
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Agents and GUIs from Task Models
Jacob Eisenstein, Charles Rich

TR2002-16 March 14, 2002

Abstract
This work unifies two important threads of research in intelligentagents.

ACM International Conference on Intelligent User Interfaces (IUI)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2002
201 Broadway, Cambridge, Massachusetts 02139

Submitted October, 2001; revised and released February 2002.

Agents and GUIs from Task Models

Jacob Eisenstein
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA, 90292, USA

jacob@isi.edu

Charles Rich
Mitsubishi Electric Research Laboratories

201 Broadway
Cambridge, MA, 02139, USA

rich@merl.com

Abstract
This work unifies two important threads of research in intel-
ligent user interfaces which share the common element of ex-
plicit task modeling. On the one hand, longstanding research
on task-centered GUI design (sometimes called model-based
design) has explored the benefits of explicitly modeling the
task to be performed by an interface and using this task model
as an integral part of the interface design process. More re-
cently, research on collaborative interface agents has shown
how an explicit task model can be used to control the be-
havior of a software agent that helps a user perform tasks
using a GUI. This paper describes a collection of tools we
have implemented which generate both a GUI and a collabo-
rative interface agent from the same task model. Our task-
centered GUI design tool incorporates a number of novel
features which help the designer to integrate the task model
into the design process without being unduly distracted. Our
implementation of collaborative interface agents is built on
top of theCOLLAGEN middleware for collaborative interface
agents.

Keywords
Model-based interface design, task models, software agents,
collaboration.

INTRODUCTION
Figure 1 at the right gives an overview of our work. Fig-
ure 1(a) shows the typical task-centered graphical user inter-
face (GUI) design process. Since GUIs are usually intended
to support some particular set of human tasks, the first job of
the designer using this methodology is to formalize these in-
tentions as an explicit task model. Eliciting and formalizing
task models is itself an arduous job, which requires support-
ing tools and methodology [16, 10, 3]. In this work, however,
we take the task model as our starting point. Also, notice that
even though this approach automates the implementation of
the GUI, the application developer still needs to implement
the “backend” processing to make a complete application.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
IUI’02 , January 13-16, 2002, San Francisco, California, USA.
Copyright 2002 ACM 1-58113-459-2/02/0001. . . $5.00

(a) Typical task-centered GUI design process.

(b) COLLAGEN-based collaborative interface agent.

(c) Combined architecture (with new elements in bold).

Figure 1: Architecture for generating a GUI and a col-
laborative interface agent from the same task model.

Figure 1(b) shows the architecture of aCOLLAGEN-based
collaborative interface agent.COLLAGEN is Java middleware
for building collaborative interface agents.COLLAGEN will
be discussed briefly later in this paper; please see the refer-
ences for more detail [13, 12].

Roughly speaking,COLLAGEN takes a task model and gives
you an agent which can collaborate with a user in performing
the given tasks. For example, in our demonstration system,
we have configuredCOLLAGEN to produce an agent which
teachs novice users how to use the application on their first
encounter with it (teaching is a kind of collaboration [14]).

Notice that even thoughCOLLAGEN automatically gives you
an agent, the application developer still needs to manually
implement the “agent interface,” i.e., the program interface
through which the agent can interact with the application and
observe the user’s interaction with the application. From ex-
perience, we have found that implementing this program in-
terface can be a significant barrier to usingCOLLAGEN. Our
combined architecture, described below, eliminates this bar-
rier.

Figure 1(c) shows the combination of (a) and (b), with three
new elements. The first new element, calledVAMPIRE, is a
novel GUI editor we have developed, which generates both a
GUI specification and (the second new element) an explicit
description of the task-GUI mapping, which can be used by
other tools. The third new element, calledBATS, automati-
cally produces the agent interface needed for aCOLLAGEN

agent, given a task model and the task-GUI mapping.

In summary, notice that in Figure 1(c) the only inputs the
designer/developer needs to provide are the task model (con-
structed using tools which are beyond the scope of this work),
the graphical and layout design decisions (provided inter-
actively usingVAMPIRE), and the backend implementation.
Furthermore, since our entire system is implemented using
the Java Beans(tm) event architecture, connecting the back-
end processing with the GUI implemention does not require
modifying any automatically generated code.

The following sections of this paper discuss each element of
Figure 1(c) in more detail, using a simple File Transfer Pro-
tocol (FTP) application we have developed as an example.

We hope that this work will, by its synergy, advance both the
practice of task-centered GUI design and the application of
collaborative interface agents, because:

• GUI designers will receive a greater return on their invest-
ment in task modeling by getting an collaborative interface
agent “for free,” and

• the problem of integrating agents with applications [5] is
eliminated by automating the creation of the agent inter-
face.

top FTP; // toplevel goal

recipe DoFTP achievesFTP {
// totally ordered steps
step Login login;
step Connect connect;
repeatable stepDownloadFile download;
step Disconnect disconnect;
constraints {

login precedesconnect;
connect precedesdownload;
download precedesdisconnect;
login.address == download.address; }}

act Login { // non-primitive action
parameter StringTerm address; }

recipe DoLogin achievesLogin {
// unordered steps
step EnterAddress address;
step EnterName name;
step EnterPassword password;
constraints {

address.address == achieves.address; }}

act Download { // non-primitive action
parameter StringTerm address; }

recipe DoDownload achievesDownload {
// partially ordered steps
repeatable stepSelectFile select;
optional repeatable stepAsciiMode ascii;
optional repeatable stepBinaryMode binary;
step DownloadFile download;
constraints {

select precedesdownload;
ascii precedesdownload;
binary precedesdownload;
download.address == achieves.address; }}

// primitive actions

manipulation EnterAddress {
parameter StringTerm address; }

manipulation EnterName {
parameter StringTerm name; }

manipulation EnterPassword {
parameter StringTerm password; }

manipulation SelectFile {
parameter StringTerm file; }

manipulation DownloadFile {
parameter StringTerm address;
parameter StringTerm file; }

manipulation AsciiMode;

manipulation BinaryMode;

manipulation Connect;

manipulation Disconnect;

Figure 2: Complete task model for FTP example (re-
served words and comments in italics).

TASK MODELS
Task model representations come in many different varia-
tions. In this work, we use the task model representation
provided byCOLLAGEN, which is a fairly generic hierarchi-
cal goal decomposition representation. Although the details
of our implementation depend, of course, on the details of
this task model representation, we believe our basic paradigm
is applicable to any task model representation. To show this,
we have included “import” functionality that allows our soft-
ware to utilize task models written in the ConcurTaskTrees
notation [10].

Figure 2 shows the complete task model for a small FTP ex-
ample, exactly as it is input toCOLLAGEN. The syntax of this
representation is an extension of Java (implemented by a pre-
processor), in which each primitive and non-primitive action
type and each goal decomposition rule (recipe) is defined as
a Java class.

This task model represents the designer’s concept of what
needs to be accomplished in the FTP task, abstracted away
from the details of how a particular GUI to support the task
will be designed. The task model is organized hierarchically.
At the top level, the FTP task is broken down into four totally
ordered steps: logging in (login), connecting to a server (con-
nect), downloading one or more files (download), and dis-
connecting (disconnect). Each of the non-primitive subtasks
is further decomposed by recipes until we reach the primitive
actions listed at the bottom of the figure. In this model, there
is only a single recipe which achieves each non-primitive ac-
tion type; in general, there may be more than one.

COLLAGEN’s task model representation also supports a num-
ber of other features, including optional and repeatable steps,
temporal order and equality constraints, preconditions, and
postconditions, some of which are illustrated in Figure 2.

TASK-CENTERED GUI DESIGN
A wide spectrum of approaches have been explored for in-
corporating task models into the GUI design process. At
one end of the spectrum are informal, non-computational ap-
proaches [4], which encourage GUI designers to think about
the desired task structure when designing a GUI. At the other
end of the spectrum are completely automated approaches
in which the GUI implementation is automatically generated
from a formal task model. Most recent work in this area,
however, has been somewhere in the middle.

Figure 1(a) illustrates the architecture of the typical task-
centered GUI design process, starting with a formal task
model (such as Figure 2). The process begins with aGUI
editor, which allows the desiger to define the look and feel
of the GUI in a manner that is somehow guided by the ini-
tial task model. The output of this stage is aGUI specifica-
tion, which is an abstract, platform-neutral description of the
details of the GUI. This specification is then provided to a
GUI renderer, which produces (either by code-generation or

at run time) the actual implementation of the GUI in some
target environment, such as Windows(tm) or Swing(tm). A
key benefit of separating the specification of the GUI from its
implementation is that future changes to the GUI can more
easily be made to the specification (using the editor), rather
than by directly modifying the implementation.

A typical example of this architecture isMOBILE [11], a
WYSIWYG GUI editor in which the choice of graphical in-
teractors and the navigational structure of the GUI is guided
by the features and structure of the task model. Another ex-
ample is Teallach [2], a non-WYSIWYG, model-based GUI
development environment in which graphical interactors are
explicitly linked to elements of the task model. During the
design process, Teallach designers can “verify” that the GUI
they have designed is consistent and complete with respect
to the task model.

In the next section, we describe our own interactive task-
centered GUI design tool, calledVAMPIRE. Although we
have tried to makeVAMPIRE as easy to use as possible, the
fact remains that building the task model required for such a
tool is an inherently difficult process. We believe this is one
of the reasons why there has been so little commercial use
of this kind of technology. We hope that the new run-time
benefits that we will describe later in this paper will make
it more attractive for developers to invest the effort to build
formal task models.

The VAMPIRE Editor
VAMPIRE (for VisuAl Model-based Pick-and-place InteR-
face Editor) is a task-centered GUI editor we have designed
for use with our “agents and GUIs from task models” paradigm.
VAMPIRE will be described in detail in a future paper. The
key feature ofVAMPIRE from the standpoint of this paper is
that, in addition to the GUI specification, it generates an ex-
plicit task-GUI mappingas output (see Figure 1(c) and Fig-
ure 4).

Figure 3 is a snapshot ofVAMPIRE being used to construct
the GUI shown in Figure 5 for the FTP task model (Fig-
ure 2). VAMPIRE tries to provide a look and feel that is
as close as possible to a traditional WYSIWYG layout tool,
while at the same time keeping the designer focused on the
task model. The left half of the screen displays the hierarchi-
cal task model as a tree. The designer uses the layout area
on the right half of the screen to perform typical WYSIWYG
design actions, such as selecting interactors from a palette,
placing them in windows, and parameterizing them appropri-
ately. However, throughout the process, the designer is also
presented with feedback and default suggestions that pertain
to the task model.

For example, whenever the designer clicks on an unimple-
mented element in the task tree,VAMPIRE recommends an
interactor by highlighting that interactor in the toolbar palette
along the bottom of the right half of the screen. The designer

Figure 3: Screen shot ofVAMPIRE task-centered GUI design tool being used to construct FTP example.

can now click directly in the layout area to place the recom-
mended interactor. Alternatively, she can ask for a second
recommendation by clicking on the task again, or simply go
to the toolbar and select whatever interactor she prefers. In
any case, the designer must indicate the pertinent task ele-
ment before placing the interactor on the screen.VAMPIRE

thus incrementally builds an explicit mapping between ele-
ments of the task model and elements of the GUI. Graphical
elements can also be customized in the usual ways (color,
font, left vs. right click, etc.) after they are placed.

VAMPIRE uses the task-GUI mapping to provide feedback to
the designer throughout the design process. When the de-
signer selects an element of the task tree, the associated GUI
elements are automatically selected (highlighted), and vice
versa. In addition, the designer can verify at any time that
each task is mapped to at least one GUI element.

The implementation ofVAMPIRE is totally XML-based.VAM -
PIRE’s input is an XML version ofCOLLAGEN’s task model
notation. The GUI specification produced byVAMPIRE is
written in UIML[1]. We have written a UIML renderer that
produces a graphical user interface at run-time, and provides
a software API to the generated GUI. The task-GUI mapping
is implementing using XLink [6], an XML language specifi-
cally designed for specifying links between XML models.

COLLABORATIVE INTERFACE AGENTS
The basic intuition underlying collaborative interface agents
is that interaction between a human and a computer can be
greatly improved if the computer has a model of tasks that the

Figure 4: Example of a link in the task-GUI mapping
produced by VAMPIRE.

human is trying to perform. Acollaborative interface agent
is a software agent that collaborates with the human user of
a (typically complex) computer interface.

The concept of collaboration covers a wide range of kinds of
interaction, depending on the relative knowledge and initia-
tive of the user and agent. At one extreme (low user knowl-
edge and initiative), a “first-encounter agent” might use the
task model to walk the user through a step-by-step demon-
stration of how to use an new interface. (We describe such an
agent for the FTP task below.) At the other extreme, a collab-
orative assistant for “power users” might use the same task
model to automatically finish tasks that the user has started.

COLLAGEN Middleware
COLLAGEN(for COLLaborative AGENt) [13, 12] is Java mid-
dleware developed at MERL to make it easier to implement
collaborative interface agents. The architecture of systems
built with COLLAGEN is shown in Figure 1(b). Among other
things,COLLAGEN provides a generic implementation of dis-
course interpretation, plan recognition, and plan generation
algorithms, all of which take a given task model as data.

However, the developer usingCOLLAGEN still has to hand-
code theagent interface, which allows the agent to observe
the user’s interactions with the application and to interact
with the application itself. (In internalCOLLAGEN docu-
mentation, this component is referred to as the “application
adapter.”) Basically, the code in the agent interface is a bridge
between the primitive action types of the task model and the
specific elements that achieve them in the given GUI imple-
mentation. This code can be quite onerous to write, particu-
larly if the author of this code is not the same as the author of
the GUI implementation. CombiningCOLLAGEN with task-
centered GUI design, however, provides the opportunity for
automating the writing of this code, as described in the next
section.

The BATS Code Generator
BATS (for Bridging Agents, Tasks, and Software) is a batch
program (see Figure 1(c)) that takes three XML documents
as input: a task model, a task-GUI mapping, and a GUI spec-
ification. BATS’ output is a Java implementation of the agent
interface needed for aCOLLAGEN agent. This automatically
generated code connects withCOLLAGEN’s agent code and
the GUI implementation using events.

For example, for the FTP application, the task-GUI mapping
includes a link between theEnterAddress primitive ac-
tion type in the task model and the text input field labeled
“Server address” in the GUI specification. When the user
finishes entering text in this field, the agent interface code
generates an event, received by the agent, which includes
an instance ofEnterAddress with the entered text as its
parameter. Conversely, when the agent wants to perform
EnterAddress (e.g., as part of a tutorial demonstration),
it sends an instance ofEnterAddress to the agent inter-
face, which translates it into the appropriate GUI events to
cause the associated parameter text to be entered into the
“Server address” field.

Another function of the agent interface code is to support the
agent pointing at the GUI, as illustrated in Figure 5. From
the standpoint of the agent, all that is required to produce the
pointing behavior shown in Figure 5 is an abstract call of the
form “move the hand to where theEnterName action takes
place.” The agent interface code takes care of layout details.

Agent says “Would you like to learn how to DoFTP?”
User says “Yes.”
Agent says “The first step of DoFTP is to achieve

Login with an address.”
Agent says “First, perform EnterAddress with an

address.”
Agent points to location of EnterAddress.
User performs EnterAddress with ‘www.merl.com’.
Agent says “Right.”
Agent says “Next, now you should perform EnterName

with a name.”
Agent points to location of EnterName.
User performs Connect.
Agent says “Whoops, it’s too soon to do that.”
User says “What next?”
Agent says “As I said, you should perform EnterName

with a name.”
User performs EnterName with ‘jacob’.
Agent says “Right.“

Figure 5: Dialogue and screen shot for automatically gen-
erated pedagogical agent.

Agent says “Would you like to learn how to FTP?”
User says “Yes.”
Agent says “The first step of FTP is to provide login

information.”
Agent says “First, type in the server address.”
Agent points to where to type in the server address.
User types in ‘www.merl.com’ as the server address.
Agent says “Right.”
Agent says “Next, type in your login name.”
Agent points to where to type in your login name.
User presses the connect button.
Agent says “Whoops, it’s too soon to do that.”
User says “What next?”
Agent says “As I said, type in your login name.”
User types in ‘jacob’ as the login name.
Agent says “Right.“

Figure 6: Dialogue of Figure 5 with language generation
templates added to task model.

PACO: A Pedagogical Agent

COLLAGEN provides several different versions of its generic
interface agent, which vary in terms of the kind of collabora-
tion they support. For our FTP demonstration, we have cho-
sen a pedagogical version of theCOLLAGEN agent, called
PACO (for Pedagogical Agent in COllagen) [14]. Figure 5
shows part of a typical interaction with this agent. We want
to emphasize that the interaction shown in this figure is ob-
tained with no programming or developer input other than
the task model in Figure 2, interaction withVAMPIRE to lay
out the GUI, and a small amount of “backend” code.

In general,PACO guides the user through a collection of pre-
defined example scenarios. Each scenario involves achieving
the (or one of the) top level goals of the task model under
some set of initial conditions.PACO keeps track of which
parts of a task model the user already knows how to do, and
offers step-by-step instructions on how to perform the parts
of the task that the user does not yet know.PACO also offers
confirmation and encouragement when the user does some-
thing correctly and corrections when a mistake is made.

Since our use ofPACO in this demonstration is targeted at a
user’s first encounter with the FTP interface, we simply use
PACO’s default scenario, which is to achieve the first top level
goal in the default startup state of the application. Note, how-
ever, that we are assuming that the user is familiar with the
basic domain concepts underlying the FTP application, such
as the concept of a server, downloading files, etc. Teaching
domain concepts is a more ambitious task;PACO is focused
only on teachingproceduralknowledge.

The dialogue in Figure 5 also illustrates some simple natural-
language capabilities ofPACO (and COLLAGEN generally),
which make use of off-the-shelf speech recognition and text-
to-speech software (IBM ViaVoice).PACO’s speech recogni-
tion is trivial, since the user can only say a few simple things,
like “Yes,” “Ok,” and “What next?”.

For language generation,COLLAGEN provides a simple
method of annotating task models with language generation
templates. The task model in Figure 2 includes no such an-
notation, in which case the agent uses default templates to
generate utterances of the form shown in Figure 5, such as
“First, perform EnterAddress with an address.” However,
we can easily associate a generation template (gloss) with
EnterAddress as follows:

manipulationEnterAddress {
parameterStringTerm address;
gloss{
"type in {’#address’ as} the server address"

}}

Given this definition, the agent would say “First, type in the
server address” as shown in Figure 6. In practice, we would
add similar templates to all the elements in a task model.

RELATED WORK
Lieberman [5] gives an excellent, comprehensive discussion
of the problems of integrating interface agents with appli-
cations. A novel approach, along very different lines from
our own, is taken by Zettlemoyer et al. [17]. Rather than
using the software implementation of the GUI, they apply
machine vision techniques directly to the visual appearance
of the GUI. They are able to detect the position and type of
various typical interactors, which they then can control by
generating the appropriate graphical events, such as mouse
clicks. The task structure and its relation to the GUI are not
explicitly modeled.

Several researchers have developed techniques for automati-
cally generating help facilities from some form of task/interface
model. For example, Sukaviriya and Foley [15] developed
a GUI design system which generated animated tutorials to
show a user how to accomplish various tasks using the de-
signed GUI. While their research does not support the same
flexibility of interaction as our collaborative agent, it was an
early demonstration of the possibilities of exploiting a task
model to provide run-time guidance for the user.

Moriyon et. al [7] built a system which allows users to ask
questions about a GUI, such as “What commands are avail-
able?” or “What will happen if I click here?”. Their system
does not, however, include a task model, and consequently
cannot offer the kind of step-by-step guidance that we pro-
vide.

Pangoli and Paterno [9] take a task-centered approach, allow-
ing users to ask questions about how to perform a complex
task, and answering these questions in natural language, like
our agent. However, since their help system is not integrated
with the application, it doesn’t know whether the user has
followed its advice properly. It depends on the user to de-
scribe the current system state.

Palanque et. al [8] have developed an agent which answers
questions about why a GUI widget is disabled, and generates
a sequence of steps which will enable the widget. They do
not discuss how to integrate this agent with an application.

FUTURE WORK
An effective collaborative agent requires a range of knowl-
edge beyond what is currently represented in our task mod-
els. For example, it should know which tasks are most impor-
tant to the user, so that it can help with those first. It should
also know which tasks are most difficult, so that it can be
more proactive in assisting with them. ExtendingCOLLA-
GEN’s task model in these directions, and making it easy for
users to provide this kind of information, are important direc-
tions for our future research. This kind of knowledge could
also improveCOLLAGEN’s plan recognition behavior.

We also need to extend the expressive power of our user mod-
els. Currently,PACO maintains only a very simple “overlay”
model: For each task and subtask,PACO stores a few flags

indicated whether the task has been demonstrated to the user,
whether the user has performed it correctly, and whether the
user has performed it correctly without prompting. Improved
user modeling could include information about a user’s per-
sonality and learning style, as well as summary characteriza-
tions of their history with the system.

Improved user modeling could affect both the GUI design
and the behavior of a collaborative agent. For example, a
designer might emphasize transparency over efficiency when
designing an interface for novice users. A collaborative agent
for novices might be more active (take more initiative) than
one for experienced users.

Another research direction is to provide a collaborative, task-
centered interfacewithouta personified agent. For example,
we could imagine adding buttons to a GUI labeled “Where
am I?”, “What can I do next?”, “How do I dox?”, etc.
(see [12]). Such buttons might become a standard feature
of future GUI’s, just as the undo button is a standard feature
of current state-of-the-art GUI’s.

Finally, at the most fundamental level, this research is about
the relationship between user interface design and intelligent
agents. We would like to explore how the design of conven-
tional graphical user interfaces is influenced by the presence
of a collaborative agent. Should the GUI be designed differ-
ently, when there is a collaborative agent to help the user?

We would also like to explore how best to incorporate a
collaborative agent into a coherent overall interface design.
Should there be a visual representation of the agent at all?
Should the agent have its own window? How should the
user communicate with the agent and vice versa? For ex-
ample, we are currently experimenting with multi-modal ap-
proaches, in which user-agent communication via speech is
mixed with conventional GUI manipulation.

CONCLUSION

At a concrete level, we have described two new software
technology components that bridge the gap between task-
centered GUI design and collaborative interface agents. The
first component,VAMPIRE, is a GUI design tool that captures
the relationship between a task model and a GUI as a natural
by-product of using the tool. The second component,BATS,
is a code generator that relieves agent developers of the bur-
den of writing the program interface between an application
and an agent.

Beyond these concrete contributions, we also hope that this
work will provide an impetus to task-centered approaches to
software in general.

Acknowledgements

Thanks to Andrew Garland, Neal Lesh, Candace Sidner, and
Steve Wolfman for invaluable feedback and discussions on
this research.

REFERENCES
1. M. Abrams, C. Phanouriou, A. Batongba-

cal, S. Williams, and J. Shuster. UIML: An appliance-
independent XML user interface language.Computer
Networks, 31:1695–1708, 1999.

2. P. Barclay, T. Griffiths, J. McKirdy, N. Paton,
R. Cooper, and J. Kennedy. The teallach tool: Using
models for flexible user interface design. InCADUI99:
Computer-Aided Design of the User Interface. Kluwer,
1999.

3. A. Garland, K. Ryall, and C. Rich. Learning hierarchi-
cal task models by defining and refining examples. In
First Int. Conf. on Knowledge Capture, Victoria, B.C.,
Canada, Oct. 2001.

4. C. Lewis and J. Rieman. Task-centered user interface
design. http://hcibib.org/tcuid/, 1994.

5. H. Lieberman. Integrating user interface agents with
conventional applications. InIntelligent User Inter-
faces, pages 39–46. ACM Press, January 1998.

6. E. Maler and S. DeRose. XML linking language
(XLink). Technical report, World Wide Web Consor-
tium, March 1998.

7. R. Moriyon, P. Szekely, and R. Neches. Automatic
generation of help from interface design models. In
Proceedings of 1994 Conference on Human Factors in
Computing Systems (CHI), pages 225–231, 1994.

8. P. Palanque, R. Bastide, and L. Dourte. Contextual
help for free with formal dialog design. InFifth Inter-
national Conference on Human-Computer Interaction.
Elsevier Science Publisher, August 1993.

9. S. Pangoli and F. Paterno. Automatic generation of
task-oriented help. InACM Symposium on User Inter-
face Software and Technology, pages 181–187, 1995.

10. F. Paterno, C. Mancini, and S. Meniconi. Con-
curtasktrees: A diagrammatic notation for specify-
ing task models. In S. Howard, J. Hammond, and
G. Lindgaard, editors,Human-Computer Interaction
INTERACT, pages 362–369. Chapman and Hall, 1997.

11. A. R. Puerta, E. Cheng, T. Ou, and J. Min. MO-
BILE: User-centered interface building. InCHI: Hu-
man Factors in Computing Systems, pages 426–433.
ACM Press, May 1999.

12. C. Rich, C. Sidner, and N. Lesh. Collagen: Applying
collaborative discourse theory to human-computer in-
teraction.AI Magazine, 22(4), 2001. Special Issue on
Intelligent User Interfaces. To appear.

13. C. Rich and C. L. Sidner. COLLAGEN: A collaboration
manager for software interface agents.User Modeling
and User-Adapted Interaction, 8(3-4):315–350, 1998.

14. J. Rickel, N. Lesh, C. Rich, C. L. Sidner, and A. Gert-
ner. Using a model of collaborative dialogue to teach
procedural tasks. In10th International Conference on
Artificial Intelligence in Education, May 2001.

15. P. Sukaviriya and J. D. Foley. Coupling A UI frame-
work with automatic generation of context-sensitive an-
imated help. InUIST:Symposium on User Interface
Software and Technology, pages 152–166, 1990.

16. R. Tam, D. Maulsby, and A. Puerta. U-TEL: A tool
for eliciting user task models from domain experts. In
Intelligent User Interfaces, pages 77–80. ACM Press,
January 1998.

17. L. Zettlemoyer, R. S. Amant, and M. Dulberg. Applica-
tion control through the user interface. InInternational
Conference on Intelligent User Interfaces. ACM Press,
January 1999.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2002-16.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

