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ABSTRACT
We describe an implemented architecture for programming
the responses of collaborative interface agents out of easily
composable and reusable plug-in components, and discuss
the underlying theoretical and practical issues. The power
of the architecture comes primarily from a rich representa-
tion of collaborative discourse state, which includes a focus
stack and plan tree. The architecture also provides a useful
separation between the principles and preferences underly-
ing an agent’s behavior. We illustrate the use of plug-ins
in a complex tutoring agent, which includes plug-ins that
diagnose incorrect actions and explain why a step needs to
be done. Plug-ins are part of the collagen agent-building
middleware, which has been used by a number of researchers
in addition to its developers.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms, Design

Keywords
Interface agents, conversational agents, action selection and
planning, agent architectures

1. INTRODUCTION
This paper addresses the problem of how to build collabora-
tive interface agents out of composable and reusable behav-
ioral components. Although this problem is fundamental to
the engineering of collaborative interface agents, we did not
fully appreciate it ourselves until we began to scale up to
agents with a fairly high degree of behavioral complexity.
This research takes place within the context of a multi-year,
multi-person project called collagen (for collaborative
agent) [11, 12]. collagen is also the name of our Java
toolkit for building collaborative interface agents.
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Figure 1: Collaborative interface agent paradigm.

1.1 Collaborative Interface Agents
A key practical goal of collagen is to make it possible to
build collaborative interface agents with a maximum degree
of software reuse between applications. Figure 1 illustrates
what we mean by the term collaborative interface agent. In
this paradigm, a software agent plays the same role that one
of two humans plays when two humans collaborate on a task
involving a shared artifact, such as two mechanics working
on a car engine together or two computer users working on
a spreadsheet together.

In general, collaboration is defined as a process in which
two or more participants coordinate their actions toward
achieving shared goals. In this paper, and in all of our work
on collagen, we focus exclusively on collaborations involv-
ing only two participants. Collaboration usually requires
some form of communication between the participants, typi-
cally in natural language, but also sometimes using gestures
and specialized or artificial languages. Notice in Figure 1
that, in addition to communicating with each other, both
the user and the software agent can interact with the shared
artifact (typically a software application) and observe each
other’s interactions with the shared artifact.

Collaboration is a very broad concept, covering a wide
spectrum of interactions, depending on the relative exper-
tise and initiative of the participants and on the primary
shared goal of the collaboration [3]. For example, tutoring



Figure 2: Intelligent tutor for a gas turbine engine.

Figure 3: Fragment of gas turbine task model.

is a kind of collaboration in which one participant (the tutor)
has much greater expertise and initiative, and the primary
shared goal is to increase the student’s expertise. At the
other end of the spectrum, assistance is a kind of collabora-
tion in which one participant (the assistant) has somewhat
less expertise and initiative, and the primary shared goal is
to successfully accomplish some task. In the middle of the
spectrum are peer collaborations, in which the expertise and
initiative of the participants are relatively evenly matched.

1.2 A Complex Agent
To motivate and illustrate the points of this paper, we in-
troduce a collagen-based tutoring agent [14, 15], which
teaches the standard operating procedures for a gas turbine
engine using a software simulator.

This system is an instantiation of the paradigm in Fig-
ure 1, in which the shared application is the software sim-
ulator shown in the large lower window of the screen shot
in Figure 2. The smaller window in the upper right cor-
ner of Figure 2 displays the agent’s verbal communication
to the human student; the window in the upper left cor-
ner is used by the student to verbally communicate to the
agent. (In this paper, the student only selects one of six
simple utterances; we have also developed a more powerful
spoken-language interface.) Both the agent and the student
can also point and click on the simulator interface. Figure 2
shows the agent pointing at the “generator on” button.

An example collaboration between this tutoring agent and
a student, shown in Figure 4, illustrates the variety of collab-
orative responses of which this agent is capable, including:

• teaching the next step in a procedure (4,13,23,33,38)
• confirming successful completion of a subtask (8,37,42)
• turning over initiative to the student (15)
• re-focusing the student on the current subtask (29)

1. Tutor says “Our first exercise is very simple.” NEX EXE

2. Tutor sets the state of the simulator. NEX EXE

3. Tutor says “Let’s start the generator.” PSJ

4. Tutor says “The first step is to press the generator
on button. TSP

5. Tutor says “Please press the generator on button. PSU

6. Student presses the generator on button.

7. Tutor says “Great.” PFB

8. Tutor says “We confirm successfully starting the
generator by noticing a positive reading on the
volt meter.” TCF

9. Tutor says “Now, do you want to try a more complex
task that includes starting the generator?” NEX EXE

10. Student says “Yes.”

11. Tutor sets the state of the simulator. NEX EXE

12. Tutor says “Let’s engage engine one.” PSJ

13. Tutor says “The first step is to start the
generator.” TSP

14. Tutor says “Let’s start the generator.” PSJ

15. Tutor says “You take it from here.” TIN

16. Student presses the disengage button.

17. Tutor says “Please stop disengaging the engine.” INT

18. Student says “What next?”

19. Tutor says “Please press the generator on
button.” PSU

20. Student presses the generator on button.

21. Tutor says “Great.” PFB

22. Tutor says “These engines need a supply of compressed
air in order to be started.” TXP

23. Tutor says “The next step is to open the bleed valve to
tap into the air produced by the generator.” TSP

24. Tutor says “Please open the bleed valve.” PSU

25. Student presses the engage button.

26. Tutor says “Whoops, it’s too soon to do that.” PRE

27. Student opens fuel valve one.

28. Tutor says “That was a correct action, but I wasn’t
expecting you to do it now.” UNL

29. Tutor says “Let’s go back to opening the bleed
valve.” PVF

30. Student opens the bleed valve.

31. Tutor says “Right.” PFB

32. Tutor says “Now, notice that the fuel contamination
light is on.” TAP

33. Tutor says “The next step is to press the purge
button to clear fuel line contamination.” TSP

34. Tutor says “Please press the purge button.” PSU

35. Student presses the purge button.

36. Tutor says “Great.” PFB

37. Tutor says “We confirm successfully clearing fuel line
contamination by noticing that the fuel contamination
light is off.” TCF

38. Tutor says “The next step is to press the engage
button again.” TSP

39. Tutor says “Please press the engage button.” PSU

40. Student presses the engage button.

41. Tutor says “Great.” PFB

42. Tutor says “We succeeded in engaging engine
one.” TSU

Figure 4: Example tutoring collaboration.



Figure 5: High-level agent response architecture.

• providing positive feedback (7,21,31,36,41)
• diagnosing and critiquing incorrect actions (26,28)
• explaining why a step needs to be done (22)

Many of these behaviors are not limited to tutoring, but
would also be useful in a wide range of collaborations.

The numbers in parentheses above refer to lines of Fig-
ure 4. The three-letter codes in Figure 4 identify the plug-
ins which produced each line (described later). Figure 3 will
be discussed in Section 4.

1.3 The Problem
At a very high level, the problem we address in this paper is
how to build, evolve, and debug a complex agent like the one
in Section 1.2 using behavioral components that we can eas-
ily combine and reuse (“mix and match”). More specifically,
we want to solve this problem within a principled architec-
ture which embodies collaborative discourse theory [5, 10].

A not-so-straw man solution to the high-level problem
might be to use traditional situation-action rules. For ex-
ample, you might imagine producing the agent’s responses
on lines 21–24 of Figure 4 with a rule along the lines of:

If the student presses the generator on button, then say
“. . . Please open the bleed value.”

This approach is not entirely a straw man for two reasons.
First, many simple agents are in fact built this way. Second,
some of the basic intuitions underlying the rule-based ap-
proach are sound. For example, including or not including a
particular rule is an easy way of adjusting the behavior of a
given agent. Furthermore, if you factor out the shared task
model (as we describe in Section 2.1 below), you can rewrite
such rules in a more application-independent form, such as:

If the student successfully completed a step in the cur-
rent procedure, then teach the next step.

A rule of this form corresponds to an easily describable,
reusable component of behavior, such as “teaching the next
step in a procedure” and the other examples listed at the end
of Section 1.2. What this illustrates is that the key issue in
achieving modularity and reuse is the representation of the
situation against which a rule matches.

Our reusable behavioral components, which we call plug-
ins, have some rule-like aspects. What makes our plug-ins
unique, however, is how they are invoked with respect to a
rich and abstract situation representation based on collabo-
rative discourse theory.

Figure 6: Example discourse state and agenda.

2. SYSTEM ARCHITECTURE
Figure 5 gives a high-level view of collagen’s agent re-
sponse architecture. The heart of this architecture is the
representation of discourse state. Whenever a new event
occurs, the first step is to interpret the event with respect
to the current discourse state, resulting in an updated dis-
course state. Then, how the agent will respond is computed
from the updated discourse state.

2.1 Discourse State
Discourse is a technical term for an extended communica-
tion between two or more participants in a shared context,
such as a collaboration. In previous work [11, 12], we have
discussed at length the crucial role which collaborative dis-
course theory [5, 10] has played in the development and ar-
chitecture of collagen. Our discourse state representation
consists of a stack of goals,1 called the focus stack, and a plan
tree for each goal on the stack. The top goal on the focus
stack is the current task or subtask. The plan tree associ-
ated with each goal gives its hierarchical decomposition, if
any, into partially ordered sets of subtasks with constraints.

Figure 6 shows a discourse state involving a very simple
task model, which we will use below to illustrate collagen’s
algorithm for invoking plug-ins. (It also shows the agenda
generated from this state by the default plug-ins, as dis-
cussed in Sections 2.3 and 3.3.)

A, B and C are non-primitive actions; d, e, f and g are

1To support natural language understanding, each element
of the stack is in fact a focus space [5], which includes a goal.



primitive actions. Primitive actions include both “physical”
actions, such as pressing a button, and utterances. All ac-
tions may have parameters (indicated in square brackets),
which may be bound or unbound (indicated by ?). The im-
plicit first parameter of every primitive action is which par-
ticipant (i.e., the user or the agent) should or did execute
it.A and C have single parameters which are constrained in
this plan to be identical.

Action A has been decomposed into B and C (with no or-
dering constraint). B has been decomposed into d, e, f and
g with the ordering constraints indicated by arrows. Prim-
itive actions d and e have already been executed (indicated
by check marks). C has not yet been decomposed.

Not shown in this figure are the goal decomposition rules,
called recipes. In general, there are one or more recipes for
each non-primitive action type, which may be chosen based
on the recipe’s applicability conditions. A collection of ac-
tion types and recipes constitutes collagen’s explicit task
model. The task model can be thought of as specifying pos-
sible ways of achieving tasks in the domain. The discourse
state plan tree is an instantiation of parts of the task model
under the present conditions.

The focus stack in Figure 6 contains two elements. The
current task (top of the stack) is B. When B is achieved, we
expect to continue working on A. Note that in the presence
of interruptions and unexpected focus shifts (Section 3.1.2),
the element underneath each goal in the stack is not always
the goal’s plan tree parent.

2.2 Discourse Interpretation
Most of our research and writing on collagen has concen-
trated on the interpret step in Figure 5. In contrast, this
work is primarily about the respond step. However, to un-
derstand the operation of the respond step, we first need to
briefly summarize discourse interpretation.

The basic job of discourse interpretation is to explain how
the current event (primitive action) contributes to a goal in
the current plan tree or starts a new goal in the task model.
An utterance typically contributes to a goal by satisfying a
knowledge precondition [10], such as asking about or provid-
ing the value for an unknown parameter. A non-utterance
typically contributes to a goal by matching one of the steps
in the plan or a subplan for that goal. (Utterances can also
be explicit plan steps.) Plan recognition [8] plays a central
role in the discourse interpretation algorithm.

Updating the discourse state typically involves some com-
bination of extending the plan tree and popping and/or
pushing the focus stack. Note that collagen also applies
the same interpretation and update algorithm to the agent’s
responses, so that the discourse state reflects the mutual be-
liefs2 of the agent and user.

2.3 Response Production
The respond step in Figure 5 has two stages (both of which
will be described in more detail in the next section). First,
the current set of plug-ins is invoked to generate a list, called

2Technically, the discourse state represents the agent’s be-
liefs about the mutual beliefs of the agent and user. We are
currently extending collagen to reuse some of the same
mechanisms to represent the agent’s private beliefs (includ-
ing private plans) and the agent’s beliefs about the user’s
beliefs, i.e., what is called the “student model” in tutoring
applications.

the agenda, of candidate primitive actions (including utter-
ances). Then, one of these candidates is chosen as the actual
response.

Intuitively, the algorithm for generating the agenda is the
“inverse” of the discourse interpretation algorithm, in the
sense that discourse interpretation determines how a given
primitive action contributes to the current collaboration,
whereas discourse generation computes a set of primitive
actions which would contribute to the current collaboration.

2.4 Principles and Preferences
The decomposition of agent response production in Figure 5
into a generate and a choose step corresponds to a useful
methodological division, which we term “principles and pref-
erences.” The basic idea is that all of the items in the agenda
should be reasonable responses in principle; which item is
chosen should be only a matter of preference depending, for
example, on the personality of the agent.

For example, it would not be reasonable in principle for
the agent to propose executing an action which had just been
successfully executed, or to ask for the value of a parameter
whose value has already been agreed upon. Therefore, these
utterances should never appear in the agenda under these
circumstances.

On the other hand, if there are two unbound parameters
in the current task, choosing which to ask about first is a
matter of preference. Similarly, if there are two primitive
actions which could be executed next, one of which must be
executed by the agent and one of which must be executed
by the user, which action the agent deals with next would
be a preference.

Although the distinction between principles and prefer-
ences is not always sharp, we have found it very useful for
two reasons. First, it helps us think about the correctness
of a plug-in independent of other plug-ins, i.e., all the candi-
dates generated by a plug-in should be reasonable in princi-
ple in the given circumstance, even if some other utterance
or action might be preferred.

Second, we have found it much easier to debug the current
plug-in version of the tutoring agent in Section 1.2 than an
earlier version which, instead of plug-ins, had a complex
conditionalized body of code to decide what to do next.
When the current agent does the wrong thing at some point
in a scenario, we first ask the question: Was the “right”
behavior in the agenda at that point? If so, we can then
focus on why the right behavior was not chosen. If not,
we can focus on debugging the plug-in that we expected to
generate the right behavior.

3. PLUG-INS
A plug-in is an “object” in the sense of object-oriented pro-
gramming, i.e., each plug-in is an instance of a type, may
contain private state, and implements the following meth-
ods (event is the primitive action which just occurred; node
is a plan tree node):

update(event) Update the private state of the plug-in (if
any) and modify the discourse state3 (if necessary), e.g.,
by adding a goal or binding a parameter. This method is
executed entirely for its side effects.

3A plug-in should really modify only the agent’s private be-
liefs, which will be supported in a future collagen release.



generate(event) Return a (possibly empty) list of agenda
items which would be an immediate response to event.
This method should have no side effects.

visit(node) Return a (possibly empty) list of agenda items
which would contribute to the goal of node. This method
should have no side effects.

3.1 Generating Agenda Items
The algorithm for invoking plug-ins to generate agenda items
has three steps:

1. Invoke the update method of each plug-in.
2. Invoke the generate method of each plug-in.
3. Invoke the visit method of each plug-in on each live, ex-

pected node in the current discourse state.

The combined results of invoking the generate and visit
methods form the agenda of agent response candidates.

3.1.1 Live Nodes
A plan tree node is live if and only if that node’s action
(primitive or non-primitive) has not already been achieved,
its precondition is not false, all of its temporally constrained
predecessors have been achieved, and none of its temporally
constrained successors have been started.

Note that the final clause in the liveness condition above is
due to the presence of optional steps. Unachieved optional
steps do not prevent their successors from being live, but
should not be live themselves once they have been skipped.
The presence of optional steps also introduces some subtlety
into the plan tree traversal algorithm in Section 3.2.1, since
a plan is considered complete when all of its non-optional
steps are achieved (even if some optional steps remain un-
achieved).

3.1.2 Expected Nodes
The definition of expected nodes comes from the discourse
interpretation algorithm, via the concept of focus shift.

A focus shift occurs whenever discourse interpretation mod-
ifies the focus stack. Focus shifts that involve popping fin-
ished tasks are expected; focus shifts that involve starting to
work on a different task before the current task is finished
are unexpected [9]. (Note that finished tasks remain on the
stack until the interpretation of the next event, because a
just-completed goal may continue to be the topic of current
conversation.)

Slightly more technically, an unexpected focus shift oc-
curs iff an unachieved current goal (the top of the stack) is
either popped off the stack or an interruption (a new goal
which does not contribute to the current goal) is pushed on
top of it. All other focus shifts are expected. For example,
given the discourse state in Figure 6, saying “Let’s achieve
C” would be an unexpected focus shift, because its interpre-
tation involves popping the unachieved goal B off the stack.

By induction, we define a plan tree node as expected iff its
goal is either already the current task (top of the stack) or
starting to work on its goal would be interpreted as an ex-
pected focus shift. Note that not all live nodes are expected.
For example, in Figure 6, C is live but not expected.

By visiting only expected nodes, collagen’s response
generation algorithm provides a built-in bias towards fo-
cused behavior [9] on the part of the agent. If, as recom-
mended, all the agenda items returned by a visit method

contribute to the given node, choosing one of these items
cannot lead to an unexpected focus shift. Plug-ins, such
as PrivateFocus in Section 4, which are intended to make
unexpected focus shifts, should use the generate method.

3.2 Choosing a Response
The main issue in choosing a response from the generated
agenda items is how to express the preferences. We have
taken a pragmatic approach, using a combination of default
ordering and explicit preferences. The basic idea is to visit
the live, expected nodes (step 3 in the algorithm above) in
a well-chosen default order, do a post-pass to reorder the
agenda based on any additional explicit preferences, and
then choose the first item on the agenda as the response.
We provide the details below.

3.2.1 Default Order
First we assume that the plug-ins themselves have a default
order (e.g., the order in which they are added to the system).
The agenda is initialized by adding the results, in the order
returned, of invoking the generate method of each plug-in,
in the default plug-in order.

The initial order of the remaining items in the agenda is
determined by the order in which the live, expected nodes
are visited. At each node, we add to the agenda the results,
in the order returned, of invoking the visit method of each
plug-in on that node, in the default plug-in order. The fol-
lowing algorithm specifies the order in which the nodes are
visited:

1. Do a pre-order breadth-first traversal starting at the node
corresponding to the top of the focus stack. Visit only live
nodes and do not descend into subtrees whose root is not
live (achieved nodes are not live).

2. If the starting node of 1 has been achieved, repeat 1 and
2 starting with the stack element one below in the stack,
if any (repeat as many times as necessary).

For example, this algorithm visits the plan tree nodes shown
in Figure 6 in the order: B, f, g. In our experience, pre-order
breadth-first traversal is a good default because it causes the
agent to work on tasks in a top-down style. The repeated
“popping” of achieved goals off the stack in step 2 is required
to visit all the expected nodes.

3.2.2 Explicit Preferences
We have experimented with expressing explicit preferences
using priorities (attached to each agenda item by the plug-
in that produced it) and using pairwise comparison rules,
as in SOAR [7]. Comparison rules are more expressive, but
priorities are more convenient. The tutoring agent described
in Section 1.2 was implemented using priorities, which are
described in Section 4.

3.3 Default Plug-ins
Part of the plug-in metaphor is the idea that you don’t have
to write them all yourself, but can obtain them from other
sources. In this section, we describe collagen’s six de-
fault plug-ins, which implement a normative collaboration
style, somewhere in the middle of the collaboration spectrum
closer to the intelligent assistant end. Section 4 describes in
less detail a larger collection of plug-ins which we developed
for the tutoring agent in Section 1.2.



User performs d.
User performs e.
User says “Ok, what next?”
Agent performs f. EXE

Agent says “Please perform g.” PSU

User performs g.
. . .

User says “Please perform d.”
Agent performs d. EXE

Agent says “Who should perform e?” AWO

User says “You should perform e.”
Agent performs e. EXE

Agent performs f. EXE

Agent says “Please perform g.” PSU

. . .

User says “Let’s achieve A.”
Agent says “What is the parameter of A?” AWT

User says “The parameter of A is 5.”
Agent says “Let’s achieve B.” PSJ

User says “Ok.”
Agent says “Who should perform d?” AWO

Figure 7: Three of many possible collaborations gen-
erated by the default plug-ins.

Below we give an informal word definition of each default
plug-in’s visit method. None of these plug-ins use their up-
date or generate methods. Note that the names of the last
five plug-ins derive from the semantic representation (see
Section 3.4.2) of the utterance types they return. The vari-
able goal refers to the primitive or non-primitive action as-
sociated with the visited node in the plan tree. (The three-
letter codes in parentheses below refer to lines in Figure 7
resulting from the given plug-in.)

Execute (EXE) If goal is primitive and all of its param-
eters are bound and its first parameter is bound to the
agent, then return goal.

ProposeShouldUser (PSU) If goal is primitive and its
first parameter is bound to the user, then return an ut-
terance of the form “Please perform/say goal.”

ProposeShouldJoint (PSJ) If goal is non-primitive and
it is not already on the focus stack, then return an utter-
ance of the form “Let’s achieve goal.”

AskWho (AWO) If goal is primitive and its first parame-
ter is unbound, then return an utterance of the form “Who
should perform/say goal?”

AskWhat (AWT) For each unbound parameter in goal
(other than the first parameter of primitive actions), re-
turn an utterance of the form “What is the parameter of
goal?”

AskHow If goal is non-primitive and there is more than
one applicable recipe for goal, then return an utterance of
the form “How should we achieve goal?”

These particular plug-ins are collagen’s default because
they correspond directly to the basic cases, according to
collaborative discourse theory [5, 10], for how an action can
contribute to a goal. The first three plug-ins correspond
to achieving the steps of a plan. (The first two plug-ins

produce the two agenda items shown in Figure 6.) The last
three plug-ins correspond to knowledge preconditions [10].

Combined with a rich task model, these six plug-ins can
give rise to a surprising variety of collaborative agent re-
sponses, which automatically adapt to the user’s behavior.
In fact, most of the demonstration applications we have
built use only these default plug-ins plus one or two small
application-specific plug-ins.

Figure 7 shows three of literally dozens of collaborative
variations that arise even with the very simple task model
shown in Figure 6 (the plug-in responsible for each agent
response is indicated by the three-letter code at the end of
the line). The first interaction passes through the discourse
state shown in Figure 6. In the second interaction, the user
asks the agent to perform d and e.4 The user initiates the
third interaction by explicitly proposing the toplevel goal,
which leads to a discussion of its parameter.

Finally, it is worth emphasizing that the robustness of
these plug-ins is due in large part to the fact that their
output depends only on the current discourse state, not on
the current event. This is a desirable property to keep in
mind when writing new plug-ins.

As a simple example, consider the fact that in the first
interaction in Figure 7, the Execute plug-in would return
the same agent response (to perform f) regardless of the
order in which the user performed d and e. Both sequences
of user events lead to the same state (pictured in Figure 6).

3.4 Other Issues
In this section, we briefly discuss two important issues which
impinge upon the understanding of how plug-ins work, but
whose full treatment is beyond the scope of this paper.

3.4.1 Turn Taking
One might get the impression from the term “agent re-
sponse” that interaction between the user and agent always
occurs in strict alternation, i.e., one user event followed by
one agent event, and so on. In human-human collabora-
tion, however, the rules of so-called “turn taking” are quite
complex and are influenced by many real-time factors, in-
cluding body posture, eye movement, and speech intonation.
collagen has a separate layer of discourse processing that
implements turn-taking.

Our first approximation to turn-taking rules are that a
user’s turn consists of zero or more physical actions followed
by an utterance, and that the agent’s turn consists of zero or
more actions followed by one or more utterances (the agent
decides when it is done speaking). For example, if the user
executes an action, the agent will wait for a user utterance
before responding.

Although they work relatively well in simple interactions,
we are not satisfied with collagen’s current turn-taking
rules, because they require too much ad hoc tuning in more
complex applications. We are currently working on a com-
pletely new approach to turn taking based on a deeper anal-
ysis of natural human behavior.

3.4.2 Natural Language Processing
collagen per se is not a complete natural-language process-
ing system. In terms of the architecture of Figure 5, what

4In the starting plan for B (instantiated by a recipe for B)
the first parameters of d and e were unbound. These param-
eters become bound when the primitive actions are executed.



collagen fundamentally provides is a mapping from the
semantic (logical) representation of events (utterances and
other primitive actions) to the semantic representation of
the agent response. Internally, all of collagen’s processing
uses a semantic representation based on Sidner’s artificial
discourse language [16].

Thus, when the description of a plug-in, such as Propose-
ShouldJoint, says it returns an utterance of the form “Let’s
achieve goal,” what is actually being returned is a semantic
representation, such as Propose(agent, Should(goal)).

The mapping back and forth between the semantic rep-
resentation and the surface representation of an utterance
(e.g., English text or spoken language) is done by other com-
ponents, which are used in concert with collagen. We have
used different such components in different prototypes built
with collagen. For the tutoring system of Section 1.2, we
used IBM ViaVoice to map from speech to text, the Java
Speech API to map from text to semantic representation, a
homegrown template-driven algorithm to map from seman-
tic representation to text, and IBM ViaVoice to map from
text to speech.

4. A COMPLEX AGENT REVISITED
We return now to the tutorial agent introduced in Sec-
tion 1.2, and describe all of the plug-ins which are needed (in
addition to the default plug-ins of Section 3.3) to produce
the agent responses in the Figure 2. Space does not allow
us to describe each plug-in in detail; for some, we provide
only an example of the form of utterance returned.

The number in bold following the names of plug-ins with
visit or generate methods is the priority of the returned items
(see Section 3.2); the default plug-ins all have priority zero.
The three-letter codes in parentheses after plug-in names
are used in Figure 2 to identify the lines which result from
a given plug-in; these line numbers are also referenced in
parentheses at the end of each plug-in definition. Plug-ins
without codes or line numbers happen not to be used in
Figure 2. Figure 3 shows a fragment of the underlying task
model, which will aid in understanding how the plug-ins
below are invoked.

The first group of plug-ins relate directly to pedagogical
strategy. Like the default plug-ins, they only use the visit
method. A goal is teachable below iff it is part of the task
model, its parent is the top of the focus stack, and the stu-
dent model indicates that the student does not already know
it. Notice these plug-ins are listed in increasing priority.

TeachStep (TSP) 100 If goal is teachable, then return an
utterance of the form “The first/next step is goal.” (4, 13,
23, 33, 38)

TeachExplain (TXP) 110 If goal is teachable and there is
an explanatory utterance associated with goal in the task
model and the utterance has not already been produced,
then return the explanatory utterance. (22)

TeachApplicable (TAP) 120 If goal is teachable and there
is an observable (such as a gauge) which indicates that
the goal is applicable and this fact has not already been
taught, then return an utterance of the form “Now notice
observable.” (32)

TeachInitiative (TIN) 130 If the student model indicates
that the student should already know how to achieve goal,
then return “You take it from here.” (15)

TeachSuccessful (TSU) 140 “We have succeeded in goal.”
(42)

TeachConfirm (TCF) 150 “We confirm successfully goal
by noticing that observable.” (8, 37)

The following plug-ins respond to correct (PositiveFeed-
back plug-in) and incorrect actions (the rest of the plug-ins)
via the generate method (action is the action performed or
proposed by the current event). Note that a single action
can be incorrect for more than one reason.

PositiveFeedback (PFB) 160 If action was live and ex-
pected, then return an utterance such as “Great”, “Nice”,
“Right”. (7, 21, 31, 36, 41)

StopInterruption (INT) 170 If action is an interruption,
then return an utterance of the form “Please stop goal,”
where goal is the root of the interruption plan tree. (17)

Predecessors (PRE) 180 If action has unachieved prede-
cessors, then return “Whoops, it’s too soon to do that.”
(26)

Precondition 190 If action has a false precondition, then
return “Whoops, that’s not appropriate in the current
situation.”

NearMiss 200 If action is the right type of action, but
one or more of its parameters are wrong, then return
“Whoops, you didn’t do that exactly right.”

Repeated 210 “Whoops, you already did that”

The following two plug-ins deal with unexpected focus
shifts by the student. Note that the PrivateFocus plug-in
has both an update and a generate method.

PrivateFocus (PVF) 220

update: Maintains a private focus, which is the goal in the
current plan that the agent wants to work on. This allows
the agent to remember what goal to return to when the
student makes an unexpected focus shift.

generate: If the top of the stack is different than the pri-
vate focus, then return an utterance of the form “Let’s go
back to private focus.” (29)

UnexpectedLive (UNL) 230 If action is live but unex-
pected, then return “That was a correct action, but I
wasn’t expecting you to do it now.” (28)

Finally, the following plug-in has only an update method,
which adds nodes to the toplevel plan for the tutoring session
to introduce the next exercise and initialize the simulator
appropriately. These new nodes are subsequently returned
by the default Execute plug, as indicated by the “nex exe”
code in Figure 4.

NextExercise (NEX) Whenever the current exercise is
complete, chooses the appropriate next exercise and adds
nodes to the toplevel plan to start it. (1, 2, 9, 11)

There are many points during the interaction in Figure 4
at which the agenda has multiple candidates, which are de-
cided between by priorities. To give one example, after line
20, the PositiveFeedback plug-in returns “Great,” because
the student has correctly pressed the generator on button.



In addition, because the next live step is to OpenBleedValue
(see Figure 3), ProposeShouldUser returns the utterance on
line 24, TeachStep returns the utterance on line 23, and
TeachExplain returns utterance on line 22. All of these ut-
terances are reasonable after line 20; the assigned priorities
implement a one of many possible pedagogical and commu-
nication policies.

5. RELATED WORK
The key insight of using collaborative discourse theory to
generate an agenda of possible contributions to the current
goal is due to Lochbaum [10]. The decomposition of the
generation process into plug-ins is unique to our work.

In relation to AI planning research, this works falls more
within the realm of plan execution and monitoring, rather
than plan generation. Most work on plan execution and
monitoring [1] deals with issues of uncertainty and failure
during execution, whereas we are primarily concerned with
the communication about plans that is required for collab-
oration. Other work that also puts planning within a com-
munication context [17, 18] has not addressed the scaling up
of behavioral complexity that motivates our plug-in archi-
tecture.

Many general-purpose agent-building systems provide com-
posable, reusable, rule-like chunks; the most sophisticated
is probably soar [7]. None of these systems, however, em-
body a theory of collaborative discourse, which means that
the agent developer needs to explicitly program the kind
of collaborative behaviors that are the default when using
collagen.

steve [13] has a very similar collaboration model to col-
lagen’s. collagen, however, has a more general discourse
state representation and interpretation algorithm. In fact,
it was the effort to reconstruct steve (not including the
virtual reality aspects) as the collagen-based tutor in this
paper which germinated the plug-in idea [14, 15].

6. CONCLUSION
We have described an implemented architecture for devel-
oping sophisticated collaborative interface agents and dis-
cussed the theoretical and practical issues underlying its
design. Broadly speaking, there are two main conclusions
which can be applied to the design of other similar systems.

First, the ultimate source of the modularity which is de-
sirable in developing collaborative agents lies in the choice of
state representation. Our representation of discourse state
benefits from being based on a firm theoretical foundations.

Second, at a more practical level, the distinction between
principles and preferences, even if it is sometimes a little
fuzzy, is a great aid in debugging the interaction of compos-
able, reusable behavior components.

Finally, to summarize the status of collagen, we and
our collaborators have, in addition to the tutor described
in this paper, built collagen-based intelligent assistants
for air travel planning [11], email [6], a graphical interface
development tool [12], a video cassette recorder [12], a pro-
grammable home thermostat [4], and an embedded train-
ing tutor for airport approach path design [2]. All of these
agents are currently research prototypes. Only the approach
path tutor and the tutor described in this paper use the full
plug-in architecture—the other agents use an earlier version
of the architecture which generates the agenda in a less mod-

ular way. The approach path tutor uses most, but not all,
of the plug-ins described in this paper, plus a few more that
were specially developed for it.
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