-volume is to concentrate the variance in a few dominant singular values3. Consequently
equation11minimizes growth of the effective rank in the updatedSVD. QED.

In a related forthcoming paper, we show how these methods can be extended to rapidly factor very large
matrices (e.g. 5000×5000) in which more that 95% of the elements are missing. In such cases the minimal
rank growth property plays a very important role in guaranteeing a parsimonious model of the data. We
show that this translates into considerable improvements over the state-of-the-art in genetic classification and
econometric prediction tasks.

6 Uncertainty, priors, and posteriors

In experimental settings the columns ofM are uncertain in the sense that they are samples from a distribu-
tion. When the distribution is gaussian and its covarianceΣ is known (often the case in vision), the eigen-

basisΩΛΩ> eig←− Σ enables a directionally weighted least-squares solution for theSVD that maximizes the
likelihood p(M |U,S,V) ∝ e− trace(R>Σ−1R) with respect to reconstruction residualR .= Udiag(s)V>−M . Let
R′ .= Λ−1/2Ω>R. Then trace(R′>R′) = trace(R>Σ−1R), which is to say that the left-handedcertainty warp
Λ−1/2Ω> rotates and scalesM to make its uncertainty or noise model gaussian i.i.d. Therefore the problem
can be solved as

U′diag(s′)V′> SVD←− Λ−1/2Ω>M (14)

Udiag(s)V′′> SVD←−ΩΛ1/2U′diag(s′); V← V′V′′ . (15)

Equation14 is anSVD in the i.i.d. certainty-warped space. The product in equation15 unwarps4 the results
and itsO(pr2) SVD restores orthogonality to the unwarped resultsUdiag(s)V>.

3 Other imputation schemes minimize the entire rightmost column inQ (containing both the projection and the distance)
thereby minimizing the trace norm trace(Q>Q) = ∑r+1

i σ2
i , which actually encourages the spread of variance over

many singular values.
4 Irani & Anandan [12] developed certainty warps forSVD but do not consider unwarping and leave the result “deter-

mined up to an unknown affine transformation.”
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A gaussian subspace priorpU(U,S,V) ∝ e− trace((U−µU)>Σ−1
U (U−µU)) can be accommodated as another least-

squares constraint simply by appending its own certainty-warped mean to the certainty-warped data columns,
provided that all are rotated back into the same coordinate frame. equations14–15 then become

U′diag(s′)V′> SVD←− [ΩΛ−1/2Ω>M , ΩUΛ−1/2
U Ω>UµU] (16)

V′′F
QR←− V′1:p,:; Udiag(s)V′′′ SVD←−ΩΛ1/2Ω>U′diag(s′)F>; V← V′′V′′′ (17)

equation16 calculates anSVD of data and prior, both warped into i.i.d. space. equation17 drops the added
column fromV′> and reorthogonalizes in anO(pq) QR downdate, then unwarpsU′ and reorthogonalizes in
O(pr2) time to yield the maximuma posteriori(MAP) estimate.

In an incremental setting, each data vector must be warped according toc′ ← Λ−1/2Ω>c (or c′ ←
ΩΛ−1/2Ω>c if there is a prior) before it is incorporated into theSVD. After the last update, the finalSVD

is unwarped using equation15 or equation17. When the new vectorc is both incomplete and uncertain, it
cannot be warped until the missing elements are imputed. First we mustunwarpthe basisU to perform the
imputation,

ĉ◦← (ΩΛ1/2U)◦(ΩΛ1/2U)•\c•), (18)

then warp the completed̂c and incorporate it into theSVD. Unless the covariance is diagonal, certainty warps
require column-wise updating with at least some complete columns.

0 5 10 15 20 25 30
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Fig. 3.Singular values from a very largeSVD of dense audio data agree with the available Lanczos estimates.

7 Example applications

7.1 Eigen-coding

To test the numerical stability of our algorithm, we factored and eigen-coded a 664932×31 matrix containing
a 31-band constant-Q spectrogram of roughly 2 hours of audio for a music classification study [6]. We also
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Fig. 4. Every 300th frame from a 3000-frame sequence tracked via rank-constrained optical flow with incre-
mental SVD. Dots are superimposed on the video by the tracker.

used matlab’s built-in Lanczos thinSVD to get the first 10 singular values (Lanczos estimates of small singular
values are unreliable). These agreed with our results to 10 digits; the angle between the computed subspaces
was a negligible 2×10−8 (see figure3).

7.2 Subspace optical flow

The use of rank-constraints to regularize rigid-motion optical flow at many points in many frames was first
introduced by Irani [11], and the general method has been extended to a variety of projective and motion
models. LetP2F×N be the image projections ofN points on a 3D surface viewed inF frames, arranged
with horizontal and vertical projections on alternating rows. The main insight is that there is an upper rank-
boundr ≥ rank(P), wherer can be determined from inspection of the combined motion/projection model.
Algebraically, it follows thatdr ≥ rank(P(d)) [11,3], where the vector-transpose operator[](d) partitions a
matrix intod-element vertical groups and transposes the groups [15]. This connects to optical flow through
the premise that intensity variations through time time are locally linear in surface motion, consequently
rank constraints apply directly to measured intensity gradientsY = X d

dtP
(2), which should have rank 2r.

In this context, it is useful to compute temporal intensity variationsY2F×N and spatial intensity variations
X2F×2F in the Kanade-Lucas-Tomasi normal-flow framework, becauseX may be understood as both the
precision matrixof the flow estimate [2] and thecovariance matrixof the uncertainty inY [3]. It follows
immediately that the certainty-warp methods in section6 give theoptimal rank-reduction ofY with regard
to the information inX.

Irani’s subspace optical flow algorithm sweeps aW-frame temporal window over an image sequence:
In each window of frames,Y,X are measured at estimated correspondences from a reference frame.Y is
rank-reduced to rank 2r, then divided byX to estimate the flow, which is in turn rank-reduced to rankr and
used to refine the correspondences. This iterates to convergence, and the window advances one frame. Many
largeSVDs must be computed per frame. We found thatmost of this computation can be eliminated in favor
of incrementalSVDs: a rank-2r SVD of gradientsY and a rank-r SVD of correspondencesP. In fact, all that
is needed are the right subspaces (singular vectors) and singular values of these twoSVDs. When new mea-
surementsY are made, they are incorporated into the rank-2r gradientSVD, rank-reduced w.r.t. the updated
subspace, divided byX to obtain flow, and cumulatively summed to obtain correspondencesP(2). These are
then vector-transposed toP and similarly incorporated into the smaller rank-r SVD and rank-reduced w.r.t. its
subspace.5 When the flow has converged within a temporal window, theSVDs are permanently updated with
the trusted correspondences, and the window advances.

5 Some of the efficiency is lost because the updated subspaces must be discarded until the algorithm convergest to trusted
correspondences and handling the uncertainty inY obliges us to make an extraSVD, but we end up doing many small
O(Nr2) or O(NWr) SVDs rather than many largeO(NW2) SVDs per frame.
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The most important advantage of this method is that as the window advances, theSVDs accumulate
information about how the points have moved and thereby “learn” a good basis for the surface being tracked.
The tracker gets better and better, converging faster and faster until theSVDs need not be updated at all
while processing a window; new measurements can be rank-reduced merely by projection onto the subspaces
and then “unprojection” back to measurement space. TheSVDs may be updated at window advances, but
once the scene has exhibited most of its range of motions all updates become unnecessary. To automatically
switch from SVD-based rank-reduction to projection-based rank-reduction, we monitor the angle between
each newly updated subspace and an old subspace. When the subspace angle falls below a small threshold
ε we may safely assume that the updates are not introducing new information about the range of motions
exhibited by the scene.

Figure4 shows some frames from a 3000-image sequence tracked in this manner using nonrigid-motion
rank constraints derived by [3]. Please view the accompanying video, which shows every 6th frame with
synthetic tracking dots superimposed on the original images. The rank wasr = 15 and the temporal window
size wasW = 31 frames. The Irani tracker, modified to use the same rank constraints, “falls off” the surface
after the first 290 frames, but survives another 220 frames if also modified to use certainty warps as per
section6. The Irani tracker required 5 iterations per window; the incrementalSVD tracker performed well
with 2 iterations per window and ceasedSVD updates entirely roughly 900 frames into the sequence. We also
note that once the subspaces are up to full rank (r and 2r), the incremental subspace flow algorithm works
quite well with temporal window sizes as small as one frame.

It is also worth noting that if occlusions are detected (e.g., see below), the imputative update can be used
to continue tracking the unoccluded points while estimating the motion of the occluded points.

7.3 Structure from motion with occlusions

The problem of occluded points in (rigid) structure-from-motion factorizations have traditionally been han-
dled through iterative methods [18,16]. Here we use the incremental imputative SVD to solve the same
problem in a nonrigid context in a single pass through the data—and lower time complexity.

The subspace tracker was used to track points on a face in 150 frames of video. A recently developed
SVD-based nonrigid factorization was used to factor the 2D motions into 3D rotations, translations, 3D shape
and a linear basis set of 3D shape deformations, and per-frame deformation weights [3]. TheK-mode forward
model is

P2F×N = M2F×3KS3K×N⊕T2F×1 = [ ⇓ f R f ](S(3)CK×F)(3)⊕T (19)

whereShape basis tensor, deformationCoefficients,Rotations, andTranslations can be determined fromF
frames ofN Points viewed in weak perspective. (EachR f is the top two rows of a rotation matrix.) BothP
and its precision matrix (inverse covariance matrix)XDF×DF are calculated from optical flow as described
above.

The recovered shape was somewhat flawed because occlusions of the nostrils by the nose contaminated
the tracking. The rank constraints cause the tracker to keep the nostril points below the nose tip point,
even when they are occluded. This exaggerates the apparent motion of the nostrils and leading to overes-
timated depth estimates of the upper lip and underside of the nose. These occlusions can be detected in 2D

by Delaunay-triangulating the points in a reference frame and watching for edge-crossings in the Delaunay
mesh as the points move in time. The 3D factorization gives depth estimates that indicate which points are
occluders and which are occluded. We estimated occlusions and near-occlusions and the corresponding en-
tries in the matrix of tracking data were obliterated (set toNaN). The incomplete data was re-factored using
incrementalSVD with certainty warps, resulting in an improved 3D linear shape basis with a properly shaped
nose and a better fit to the video (see figure5).
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Fig. 5.Video frames with profile views synthesized from a structure-from-motion analysis of the 70×80 pixel
facial region. The profiles are mirror images except for differences in recovered 3D structure. The profiles
on the left have poor structure between the mouth and nose because occlusion artifacts in the tracking were
correlated with head nods. The profiles on the right have better shape from the tip of the nose to the top of
the mouth because incompleteSVD was used to handle occlusions in the 3D reconstruction.
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8 Summary

We have examined the problem of finding good low-rank subspace models of datasets that may be extremely
large, partly or mostly incomplete, contaminated with colored noise, and possibly even nonstationary. By
combining an update rule with careful management of numerical noise, rank-minimizing imputations, and
uncertainty transforms forMAP inference (with respect to measurement noise and user priors), we developed
fast, accurate, and parsimonious onlineSVD methods, with better time/space complexity than widely used
batch algorithms. This leads to fast online algorithms for vision tasks such as recovery of eigen-spaces, semi-
dense optical flow on nonrigid surfaces with occusions, and automatic handling of occlusions in structure-
from-motion.
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A Pseudo-inverse of a submatrix of an orthogonal matrix

Lemma 1. LetB = [WY ] have orthogonal columns, such thatB>B = W>W +Y>Y = I . Then

W+ = W>+Y>(I −YY>)+YW>

and furthermore ify = Y is a row vector, then

W+ = W>+
yy>

1−y>y
W>

Proof. DefineZ = Y>Y.

W+ = W+W−>W>

= (W>W)+W>

= (I +(W>W)+− I)W>

= W>+(I −W>W− I +W>W +(W>W)+− I)W>

= W>+(Z +((W>W)+− I)(I −W>W))W>

= W>+(Z +(I −W>W)(W>W)+(I −W>W))W>

= W>+(Z +Z(W>W)+Z)W>

= W>+(Z +Z(I −Z)+Z)W>

= W>+Z(I −Z)+W>

= W>+Y>(I −YY>)+YW>,

where the last equality holds from the Matrix Inversion Lemma. The special case of row vectory = Y sim-
plifies the pseudo-inverse to a scalar inverse, giving the second form of the this lemma.
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